Repulsiveness for a better integration (not my social program)

WORKSHOP ON KERNEL AND SAMPLING METHODS FOR DESIGN AND quantization, GDR Mascott-Num

Jean-François Coeurjolly
joint works with A Mazoyer (IMT, Toulouse), PO Amblard (CNRS, U Grenoble Alpes)
November 2021

UGA
 Université

 Grenoble Alpes
Are you sure you you're not in favor of repulsion?

- Here are 100 points drawn randomly in ...

Are you sure you you're not in favor of repulsion?

- Here are 100 points drawn randomly in ...
- Then, I asked my daughter to draw a few points

Outline (no interest)

(1) Introduction
(2) Spatial point processes and DPPs
(3) Main result
(4) Simulation study
(5) Conclusion

Outline (no interest)

(1) Introduction
(2) Spatial point processes and DPPs
(3) Main result

4 Simulation study
(5) Conclusion

Space-filling design

Computer experiments
(1) The design must cover "nicely" $B=[0,1]^{d}$;

- Additional objective : study influence of a subset of inputs on output without constructing a new design ;
(2) Cover "nicely" the projection $B_{I}=[0,1]^{\iota}$ where $I \subseteq\{1, \ldots, d\}$ with $|I|=\iota<d)$.

Spatial point processes for computer experiments
(1) Use of repulsive point processes \mathbf{X} to produce the design ;
(2) Find a repulsive point process \mathbf{X} such that its projection \mathbf{X}_{I} onto B_{I} remains a repulsive point process.

Integral estimation problem "reformulation"

How to estimate $\mu\left(f_{I}\right)=\int_{[0,1]^{]^{\prime}}} f_{I}(u) \mathrm{d} u$ for any $f_{I}:[0,1]^{\ell} \rightarrow \mathbb{R}, I \subseteq\{1, \ldots, d\}$ and $\iota=|I|$, using quadrature points defined in dimension d ?

That is let $U_{1}, \ldots, U_{N} \in[0,1]^{d}$ (to be chosen). We want to estimate $\mu\left(f_{I}\right)$ by

$$
\hat{\mu}\left(f_{I}\right)=\frac{1}{N} \sum_{j=1}^{N} f_{I}\left(\left(U_{j}\right)_{I}\right)^{a}
$$

where for any $u \in \mathbb{R}^{d}, u_{I}=\left(u_{i}\right)_{i \in I}$.
a. eventually weigthed

- The d-dimensional design is defined once for all, and used to estimate any ι-dimensional integral.
- In this problem, the design is therefore independent of the integrand (hence a "homogeneous" design makes sense).

The simplest solution

Standard Monte-Carlo

- Let $U_{1}, \ldots, U_{N} \sim \mathcal{U}\left([0,1]^{d}\right)$ be iid random variables
- Estimate $\mu\left(f_{I}\right)$ by

$$
\widehat{\mu}\left(f_{I}\right)=\frac{1}{N} \sum_{j=1}^{N} f_{I}\left(\left(U_{j}\right)_{I}\right)
$$

- Since $\left(U_{j}\right)_{I}$ are still iid uniformly distributed on $[0,1]^{l} \ldots$ for any $I \subseteq\{1, \ldots, d\}$

$$
\mathrm{E} \widehat{\mu}\left(f_{I}\right)=\mu\left(f_{I}\right) \quad \text { and } \quad \operatorname{Var} \widehat{\mu}\left(f_{I}\right)=N^{-1}\left\{\mu\left(f_{I}^{2}\right)-\mu\left(f_{I}\right)^{2}\right\}
$$

and a central limit theorem holds (and actually much more ...)

More than 70 years of research in one slide

Improvements of standard MC : huge literature (already in the situation $\iota=d$)

- Stratified Monte-Carlo methods
- MCMC, importance sampling
- Bayesian quadrature
- Quasi Monte-Carlo, Randomized Quasi Monte-Carlo methods
- + control variates, antitihetic methods, variance-reduction methods
- ...

General remarks : Either methods are

- quite stable when $d \gg 1$, computationally efficient, but CLT with variance decrasing as N^{-1};
- or have MSE much faster $\left(N^{-1-2 / d}, N^{-3-2 / d+\varepsilon}\right)$ but more unstable when $d \gg 1$, not straightforward to implement, CLT does not always hold, require strong assumptions on $f\left(f \in C^{1}\right.$ or $\left.C^{d}\right)$.

More than 70 years of research in one slide

Improvements of standard MC : huge literature (already in the situation $\iota=d$)

- Stratified Monte-Carlo methods
- MCMC, importance sampling
- Bayesian quadrature
- Quasi Monte-Carlo, Randomized Quasi Monte-Carlo methods
- + control variates, antitihetic methods, variance-reduction methods

Objective

- provide a faster estimator than the standard MC one, for any f_{I}, under minimal assumptions on f_{I} (no differentiability)
- using a stochastic model . . .in particular a class of repulsive spatial point processes . . .and in particular a specific Determinantal Point Process.

Outline (no interest)

(1) Introduction
(2) Spatial point processes and DPPs
(3) Main result
(4) Simulation study
(5) Conclusion

(Continuous) SPP on \mathbb{R}^{d}

- Let \mathbf{X} be a spatial point process defined on $[0,1]^{d}$, viewed as a locally finite random measure : $\mathbf{x}=\left\{x_{1}, \ldots, x_{m}\right\}, \quad x_{j} \in[0,1]^{d}$

Intensity functions (the first two ones ... and informally

$$
\rho(u)=\lim _{|\mathrm{d} u| \rightarrow 0} \frac{\mathrm{E}\{N(\mathrm{~d} u)\}}{|\mathrm{d} u| \mathrm{d} v \mid} \quad \text { and } \quad \rho^{(2)}(u, v)=\lim _{|\mathrm{d} u||, \mathrm{d} v| \rightarrow 0} \frac{\mathrm{E}\{N(\mathrm{~d} u) N(\mathrm{~d} v)\}}{|\mathrm{d} u||\mathrm{d} v|}
$$

- $\rho(u) \mathrm{d} u \approx$ Prob. to observe a point in $B(u, \mathrm{~d} u)$.
- $\rho^{(2)}(u, v) \mathrm{d} u \mathrm{~d} v \approx$ Prob. to observe two distinct points in $B(u, \mathrm{~d} u)$ and $B(v, \mathrm{~d} v)$.
- if $\rho(\cdot)=\rho, \mathbf{X}$ is said to be homogeneous ; $\rho=$ mean number of point per unit volume.

Repulsiveness and its statistical interest

- Pair correlation function (assume $\rho(\cdot)>0$) :

$$
g(u, v)=\frac{\rho^{(2)}(u, v)}{\rho(u) \rho(v)}=\frac{\rho^{(2)}(u, v)}{\rho^{2}} \quad \text { (homog.) }=g_{0}(\|v-u\|) \text { (isotr.) }
$$

Repulsiveness and its statistical interest

- Pair correlation function (assume $\rho(\cdot)>0$) :

$$
g(u, v)=\frac{\rho^{(2)}(u, v)}{\rho(u) \rho(v)}=\frac{\rho^{(2)}(u, v)}{\rho^{2}} \quad \text { (homog.) }=g_{0}(\|v-u\|) \text { (isotr.) }
$$

SPP for MC integration ($\iota=d$ for now)
Let \mathbf{X} be a SPP on $[0,1]^{d}$ with intensity parameter N and pcf g

$$
\widehat{\mu}(f)=N^{-1} \sum_{u \in \mathrm{X}} f(u) \quad \text { is such that } \mathrm{E} \widehat{\mu}(f)=\mu(f)
$$

and

$$
\operatorname{Var} \widehat{\mu}(f)=N^{-1} \int_{[0,1]^{d}} f(u)^{2} \mathrm{~d} u+\int_{[0,1]^{d}} \int_{[0,1]^{d}}\{g(u, v)-1\} f(u) f(v) \mathrm{d} u \mathrm{~d} v .
$$

(Continuous) Determinantal point processes

$\mathbf{X} \sim \mathrm{DPP}_{B^{d}}(K)$ for some kernel $K \ldots$
...if its k th order intensity $(k \geq 1)$ writes

$$
\rho^{(k)}\left(u_{1}, \ldots, u_{k}\right)=\operatorname{det}\left[\left(K\left(u_{i}, u_{j}\right)\right)_{i, j=1, \ldots, k}\right] .
$$

where K admits the Mercer decomposition $K(u, v)=\sum_{j \in \mathcal{N}_{d}} \lambda_{j} \phi_{j}(u) \bar{\phi}_{j}(v)$, where $\left\{\phi_{j}\right\}_{j}$ forms an orthonormal basis of $L^{2}\left(B^{d}\right) ; \lambda_{j} \in[0,1]=$ eigenvalues.

- Introduced by O. Macchi to model fermions;
- Appear in the study of eigenvalues of certain random matrices, zeroes of Gaussian Analytic Functions (e.g. Permantle, Peres, Hough, Johanson, Soshnikov,...)
- Very tractable class of models of repulsive point processes. Assume $K(u, u)=N$, then $\rho(u)=N$, and

$$
g(u, v)=N^{-2} \operatorname{det}\left(\begin{array}{cc}
N & K(u, v) \\
K(u, v) & N
\end{array}\right)=1-\frac{|K(u, v)|^{2}}{N^{2}}<1!!
$$

Why DPPs are interesting?

Assume $K(u, u)=N$ (also valid for inhomogeneous)

$$
\operatorname{Var} \widehat{\mu}(f)=N^{-1} \int_{[0,1]^{d}} f(u)^{2} \mathrm{~d} u \underbrace{-N^{-2} \sum_{j, k \in \mathcal{N}_{d}} \lambda_{j} \lambda_{k}\left|\int_{[0,1]^{d}} f(u) \mathrm{d} u \phi_{j}(u) \overline{\phi_{k}}(u)\right|^{2}}_{\leq 0 \forall \operatorname{sign}(f)}
$$

- Remark : Projection DPP, $\lambda_{j} \in\{0,1\}$, in which case N is an integer.

Why DPPs are interesting?

Assume $K(u, u)=N$ (also valid for inhomogeneous)

$$
\operatorname{Var} \widehat{\mu}(f)=N^{-1} \int_{[0,1]^{d}} f(u)^{2} \mathrm{~d} u \underbrace{-N^{-2} \sum_{j, k \in \mathcal{N}_{d}} \lambda_{j} \lambda_{k}\left|\int_{[0,1]^{d}} f(u) \mathrm{d} u \phi_{j}(u) \overline{\phi_{k}}(u)\right|^{2}}_{\leq 0 \forall \operatorname{sign}(f)}
$$

- Remark : Projection DPP, $\lambda_{j} \in\{0,1\}$, in which case N is an integer.

Bardenet and Hardy'19

- $\iota=d$, build an ad-hoc OPE (Leg. polyn.)
- Pros: $\operatorname{Var} \widehat{\mu}(f) \propto N^{-1-1 / d} ; \operatorname{CLT}$ for $\mu(f)$;
- Cons : $f \in C_{b}^{1}\left([0,1]^{d}\right)$ and compactly supported (due to inhomog. kernel) ; $\iota<d$ cannot be considered ; proofs very long.

Outline (no interest)

(1) Introduction
(2) Spatial point processes and DPPs
(3) Main result
(4) Simulation study
(5) Conclusion

Our approach : DPP wrt Fourier basis

- $N=n_{1} \times \cdots \times n_{d}$ and $E_{N}=\left\{1, \ldots, n_{1}\right\} \times \ldots\left\{1, \ldots, n_{d}\right\}\left(\# E_{N}=N\right)$
- $\phi_{j}(u)=\mathrm{e}^{2 i \pi j^{\top} u}$ for $u \in[0,1]^{d}$
- then we consider the (homogeneous) kernel K defined by

$$
K(u, v)=\sum_{j \in E_{N}} \mathrm{e}^{2 \mathrm{i} \pi j^{\top}(u-v)}=\prod_{\ell=1}^{d} K_{\ell}\left(u_{\ell}, v_{\ell}\right) \quad \text { where } \underbrace{K_{\ell}\left(u_{\ell}, v_{\ell}\right)=\sum_{j=1}^{n_{\ell}} \mathrm{e}^{2 \mathrm{i} \pi j\left(u_{\ell}-v_{\ell}\right)}}_{\propto \text { Dirichlet kernel in Sign. Proc. }} .
$$

Our approach : DPP wrt Fourier basis

- $N=n_{1} \times \cdots \times n_{d}$ and $E_{N}=\left\{1, \ldots, n_{1}\right\} \times \ldots\left\{1, \ldots, n_{d}\right\}\left(\# E_{N}=N\right)$
- $\phi_{j}(u)=\mathrm{e}^{2 \mathrm{i} \pi j^{\top} u}$ for $u \in[0,1]^{d}$
- then we consider the (homogeneous) kernel K defined by

$$
K(u, v)=\sum_{j \in E_{N}} \mathrm{e}^{2 \mathrm{i} \pi j^{\top}(u-v)}=\prod_{\ell=1}^{d} K_{\ell}\left(u_{\ell}, v_{\ell}\right) \quad \text { where } \underbrace{K_{\ell}\left(u_{\ell}, v_{\ell}\right)=\sum_{j=1}^{n_{\ell}} \mathrm{e}^{2 \mathrm{i} \pi j\left(u_{\ell}-v_{\ell}\right)}}_{\alpha \text { Dirichlet kernel in Sign. Proc. }} .
$$

Theorem (MCA'19) : Why taking E_{N} as a rectangular set?
Let $\mathbf{X} \sim \operatorname{DPP}_{[0,1]^{d}}(K)$ and let $I \subseteq\{1, \ldots, d\}$, then

$$
\mathbf{X}_{I} \sim\left(-1 / N_{I^{c}}\right)-\operatorname{DPP}_{B^{\iota}}\left(N_{I^{c}} K_{\iota}\right)
$$

where $N=N_{I} \times N_{I^{c}}$ and $K_{I}=\prod_{\ell \in I} K_{\ell}$. In particular, $g_{\mathbf{X}_{I}}<1, \forall I!$!

An example of a 3d-realization

1

Our main result

- Fourier coefficient: $\hat{f}_{I}(k)=\left\langle f_{I}, \phi_{k}\right\rangle$
- Assume $f_{I} \in \mathcal{H}^{s}\left([0,1]^{s}\right)=\left\{f_{I} \in L^{2}: \sum_{k \in \mathbb{Z}^{\prime}}\left(1+\|k\|_{\infty}\right)^{2 s}|\hat{f}(k)|^{2}<\infty\right\}$.

Theorem (CMA'19+)
Let $d>1$ and assume $N=n_{1} \times \cdots \times n_{d}$ s.t. $n_{\ell} N^{-1 / d} \rightarrow 1$
(i) If $s>1 / 2$ and $\left\|f_{I}\right\|_{\infty}<\infty$ then

$$
\begin{gathered}
\operatorname{Var}\left(\widehat{\mu}\left(f_{I}\right)\right) \sim N^{-1-1 / d} \sigma^{2}\left(f_{I}\right) \quad \text { with } \quad \sigma^{2}\left(f_{I}\right)=\sum_{k \in \mathbb{Z}^{i}}\|k\|_{1}\left|\hat{f}_{I}(k)\right|^{2} . \\
\sqrt{N^{1+1 / d}}\left(\widehat{\mu}\left(f_{I}\right)-\mu\left(f_{I}\right)\right) \xrightarrow{d} N\left(0, \sigma^{2}\left(f_{I}\right)\right) .
\end{gathered}
$$

(ii) If $0<s<1 / 2$, then

$$
\operatorname{Var}\left(\widehat{\mu}\left(f_{I}\right)\right)=O\left(N^{-1-\frac{2 s}{d}}\right)=o\left(N^{-1}\right)
$$

Outline (no interest)

(1) Introduction
(2) Spatial point processes and DPPs
(3) Main result

4 Simulation study
(5) Conclusion

Setting

Estimate $\mu(f)$ for different d
(1) For $N=100, \ldots, 1000$ an $d=1, \ldots, 6: 2500$ replications of a Dirichlet DPP producing N points in $[0,1]^{d}$;
(2) For each d and some given f :

- Estimate $\mu(f)$ for each N using the design constructed in dimension d;
© Linear regression of empirical variance vs. $\log (N)$ and estimate the slope.

Estimate $\mu\left(f_{I}\right)$ for different ι

(1) For $N=100, \ldots, 1000: 2500$ replications of a Dirichlet DPP producing N points in $[0,1]^{6}$;
(2) For $\iota \in\{6, \ldots, 1\}$:
(1) For a ι-dimensional function f_{I}, estimate $\mu\left(f_{I}\right)$ for each N using the design constructed in dimension 6 ;
(2) Linear regression of empirical vs. $\log (N)$ and estimate the slope.

Bump : $f \in \mathcal{H}^{s}$, for any $s>0$
$f(x) \propto \prod_{i=1}^{d} \exp \left(-\frac{0.1}{.25-\left(x_{i}-.5\right)^{2}}\right)$

Estimation of $\mu(f)$ via \mathbf{X}

| d | Conf. interval | Estimation | $\mathbf{- 1 - 1 / d}$ |
| :--- | :---: | :---: | :---: | :---: |
| 1 | $[-2.016 ;-1.966]$ | -1.991 | -2.000 |
| 2 | $[-1.536 ;-1.438]$ | -1.487 | -1.500 |
| 3 | $[-1.391 ;-1.302]$ | -1.347 | -1.333 |
| 4 | $[-1.282 ;-1.225]$ | -1.254 | -1.250 |
| 5 | $[-1.2 ;-1.129]$ | -1.164 | -1.200 |
| 6 | $[-1.153 ;-1.073]$ | -1.113 | -1.167 |

Bump : $f \in \mathcal{H}^{s}$, for any $s>0$
$f(x) \propto \prod_{i=1}^{d} \exp \left(-\frac{0.1}{.25-\left(x_{i}-.5\right)^{2}}\right)$

Estimation of $\mu(f)$ via \mathbf{X}

Estimation of $\mu\left(f_{I}\right)$ via $\mathbf{X}_{I}(d=6)$

ω	Conf. interval	Estimation	$\mathbf{- 1 - 1 / d}$
6	$[-1.153 ;-1.073]$	-1.113	-1.167
5	$[-1.162 ;-1.104]$	-1.133	-1.167
4	$[-1.157 ;-1.077]$	-1.117	-1.167
3	$[-1.16 ;-1.09]$	-1.125	-1.167
2	$[-1.186 ;-1.087]$	-1.136	-1.167
1	$[-1.204 ;-1.116]$	-1.160	-1.167

Mix-cos : $f \in \mathcal{H}^{3 / 2}$
$f(x) \propto \sum_{i=1}^{d}\left\{0.1\left|\cos \left(5 \pi\left(x_{i}-1 / 2\right)\right)\right|+\left(x_{i}-1 / 2\right)^{2}\right\}$

Estimation of $\int f_{d}$ via \mathbf{X}
$f_{\text {mixcos }}$

Estimation of $\int f_{I}$ via $\mathbf{X}_{I}(d=6)$

$$
\text { " } L^{\gamma} \text {-norm" : } f(x) \propto \sum_{i=1}^{d}\left|u_{i}-1 / 2\right|^{1 / 4},
$$

$$
f \in H^{s} \text { for any } s<3 / 4
$$

Estimation $\mu\left(f_{I}\right)$ via $\mathbf{X}_{I}(d=6)$ $f_{n 1}$

ω	Conf. interval	Estimation	$\mathbf{- 1 - 1 / d}$
6	$[-1.262 ;-1.123]$	-1.192	-1.167
5	$[-1.269 ;-1.114]$	-1.191	-1.167
4	$[-1.248 ;-1.118]$	-1.183	-1.167
3	$[-1.243 ;-1.094]$	-1.168	-1.167
2	$[-1.272 ;-1.129]$	-1.200	-1.167
1	$[-1.263 ;-1.14]$	-1.201	-1.167

A last example in the situation \mathcal{H}^{s} with $s<1 / 2$

- Particular case $d=1, B=[0,1]$,

$$
h_{\gamma}(x)=\sum_{j \geqslant 1} \frac{\cos (2 \pi j x)}{2 \pi j^{\gamma}}, \quad \gamma>1 / 2 .
$$

Then $h_{\gamma} \in \mathcal{H}^{s}$ for any $0<s<\gamma-1 / 2$

γ	\mathbf{s}	$\mathbf{- 1} \mathbf{- 2 s} / \mathbf{d}$	Estimation	Conf. interval
0.625	0.125	-1.25	-1.32	$[-1.48 ;-1.17]$
0.750	0.250	-1.50	-1.53	$[-1.61 ;-1.45]$
0.875	0.375	-1.75	-1.73	$[-1.76 ;-1.69]$

More simulations

- Simulations were made for $d=6$ or 10 and any $\iota=1, \ldots, d$ for additional functions, and for our DirDPP design and for : BH-DPP [BH'19], crudeMC, stratified MC, Sobol, MaximinLHS, Halton designs.

Just impossible to sum up >20 figures (please refer to EJS'21) . . .but ...

- for a specific function, sample size, dimension : there were as expected better methods (and actually much faster)
- DirDPP was the only one to remain stable in terms of behaviour for all considered functions, sample size, dimension d and for any $\iota=1, \ldots, d$.

Outline (no interest)

(1) Introduction
(2) Spatial point processes and DPPs
(3) Main result
(4) Simulation study
(5) Conclusion

Summary :

- A simple MC estimator based on a homogeneous projection DPP.
- Universal result : unbiased est. and CLT with rate $\sqrt{N^{1+1 / d}}$
- Results available
- for $f \in \mathcal{H}^{1 / 2}$, i.e. for some non-differentiable functions
- on lower dimensional spaces

Summary :

- A simple MC estimator based on a homogeneous projection DPP.
- Universal result : unbiased est. and CLT with rate $\sqrt{N^{1+1 / d}}$
- Results available
- for $f \in \mathcal{H}^{1 / 2}$, i.e. for some non-differentiable functions
- on lower dimensional spaces

What I didn't say :

- Asymptotic normality "checked" (qqplots and Shapiro-Wilk test).
- Asympt. CI for $\mu\left(f_{I}\right)$? Interesting fact when $f_{I} \in C_{b}^{1}\left([0,1]^{l}\right)$

$$
\sigma^{2}\left(f_{I}\right)=\sum_{j \in Z^{\bullet}}\|j\|_{1}|\hat{f}(j)|^{2} \leq 4 \pi^{2} \int_{[0,1]^{\top}}\left\|\nabla f_{I}(u)\right\|^{2} \mathrm{~d} u=: \mathcal{J}_{I}
$$

$\Rightarrow \mathcal{J}_{I}$ is easily estimated (using again $\mathbf{X}_{I}!!$), leading to a conservative asympt. CI.

Where to go ? (just a few perspectives)

- for the same problem : other projection kernels, infinite integrals
- for a given f : inhomogeneous kernels to exploit f
- lots of possible statistical applications (density estimation, regression,...) when a random design is involved
- d-dimensional sphere, torus, ...?
- simulations $=O\left(d N^{3}\right)$ (for now), not sequential but code and replications are available : https://github.com/AdriMaz

Tricky Fourier basis

Just to give an idea, let's consider $d=1$

$$
\begin{aligned}
\operatorname{Var} \widehat{I}_{1}\left(f_{1}\right) & =\frac{1}{N} \sum_{j \in \mathbb{Z}}\left|<f, \phi_{j}>\left.\right|^{2}-\frac{1}{N^{2}} \sum_{j, k=1}^{N}\right|<f, \phi_{j} \bar{\phi}_{k}>\left.\right|^{2} \\
& =\frac{1}{N} \sum_{j \in \mathbb{Z}}\left|<f, \phi_{j}>\left.\right|^{2}-\frac{1}{N^{2}} \sum_{j, k=1}^{N}\right|<f, \phi_{j-k}>\left.\right|^{2} \\
& =\frac{1}{N} \sum_{j \in \mathbb{Z}}|\hat{f}(j)|^{2}-\frac{1}{N^{2}} \sum_{|j| \leq N}(N-|j|)|\hat{f}(j)|^{2} \\
& =\frac{1}{N} \sum_{|j| \geq N}|\hat{f}(j)|^{2}+\frac{1}{N^{2}} \sum_{|j| \leq N}|j||\hat{f}(j)|^{2} \\
& \sim \frac{1}{N^{2}} \sum_{j \in \mathbb{Z}}|j||\hat{f}(j)|^{2}
\end{aligned}
$$

