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Are you sure you you’re not in favor of repulsion ?

@ Here are 100 points drawn
randomly in ...
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Are you sure you you’re not in favor of repulsion ?

@ Here are 100 points drawn

randomly in ... o Then, I asked my daughter
to draw a few points
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Introduction

Space-filling design

Computer experiments
(1) The design must cover “nicely” B = [0,1]¢;

o Additional objective : study influence of a subset
of inputs on output without constructing a new
design ;

(2) Cover “nicely” the projection By = [0, 1]* where
Ic{l,...,d} with |I|=¢< d).

Spatial point processes for computer experiments

(1) Use of repulsive point processes X to produce
the design;

(2) Find a repulsive point process X such that its
projection X; onto B; remains a repulsive point
process.
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Introduction

Integral estimation problem “reformulation”
How to estimate u(f7) = flo 13 fr(w)ydu for any f; : [0,1]' > R, I C{1,...,d} and
t = |I|, using quadrature points defined in dimension d ?

That is let Uy, ..., Uy € [0,1]¢ (to be chosen). We want to estimate u(f7) by

1 N
LOEEDWACANE

J=1

where for any v € R%, ur = (u;);e;-

a. eventually weigthed

v

e The d-dimensional design is defined once for all, and used to estimate any
t-dimensional integral.

o In this problem, the design is therefore independent of the integrand
(hence a “homogeneous” design makes sense).
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Introduction

The simplest solution

Standard Monte-Carlo

o Let Uy,..., Uy ~U([0,1]1%) be iid random variables
o Estimate u(f;) by

_ 1 ¢
AU = 5 ;ff (<o)

e Since (Uj); are still iid uniformly distributed on [0,1]*... for any
I1c{l,...,d}

Eu(fr) = u(fr) and Var zi(f)) = N~ {,u(ff) - ,U(fl)2}

and a central limit theorem holds (and actually much more ...)
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Introduction

More than 70 years of research in one slide

Improvements of standard MC : huge literature (already in the situation ¢ = d)

Stratified Monte-Carlo methods
MCMC, importance sampling

Bayesian quadrature

Quasi Monte-Carlo, Randomized Quasi Monte-Carlo methods

+ control variates, antitihetic methods, variance-reduction methods

General remarks : Either methods are

@ quite stable when d >> 1, computationally efficient, but CLT with

o or have MSE much faster (N~172/4 N=3-2/d+#) hut more unstable when
d >> 1, not straightforward to implement, CLT does not always hold,
require strong assumptions on f (f € C! or C%).

variance decrasing as N~ ;
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Introduction

More than 70 years of research in one slide

Improvements of standard MC : huge literature (already in the situation ¢ = d)

Stratified Monte-Carlo methods
MCMC, importance sampling

Bayesian quadrature

Quasi Monte-Carlo, Randomized Quasi Monte-Carlo methods

+ control variates, antitihetic methods, variance-reduction methods

Objective

e provide a faster estimator than the standard MC one, for any f;, under
minimal assumptions on f; (no differentiability)

e using a stochastic model . ..in particular a class of repulsive spatial point

processes . ..and in particular a specific Determinantal Point Process.
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© Spatial point processes and DPPs
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Spatial point processes and DPPs

(Continuous) SPP on R?

Year 2012
55 prEREEIE:

o Let X be a spatial point process
defined on [0, 1]¢, viewed as a
locally finite random measure :
X={T1,...,Tm}, z; € [0, 114

Intensity functions (the first two ones ...and informally

=1 _— d ,v)= 1
plu) |dqﬂl—l>o |dul|dv] an p (U, v) Idul,lldnq}l—>0 |[du||do]|

E{N(du)N(dv)}

o p(u)du = Prob. to observe a point in B(u,du).

o p@(u,v)dudv = Prob. to observe two distinct points in B(wu,du) and
B(v,dv).

e if p(-) = p, X is said to be homogeneous ; p=mean number of point per
unit volume.
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Spatial point processes and DPPs

Repulsiveness and its statistical interest

e Pair correlation function (assume p(-) > 0) :

(2) (2)
PP, v)  p(u,v) .
g(u, v) = = (homog.) = go(llv — ul) (isotr.)
p(u)p(v) p?
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Spatial point processes and DPPs

Repulsiveness and its statistical interest

e Pair correlation function (assume p(-) > 0) :

pPP(u,v)  pP(u,v)
plwp(v) — p?

g(u, v) = (homog.) = go(llv — ul) (isotr.)

SPP for MC integration (¢ = d for now)
Let X be a SPP on [0, 1]% with intensity parameter N and pcf g
u(f)y=N"1t Zf(u) is such that Eu(f) = u(f)
ueX

and

Varu(f) = N f(uy’du + f f {g(u, v) =1} f(wf(v)dudv.
[0,1]¢ J[0,1]¢

(0,134

4
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Spatial point processes and DPPs

(Continuous) Determinantal point processes

X ~ DPPgu(K) for some kernel K ...
...if its kth order intensity (k > 1) writes

.....

where K admits the Mercer decomposition K(u,v) = 3 jep, /lj¢j(u)¢_j(v),
where {¢;}; forms an orthonormal basis of L*(B%): 4; € [0, 1]= eigenvalues.

e Introduced by O. Macchi to model fermions;

o Appear in the study of eigenvalues of certain random matrices, zeroes of
Gaussian Analytic Functions (e.g. Permantle, Peres, Hough, Johanson,
Soshnikov,. . .)

e Very tractable class of models of repulsive point processes. Assume
K(u,u) = N, then p(u) = N, and

N K(@uw)_, K@l

i
K(u,v) N N2 17

g(u,v) = N2 det (
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Spatial point processes and DPPs

Why DPPs are interesting ?

Assume K(u,u) = N (also valid for inhomogeneous)

2

Var i(f) = N F(u)?du—N2 Z A,
d
[0.1] . JeN

f f(u)dug;(w)dr(u)
[0.1¢

<0V sign(f)

e Remark : Projection DPP, 4; € {0,1}, in which case N is an integer.
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Spatial point processes and D

Why DPPs are interesting ?

Assume K(u,u) = N (also valid for inhomogeneous)

2

Var u(f) = N ! f(uw)?du—-N"2 Z ;A f[ondf(u)du@(u)(ﬁk(u)

(0,114 j.keNy

<0V sign(f)

e Remark : Projection DPP, 4; € {0,1}, in which case N is an integer.

Bardenet and Hardy’19
@ ¢ = d, build an ad-hoc OPE (Leg. o Cons : f € C}([0,1]%) and

polyn.) compactly supported (due to
e Pros : Varu(f) o« N-'"V4, CLT inhomog. kernel) ; ¢ < d cannot be
for #G). K ' considered ; proofs very long.
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Main result

Our approach : DPP wrt Fourier basis

o N=mX---Xngand Ey ={1,...,m}X...{1,...,nq} G#ENy = N)
o ¢j(u) =e* ™" for u €[0,1]%
e then we consider the (homogeneous) kernel K defined by

¢

d
K(u,v) = Z e (u=v) = 1_[ Ke(ug, ve)) where Ko(ug, vp) = Z e2ini(u=ve)

jeEy =1 j=1

«Dirichlet kernel in Sign. Proc.
v
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Main result

Our approach : DPP wrt Fourier basis

o N=mX---Xngand Ey ={1,...,m}X...{1,...,nq} G#ENy = N)
o ¢j(u) =e* ™" for u €[0,1]%
e then we consider the (homogeneous) kernel K defined by

¢

d
K(u,v) = Z e (u=v) = 1_[ Ke(ug, ve)) where Ko(ug, vp) = Z e2ini(u=ve)

jeEy =1 j=1

«Dirichlet kernel in Sign. Proc.
v

Theorem (MCA’19) : Why taking Ey as a rectangular set ?
Let X ~ DPPg1j¢(K) and let I C{1,...,d}, then

X; ~ (-1/N;e) - DPPp (N;< K)

where N = Ny X Nye and K = []se; K. In particular, gx, <1, YI!!
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Projection on (y,z)

Projection on (x,z)
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Main result

Our main result

@ Fourier coefficient : fl(k) =< f1, ¢ >

o Assume f; € H([0,11) = {f1 € L? : Tyez (1 + IIEll)** I (k)2 < oo} .

Theorem (CMA’19+)
Let d > 1 and assume N = ng X --- X ng s.t. N V4 5 1
(i) If s > 1/2 and |[|f7|l < oo then
Var (A1) ~ N5V a2 () with o2(f) = ) Ikl ()2,

keZt

VN () - (i) 5 N (0.0%(f).

(ii) If 0 < s < 1/2, then

Var (u(f1) ) :O(N_l_%) = O(N_l)
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Simulation study

Setting

Estimate u(f) for different d
@ For N =100,...,1000 an d = 1,...,6 : 2500 replications of a Dirichlet
DPP producing N points in [0,1]%;
© For each d and some given f :

@ Estimate u(f) for each N using the design constructed in dimension d ;
@ Linear regression of empirical variance vs. log(/N) and estimate the slope.

4

Estimate p(fr) for different ¢
@ For N =100,...,1000 : 2500 replications of a Dirichlet DPP producing N
points in [0,1]%;
@ Force{6,...,1}:
@ For a i-dimensional function f;, estimate u(f;) for each N using the design

constructed in dimension 6;
@ Linear regression of empirical vs. log(/N) and estimate the slope.
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Simulation study

Bump : f € H®, for any s >0
J(@) e Ty exp (= 55052

Estimation of u(f) via X

fbump

-1

log(p)

Conf. interval Estimation -1-1/d
[-2.016;-1.966] -1.991 -2.000
[-1.536;-1.438] -1.487 -1.500
[-1.391;-1.302] -1.347 -1.333
[-1.282;-1.225] -1.254  -1.250

[-1.2;-1.129] -1.164  -1.200
[-1.153;-1.073] -1.113  -1.167

d
1
2
3
4
5
6
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Simulation study

Bump : f € H®, for any s >0

@) o< TTL, exp (- 52t

\
Estimation of u(f) via X Estimation of u(fy) via X; (d = 6)
fbump fbump
0
-5
B .
! - :
' £l
-3
-8
» .
45 5.0 55 6.0 6.5 7.0 45 5.0 55 6.0 6.5 7.0
log(p) log(p)

Conf. interval Estimation -1-1/d
[-2.016;-1.966] -1.991 -2.000
[-1.536;-1.438] -1.487 -1.500
[-1.391;-1.302] -1.347 -1.333
[-1.282;-1.225] -1.254  -1.250

[-1.2;-1.129] -1.164  -1.200
[-1.153;-1.073] -1.113  -1.167

Conf. interval Estimation -1-1/d
[-1.153 ; -1.073] -1.118 -1.167
[-1.162;-1.104] -1.133  -1.167
[-1.157 ; -1.077] -1.117 -1.167

[-1.16; -1.09] -1.125  -1.167
[-1.186 ; -1.087] -1.136 -1.167
[-1.204 ; -1.116] -1.160 -1.167

o oA W =
O N R NS = )
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Simulation study

N N
Mix-cos : f € H3/?
f@) o« T {0.1]cos(Br(z; — 1/2)] + (z; — 1/2)%)
Estimation of ffd via X Estimation of ff[ via X; (d =6)
frmixcos fmixcos
45 5.0 og(p) 6.0 6.5 70 45 5.0 55 og(p) 6.0 6.5 7.0

Conf. interval Estimation -1-1/d
[-1.159;-1.089] -1.124  -1.167
[-1.154;-1.091] -1.123  -1.167
[-1.151;-1.072] -1.111 -1.167
[-1.168;-1.092] -1.130 -1.167
[-1.18;-1.102] -1.141 -1.167
[-1.163;-1.104] -1.134  -1.167

Conf. interval Estimation -1-1/d
[-2.003;-1.942] -1.972  -2.000

[-1.5;-1.429] -1.464  -1.500
[-1.384; -1.31] -1.347  -1.333
[-1.253;-1.183] -1.218 -1.250
[-1.219;-1.123] -1.171 -1.200
[-1.159;-1.089] -1.124  -1.167

d
1
2
3
4
5
6

- N WA o 8
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Simulation study

“LY-norm” : f(x) o 221:1 lu; — 1/2]1/4, \\\\////

-
QJ

f e H? for any s < 3/4 ‘Jr /
Estimation of u(f) via X Estimation u(fr) via X; (d = 6)
fn1 nt

log(Var)
log(Var)

a5 50 55 6.0 65 70 as 5.0 55 60 65 7.0
log(p) log(p)

Conf. interval Estimation -1-1/d
[-2.033;-1.986] -2.009 -2.000
[-1.529;-1.458] -1.493 -1.500

d Conf. interval Estimation -1-1/d
1

2

3 [-1.393;-1.306] -1.349 -1.333

4

5

6

[-1.262;-1.123] -1.192  -1.167
[-1.269;-1.114] -1.191  —1.167
[-1.248;-1.118] -1.183  -1.167
[-1.243;-1.094] -1.168 -1.167
[-1.272;-1.129] -1.200 -1.167
[-1.263;-1.14] -1.201 -1.167

[-1.318;-1.246] -1.282 -1.250
[-1.272;-1.161] -1.217  -1.200
[-1.262;-1.123] -1.192 -1.167

O N R NS = )
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Simulation study

A last example in the situation H*® with s < 1/2

e Particular case d =1, B = [0, 1],

hy(w):zw’ y>1/2.

iy
S 27

Then h, € H*® for any 0 < s <y —1/2

ol oo e Y s -1-2s/d Estimation
e e, 0625 0.125 -125  -1.32
-2 R S 0.750 0.250 -1.50 -1.53
Teen e 0.875 0375 -1.75 173
-14 - . . 1. 1.
L .e
4 5 6 7

[Y ~- 0.625 = 0.75 = 0.875]
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Conf. interval

[-1.48 ; -1.17]
[=1.61 ; —1.45]
[-1.76 ; —1.69]

23 /27



Simulation study

More simulations ...

e Simulations were made for d = 6
or 10 and any ¢ =1,...,d for
additional functions, and for our -
DirDPP design and for : BH-DPP
[BH'19], crudeMC, stratified
MC, Sobol, MaximinLHS,

Halton designs.

Just impossible to sum up >20 figures (please refer to EJS’21) .. .but ...

e for a specific function, sample size, dimension : there were as expected
better methods (and actually much faster)

@ DirDPP was the only one to remain stable in terms of behaviour for all
considered functions, sample size, dimension d and for any ¢t = 1,...,d.
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Summary :

@ A simple MC estimator based on a homogeneous projection DPP.
o Universal result : unbiased est. and CLT with rate VN1+1/d
@ Results available

o for f € H1/2 i.e. for some non-differentiable functions
e on lower dimensional spaces
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Conclusion

Summary :
@ A simple MC estimator based on a homogeneous projection DPP.
@ Universal result : unbiased est. and CLT with rate VN1+1/d

@ Results available

o for f € H1/2 i.e. for some non-differentiable functions
e on lower dimensional spaces

What I didn’t say :
e Asymptotic normality “checked” (qgplots and Shapiro-Wilk test).
o Asympt. CI for u(f;)? Interesting fact when f; € Cbl([O, 119

() = Y WGP < 47 f IVfr()lPdu = T

i [0.1)

= J7 is easily estimated (using again X;!!), leading to a conservative
asympt. CL.
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o for the same problem : other projection
kernels, infinite integrals

e for a given f : inhomogeneous kernels to
exploit f

@ lots of possible statistical applications
(density estimation, regression,...) when a
random design is involved

@ d-dimensional sphere, torus, ...7

e simulations=0O(dN?) (for now), not sequential
but code and replications are available :
https://github.com/AdriMaz
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Conclusion

Tricky Fourier basis

Just to give an idea, let’s consider d =1

Varh(fi) = — Z|<f¢1>l2 Z|<f¢a¢k>|

]EZ j.k=1
1Z|<f¢>|2 LS <y o
= = NS ey Kk
N jEZ ’ N? g.k=1 ”
va? - S W -GG
JGZ IJ\<N
= Z TP+ 53 S BIFG)?
|]|>N ljlsN
~— Z I
JEL
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