Repulsiveness for a better integration (not my social program)

Workshop on Kernel and Sampling Methods for design and quantization, GDR Mascott-Num

JEAN-FRANÇOIS COEURJOLLY

JOINT WORKS WITH A MAZOYER (IMT, TOULOUSE), PO AMBLARD (CNRS, U GRENOBLE ALPES)

November 2021

Are you sure you you're not in favor of repulsion?

• Here are 100 points drawn randomly in ...

Are you sure you you're not in favor of repulsion?

• Here are 100 points drawn randomly in ...

• Then, I asked my daughter to draw a few points

Outline (no interest)

- 2 Spatial point processes and DPPs
- 3 Main result
- 4 Simulation study

Outline (no interest)

1 Introduction

2 Spatial point processes and DPPs

3 Main result

Space-filling design

Computer experiments

- (1) The design must cover "nicely" $B = [0,1]^d\,;$
 - Additional objective : study influence of a subset of inputs on output without constructing a new design;
- (2) Cover "nicely" the projection $B_I = [0, 1]^{\iota}$ where $I \subseteq \{1, \ldots, d\}$ with $|I| = \iota < d$.

- (1) Use of *repulsive* point processes **X** to produce the design;
- (2) Find a repulsive point process \mathbf{X} such that its projection \mathbf{X}_I onto B_I remains a repulsive point process.

Integral estimation problem "reformulation"

How to estimate $\mu(f_I) = \int_{[0,1]^{\iota}} f_I(u) du$ for any $f_I : [0,1]^{\iota} \to \mathbb{R}, I \subseteq \{1,\ldots,d\}$ and $\iota = |I|$, using quadrature points defined in dimension d?

That is let $U_1, \ldots, U_N \in [0, 1]^d$ (to be chosen). We want to estimate $\mu(f_I)$ by

$$\hat{\mu}(f_I) = \frac{1}{N} \sum_{j=1}^N f_I\left((U_j)_I\right)^a$$

where for any $u \in \mathbb{R}^d$, $u_I = (u_i)_{i \in I}$.

a. eventually weighted

- The *d*-dimensional design is defined once for all, and used to estimate any ι -dimensional integral.
- In this problem, the design is therefore independent of the integrand (hence a "homogeneous" design makes sense).

The simplest solution

Standard Monte-Carlo

- Let $U_1, \ldots, U_N \sim \mathcal{U}([0, 1]^d)$ be iid random variables
- Estimate $\mu(f_I)$ by

$$\widehat{\mu}(f_I) = \frac{1}{N} \sum_{j=1}^N f_I\left((U_j)_I\right)$$

• Since $(U_j)_I$ are still iid uniformly distributed on $[0,1]^t \dots$ for any $I \subseteq \{1,\dots,d\}$

 $\operatorname{E} \widehat{\mu}(f_I) = \mu(f_I) \quad \text{and} \quad \operatorname{Var} \widehat{\mu}(f_I) = N^{-1} \left\{ \mu(f_I^2) - \mu(f_I)^2 \right\}$

and a central limit theorem holds (and actually much more ...)

More than 70 years of research in one slide

Improvements of standard MC : huge literature (already in the situation $\iota = d$)

- Stratified Monte-Carlo methods
- MCMC, importance sampling
- Bayesian quadrature
- Quasi Monte-Carlo, Randomized Quasi Monte-Carlo methods
- + control variates, antitihetic methods, variance-reduction methods

• . . .

<u>General remarks</u> : Either methods are

- quite stable when d >> 1, computationally efficient, but CLT with variance decrasing as N^{-1} ;
- or have MSE much faster $(N^{-1-2/d}, N^{-3-2/d+\varepsilon})$ but more unstable when d >> 1, not straightforward to implement, CLT does not always hold, require strong assumptions on f ($f \in C^1$ or C^d).

More than 70 years of research in one slide

Improvements of standard MC : huge literature (already in the situation $\iota = d$)

- Stratified Monte-Carlo methods
- MCMC, importance sampling
- Bayesian quadrature
- Quasi Monte-Carlo, Randomized Quasi Monte-Carlo methods
- \bullet + control variates, antitihetic methods, variance-reduction methods

• . . .

Objective

- provide a faster estimator than the standard MC one, for any f_I , under minimal assumptions on f_I (no differentiability)
- using a stochastic model ... in particular a class of repulsive spatial point processes ... and in particular a specific Determinantal Point Process.

Outline (no interest)

2 Spatial point processes and DPPs

3) Main result

(Continuous) SPP on \mathbb{R}^d

• Let **X** be a spatial point process defined on $[0, 1]^d$, viewed as a locally finite random measure : $\mathbf{x} = \{x_1, \dots, x_m\}, \quad x_j \in [0, 1]^d$

Intensity functions (the first two ones ...and informally

$$\rho(u) = \lim_{|\mathrm{d}u| \to 0} \frac{\mathrm{E}\{N(\mathrm{d}u)\}}{|\mathrm{d}u||\mathrm{d}v|} \quad \text{and} \quad \rho^{(2)}(u,v) = \lim_{|\mathrm{d}u|, |\mathrm{d}v| \to 0} \frac{\mathrm{E}\{N(\mathrm{d}u)N(\mathrm{d}v)\}}{|\mathrm{d}u||\mathrm{d}v|}$$

- $\rho(u)du \approx$ Prob. to observe a point in B(u, du).
- ρ⁽²⁾(u, v)dudv ≈ Prob. to observe two distinct points in B(u, du) and B(v, dv).
- if ρ(·) = ρ, X is said to be homogeneous; ρ=mean number of point per unit volume.

JF Coeurjolly

MC integration with DPPs

Repulsiveness and its statistical interest

• Pair correlation function (assume $\rho(\cdot) > 0$) :

$$g(u,v) = \frac{\rho^{(2)}(u,v)}{\rho(u)\rho(v)} = \frac{\rho^{(2)}(u,v)}{\rho^2} \quad (\text{homog.}) = g_0(||v-u||) \quad (\text{isotr.})$$

Repulsiveness and its statistical interest

• Pair correlation function (assume $\rho(\cdot) > 0$) :

$$g(u,v) = \frac{\rho^{(2)}(u,v)}{\rho(u)\rho(v)} = \frac{\rho^{(2)}(u,v)}{\rho^2} \quad (\text{homog.}) = g_0(||v-u||) \quad (\text{isotr.})$$

SPP for MC integration ($\iota = d$ for now)

Let ${\bf X}$ be a SPP on $[0,1]^d$ with intensity parameter N and pcf g

$$\widehat{\mu}(f) = N^{-1} \sum_{u \in \mathbf{X}} f(u)$$
 is such that $\mathbf{E} \,\widehat{\mu}(f) = \mu(f)$

and

$$\operatorname{Var} \widehat{\mu}(f) = N^{-1} \int_{[0,1]^d} f(u)^2 \mathrm{d}u + \int_{[0,1]^d} \int_{[0,1]^d} \left\{ g(u,v) - 1 \right\} f(u) f(v) \mathrm{d}u \mathrm{d}v.$$

(Continuous) Determinantal point processes

 $\mathbf{X} \sim \mathrm{DPP}_{B^d}(K)$ for some kernel K . . .

...if its kth order intensity $(k \ge 1)$ writes

$$\rho^{(k)}(u_1,\ldots,u_k) = \det\left[\left(K(u_i,u_j)\right)_{i,j=1,\ldots,k}\right].$$

where K admits the Mercer decomposition $K(u, v) = \sum_{j \in N_d} \lambda_j \phi_j(u) \overline{\phi_j}(v)$, where $\{\phi_j\}_j$ forms an orthonormal basis of $L^2(B^d)$; $\lambda_j \in [0, 1]$ = eigenvalues.

- Introduced by O. Macchi to model fermions;
- Appear in the study of eigenvalues of certain random matrices, zeroes of Gaussian Analytic Functions (e.g. Permantle, Peres, Hough, Johanson, Soshnikov,...)
- Very tractable class of models of repulsive point processes. Assume K(u, u) = N, then $\rho(u) = N$, and

$$g(u, v) = N^{-2} \det \begin{pmatrix} N & K(u, v) \\ K(u, v) & N \end{pmatrix} = 1 - \frac{|K(u, v)|^2}{N^2} < 1 !$$

Why DPPs are interesting?

Assume K(u, u) = N (also valid for inhomogeneous)

$$\operatorname{Var}\widehat{\mu}(f) = N^{-1} \int_{[0,1]^d} f(u)^2 \mathrm{d}u \underbrace{-N^{-2} \sum_{j,k \in \mathcal{N}_d} \lambda_j \lambda_k \left| \int_{[0,1]^d} f(u) \mathrm{d}u \phi_j(u) \overline{\phi_k}(u) \right|^2}_{\leq 0 \ \forall \ \operatorname{sign}(f)}$$

• <u>Remark</u> : Projection DPP, $\lambda_j \in \{0, 1\}$, in which case N is an integer.

Why DPPs are interesting?

Assume K(u, u) = N (also valid for inhomogeneous)

$$\operatorname{Var}\widehat{\mu}(f) = N^{-1} \int_{[0,1]^d} f(u)^2 \mathrm{d}u \underbrace{-N^{-2} \sum_{j,k \in \mathcal{N}_d} \lambda_j \lambda_k \left| \int_{[0,1]^d} f(u) \mathrm{d}u \phi_j(u) \overline{\phi_k}(u) \right|^2}_{\leq 0 \; \forall \; \operatorname{sign}(f)}$$

• <u>Remark</u> : Projection DPP, $\lambda_i \in \{0, 1\}$, in which case N is an integer.

Bardenet and Hardy'19

- $\iota = d$, build an ad-hoc OPE (Leg. polyn.)
- **Pros** : $\operatorname{Var} \widehat{\mu}(f) \propto \frac{N^{-1-1/d}}{1}$; CLT for $\mu(f)$;
- Cons : $f \in C_b^1([0, 1]^d)$ and compactly supported (due to inhomog. kernel); $\iota < d$ cannot be considered; proofs very long.

Outline (no interest)

1 Introduction

2 Spatial point processes and DPPs

3 Main result

5 Conclusion

Main result

Our approach : DPP wrt Fourier basis

•
$$N = n_1 \times \dots \times n_d$$
 and $E_N = \{1, \dots, n_1\} \times \dots \{1, \dots, n_d\}$ (# $E_N = N$)

•
$$\phi_j(u) = e^{2i\pi j^+ u}$$
 for $u \in [0, 1]^d$

• then we consider the (homogeneous) kernel K defined by

$$K(u,v) = \sum_{j \in E_N} e^{2i\pi j^{\mathsf{T}}(u-v)} = \prod_{\ell=1}^d K_\ell(u_\ell, v_\ell) \quad \text{where} \quad \underbrace{K_\ell(u_\ell, v_\ell) = \sum_{j=1}^{n_\ell} e^{2i\pi j(u_\ell - v_\ell)}}_{\text{gDirichlet kernel in Sign. Proc.}}.$$

Main result

Our approach : DPP wrt Fourier basis

•
$$N = n_1 \times \cdots \times n_d$$
 and $E_N = \{1, \ldots, n_1\} \times \ldots \{1, \ldots, n_d\}$ (# $E_N = N$)

•
$$\phi_j(u) = e^{2i\pi j^\top u}$$
 for $u \in [0, 1]^d$

• then we consider the (homogeneous) kernel K defined by

$$K(u,v) = \sum_{j \in E_N} e^{2i\pi j^\top (u-v)} = \prod_{\ell=1}^d K_\ell(u_\ell, v_\ell) \quad \text{where} \quad \underbrace{K_\ell(u_\ell, v_\ell) = \sum_{j=1}^{n_\ell} e^{2i\pi j(u_\ell - v_\ell)}}_{\text{~~Dirichlet kernel in Sign. Proc.}}.$$

Theorem (MCA'19) : Why taking E_N as a rectangular set? Let $\mathbf{X} \sim \text{DPP}_{[0,1]^d}(K)$ and let $I \subseteq \{1, \ldots, d\}$, then

$$\mathbf{X}_{I} \sim (-1/N_{I^c}) - \mathrm{DPP}_{B^t}(N_{I^c}K_t)$$

where $N = N_I \times N_{I^c}$ and $K_I = \prod_{\ell \in I} K_{\ell}$. In particular, $g_{\mathbf{X}_I} < 1, \forall I !!$

MC integration with DPPs

16 / 27

Main result

Our main result

• Fourier coefficient : $\hat{f}_I(k) = \langle f_I, \phi_k \rangle$

• Assume $f_I \in \mathcal{H}^s([0,1]^t) = \left\{ f_I \in L^2 : \sum_{k \in \mathbb{Z}^t} (1 + ||k||_{\infty})^{2s} |\hat{f}(k)|^2 < \infty \right\}.$

Theorem (CMA'19+)

Let d > 1 and assume $N = n_1 \times \cdots \times n_d$ s.t. $n_\ell N^{-1/d} \to 1$

(i) If s>1/2 and $\|f_I\|_\infty<\infty$ then

 $\begin{aligned} \operatorname{Var}\left(\widehat{\mu}(f_{I})\right) &\sim N^{-1-1/d} \ \sigma^{2}(f_{I}) \quad \text{with} \quad \sigma^{2}(f_{I}) = \sum_{k \in \mathbb{Z}^{t}} \|k\|_{1} \ |\widehat{f}_{I}(k)|^{2}. \\ &\sqrt{N^{1+1/d}} \left(\widehat{\mu}(f_{I}) - \mu(f_{I})\right) \xrightarrow{d} N\left(0, \sigma^{2}(f_{I})\right). \end{aligned}$

(ii) If 0 < s < 1/2, then

$$\operatorname{Var}\left(\,\widehat{\mu}(f_{I})\,\right) = O\left(N^{-1-\frac{2s}{d}}\right) = o\left(N^{-1}\right)$$

Outline (no interest)

1 Introduction

2 Spatial point processes and DPPs

3 Main result

5 Conclusion

Setting

Estimate $\mu(f)$ for different d

- For N = 100,..., 1000 an d = 1,..., 6 : 2500 replications of a Dirichlet DPP producing N points in [0, 1]^d;
- **2** For each d and some given f:
 - Estimate $\mu(f)$ for each N using the design constructed in dimension d;
 - **2** Linear regression of empirical variance vs. log(N) and estimate the slope.

Estimate $\mu(f_I)$ for different ι

- For N = 100,..., 1000 : 2500 replications of a Dirichlet DPP producing N points in [0, 1]⁶;
- **2** For $\iota \in \{6, ..., 1\}$:
 - For a *i*-dimensional function f_I , estimate $\mu(f_I)$ for each N using the design constructed in dimension 6;
 - **2** Linear regression of empirical vs. log(N) and estimate the slope.

d	Conf. interval	Estimation	-1-1/d
1	[-2.016 ; -1.966]	-1.991	-2.000
2	[-1.536 ; -1.438]	-1.487	-1.500
3	[-1.391 ; -1.302]	-1.347	-1.333
4	[-1.282 ; -1.225]	-1.254	-1.250
5	[–1.2 ; –1.129]	-1.164	-1.200
6	[-1.153 ; -1.073]	-1.113	-1.167

$$\begin{split} & \text{Bump} : f \in \mathcal{H}^s, \, \text{for any } s > 0 \\ & f(x) \propto \prod_{i=1}^d \exp\left(-\frac{0.1}{.25 - (x_i - .5)^2}\right) \end{split}$$

d	Conf. interval	Estimation	-1-1/d
1	[-2.016 ; -1.966]	-1.991	-2.000
2	[-1.536 ; -1.438]	-1.487	-1.500
3	[-1.391 ; -1.302]	-1.347	-1.333
4	[-1.282 ; -1.225]	-1.254	-1.250
5	[–1.2 ; –1.129]	-1.164	-1.200
6	[-1.153 ; -1.073]	-1.113	-1.167

ω	Conf. interval	Estimation	-1-1/d
6	[-1.153 ; -1.073]	-1.113	-1.167
5	[-1.162 ; -1.104]	-1.133	-1.167
4	[-1.157 ; -1.077]	-1.117	-1.167
3	[-1.16 ; -1.09]	-1.125	-1.167
2	[-1.186 ; -1.087]	-1.136	-1.167
1	[-1.204 ; -1.116]	-1.160	-1.167

Mix-cos : $f \in \mathcal{H}^{3/2}$

 $f(x) \propto \sum_{i=1}^{d} \{ 0.1 | \cos(5\pi (x_i - 1/2)) | + (x_i - 1/2)^2 \}$

d	Conf. interval	Estimation	-1-1/d
1	[-2.003 ; -1.942]	-1.972	-2.000
2	[–1.5 ; –1.429]	-1.464	-1.500
3	[-1.384 ; -1.31]	-1.347	-1.333
4	[-1.253 ; -1.183]	-1.218	-1.250
5	[-1.219 ; -1.123]	-1.171	-1.200
6	[-1.159 ; -1.089]	-1.124	-1.167

Estimation of $\int f_I$ via \mathbf{X}_I (d = 6)

ω	Conf. interval	Estimation	-1-1/d
6	[-1.159 ; -1.089]	-1.124	-1.167
5	[-1.154 ; -1.091]	-1.123	-1.167
4	[-1.151 ; -1.072]	-1.111	-1.167
3	[-1.168;-1.092]	-1.130	-1.167
2	[-1.18 ; -1.102]	-1.141	-1.167
1	[-1.163 ; -1.104]	-1.134	-1.167

6.0

log(o)

6.5

og(Var)

-10

4.5

5.0

5.5

1

7.0

"L^y-norm":
$$f(x) \propto \sum_{i=1}^{d} |u_i - 1/2|^{1/4}$$
,

 $f \in H^s$ for any s < 3/4

d	Conf. interval	Estimation	-1-1/d
1	[-2.033 ; -1.986]	-2.009	-2.000
2	[-1.529 ; -1.458]	-1.493	-1.500
3	[-1.393 ; -1.306]	-1.349	-1.333
4	[-1.318 ; -1.246]	-1.282	-1.250
5	[-1.272 ; -1.161]	-1.217	-1.200
6	[-1.262 ; -1.123]	-1.192	-1.167

ω	Conf. interval	Estimation	-1-1/d
6	[-1.262 ; -1.123]	-1.192	-1.167
5	[-1.269 ; -1.114]	-1.191	-1.167
4	[-1.248 ; -1.118]	-1.183	-1.167
З	[-1.243 ; -1.094]	-1.168	-1.167
2	[-1.272 ; -1.129]	-1.200	-1.167
1	[-1.263 ; -1.14]	-1.201	-1.167

A last example in the situation \mathcal{H}^s with s < 1/2

• Particular case d = 1, B = [0, 1],

$$h_{\gamma}(x) = \sum_{j \ge 1} \frac{\cos(2\pi j x)}{2\pi j^{\gamma}}, \qquad \gamma > 1/2.$$

Then $h_{\gamma} \in \mathcal{H}^s$ for any $0 < s < \gamma - 1/2$

γ	s	-1-2s/d	Estimation	Conf. interval
0.625	0.125	-1.25	-1.32	[-1.48 ; -1.17]
0.750	0.250	-1.50	-1.53	[-1.61 ; -1.45]
0.875	0.375	-1.75	-1.73	[-1.76 ; -1.69]

γ 🔸 0.625 🔸 0.75 🔸 0.875

More simulations ...

 Simulations were made for d = 6 or 10 and any t = 1,..., d for additional functions, and for our DirDPP design and for : BH-DPP [BH'19], crudeMC, stratified MC, Sobol, MaximinLHS, Halton designs.

Just impossible to sum up >20 figures (please refer to EJS'21)...but ...

- for a specific function, sample size, dimension : there were **as expected** better methods (and actually much faster)
- DirDPP was the only one to remain stable in terms of behaviour for all considered functions, sample size, dimension d and for any $\iota = 1, \ldots, d$.

Outline (no interest)

1 Introduction

2 Spatial point processes and DPPs

3 Main result

Summary :

- A simple MC estimator based on a homogeneous projection DPP.
- Universal result : unbiased est. and CLT with rate $\sqrt{N^{1+1/d}}$
- Results available
 - for $f \in \mathcal{H}^{1/2}$, i.e. for some non-differentiable functions
 - on lower dimensional spaces

Summary :

- A simple MC estimator based on a homogeneous projection DPP.
- Universal result : unbiased est. and CLT with rate $\sqrt{N^{1+1/d}}$
- Results available
 - for $f \in \mathcal{H}^{1/2}$, i.e. for some non-differentiable functions
 - on lower dimensional spaces

What I didn't say :

- Asymptotic normality "checked" (qqplots and Shapiro-Wilk test).
- Asympt. CI for $\mu(f_I)$? Interesting fact when $f_I \in C_b^1([0, 1]^t)$

$$\sigma^{2}(f_{I}) = \sum_{j \in \mathbb{Z}^{i}} ||j||_{1} |\hat{f}(j)|^{2} \le 4\pi^{2} \int_{[0,1]^{i}} ||\nabla f_{I}(u)||^{2} \mathrm{d}u =: \mathcal{J}_{I}$$

 $\Rightarrow \mathcal{J}_I$ is easily estimated (using again \mathbf{X}_I !!), leading to a conservative asympt. CI.

Where to go? (just a few perspectives)

- for the same problem : other projection kernels, infinite integrals
- for a given f : inhomogeneous kernels to exploit f
- lots of possible statistical applications (density estimation, regression,...) when a random design is involved

- *d*-dimensional sphere, torus, ...?
- simulations=O(dN³) (for now), not sequential but code and replications are available : https://github.com/AdriMaz

Conclusior

Tricky Fourier basis

Just to give an idea, let's consider d = 1

$$\begin{aligned} \operatorname{Var}\widehat{I_{1}}(f_{1}) &= \frac{1}{N} \sum_{j \in \mathbb{Z}} |\langle f, \phi_{j} \rangle|^{2} - \frac{1}{N^{2}} \sum_{j,k=1}^{N} |\langle f, \phi_{j} \bar{\phi}_{k} \rangle|^{2} \\ &= \frac{1}{N} \sum_{j \in \mathbb{Z}} |\langle f, \phi_{j} \rangle|^{2} - \frac{1}{N^{2}} \sum_{j,k=1}^{N} |\langle f, \phi_{j-k} \rangle|^{2} \\ &= \frac{1}{N} \sum_{j \in \mathbb{Z}} |\hat{f}(j)|^{2} - \frac{1}{N^{2}} \sum_{|j| \leq N} (N - |j|) |\hat{f}(j)|^{2} \\ &= \frac{1}{N} \sum_{|j| \geq N} |\hat{f}(j)|^{2} + \frac{1}{N^{2}} \sum_{|j| \leq N} |j| |\hat{f}(j)|^{2} \\ &\sim \frac{1}{N^{2}} \sum_{j \in \mathbb{Z}} |j| |\hat{f}(j)|^{2} \end{aligned}$$