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Abstract:

Surrogate modeling is a widely used technique in the field of uncertainty quantification, which re-
duces the computational cost of uncertainty analyses by introducing a few additional assumptions
on the regularity of the model of interest. More precisely, a few evaluations of the computational
model are used to construct an accurate proxy, the so-called surrogate model, which typically has
a simpler form than the original computational model and can be evaluated at much smaller cost.
Subsequent analysis such as uncertainty propagation or sensitivity analysis can then be performed
using the inexpensive surrogate model. In this work, we assume that in addition to model evalua-
tions, partial derivatives of the model are available. These might be obtained e.g. from automatic
differentiation techniques, or when using adjoint methods to solve differential equations.

A popular surrogate modeling method is polynomial chaos expansions (PCE), due to their rigorous
mathematical foundation and good performance in applied science and engineering. A PCE is
nothing but the expansion of the model of interest onto an orthogonal polynomial basis of the
Hilbert space L2

fX
induced by the distribution fX of the input random vector X. For independent

input random variables X1, . . . , Xd, the corresponding basis simplifies to the tensor product
of univariate polynomial bases of L2

fXi

, i = 1, . . . , d, each induced by its respective marginal

distribution fXi
. A further advantage of PCE is that many quantities of interest, such as moments

and Sobol’ sensitivity indices, can be obtained by postprocessing the expansion coefficients [3].

Of course, there are many other orthogonal bases of L2

fX
that could be used for an expansion. One

recently suggested alternative is the so-called Poincaré expansion [1, 2]. Assuming that the input
random variables are independent, the multivariate basis functions are tensor products of univari-
ate orthogonal functions just as in the case of PCE. The univariate, in general non-polynomial,
orthogonal systems are the eigenfunctions of the associated so-called Poincaré differential operator,
which is defined as follows. For input variable Xi, define V by fXi

(xi) = exp(−V (xi)). Assume
that the support of fXi

is in a bounded interval [a, b], and that V is continuous and piecewise C1

on this interval. Then the Poincaré differential operator is defined by Lh := h′′ − V ′h′ and the
associated eigenproblem is to find h ∈ H2

fXi

that fulfills

h′′ − V ′h′ = λh, (1)

h′(a) = h′(b) = 0. (2)

Solutions of this equation constitute a basis for L2

fXi

, with the first one being the constant function

associated to λ = 0.
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A consequence of this definition of the Poincaré eigenfunctions is the following equality of inner
products:

〈h′, e′n〉fXi

= λn 〈h, en〉fXi

(3)

for any h ∈ H1

fXi

and any Poincaré eigenfunction en, which implies the remarkable property that

partial derivatives of a multivariate Poincaré basis form again an orthogonal system in L2

fX
.

Just as for PCE, Sobol’ indices can be computed analytically from the expansion coefficients
of a Poincaré expansion, using that the expansion is an approximation of the Sobol’-Hoeffding
decomposition [3]. Partial variances for a subset of variables are computed as the sum of squared
coefficients associated to terms involving these variables. In the case of Poincaré expansions, [2]
suggested a second possibility for computing partial variances, namely to use the partial derivatives
of Poincaré basis functions to approximate the partial derivatives of the model, and to convert the
obtained coefficients to the original coefficients using Eq. (3). Using the projection method for the
computation of the coefficients, [2] demonstrated that Sobol’ indices can be computed accurately
from Poincaré expansions, especially when relying on the derivative approximation.

In this work, we use sparse regression techniques to compute sparse Poincaré (derivative) expan-
sions, in analogy to sparse PCE which has shown to outperform projection-based and non-sparse
regression-based PCE. We investigate the performance of sparse regression for Poincaré (deriva-
tive) expansions for computing Sobol’ indices on several example problems, analyze their conver-
gence and compare the results to results obtained with PCE. Preliminary results show that sparse
regression estimates outperform projection estimates, and that estimates of Sobol’ indices com-
puted from Poincaré derivative expansions are especially accurate for low-importance variables,
suggesting that this method might be a promising new tool for low-cost screening.
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