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Are you sure you you’re not in favor of repulsion ?

Here are 100 points drawn
randomly in . . .

Then, I asked my daughter
to draw a few points
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Introduction

Space-filling design

Computer experiments

(1) The design must cover “nicely” B = [0, 1]d ;

Additional objective : study influence of a subset
of inputs on output without constructing a new
design ;

(2) Cover “nicely” the projection BI = [0, 1]ι where
I ⊆ {1, . . . , d } with |I | = ι < d).

Spatial point processes for computer experiments

(1) Use of repulsive point processes X to produce
the design ;

(2) Find a repulsive point process X such that its
projection XI onto BI remains a repulsive point
process.

↓
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Introduction

Integral estimation problem “reformulation”

How to estimate µ(fI ) =
∫

[0,1]ι fI (u)du for any fI : [0, 1]ι → R, I ⊆ {1, . . . , d } and

ι = |I |, using quadrature points defined in dimension d ?

That is let U1, . . . ,UN ∈ [0, 1]d (to be chosen). We want to estimate µ(fI ) by

µ̂(fI ) =
1

N

N∑
j=1

fI
(

(Uj )I
)
a

where for any u ∈ Rd , uI = (ui )i∈I .

a. eventually weigthed

The d -dimensional design is defined once for all, and used to estimate any
ι-dimensional integral.

In this problem, the design is therefore independent of the integrand
(hence a “homogeneous” design makes sense).
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Introduction

The simplest solution

Standard Monte-Carlo

Let U1, . . . ,UN ∼ U([0, 1]d ) be iid random variables

Estimate µ(fI ) by

µ̂(fI ) =
1

N

N∑
j=1

fI
(
(Uj )I

)
Since (Uj )I are still iid uniformly distributed on [0, 1]ι . . . for any
I ⊆ {1, . . . , d }

E µ̂(fI ) = µ(fI ) and Var µ̂(fI ) = N −1
{
µ(f 2I ) − µ(fI )2

}
and a central limit theorem holds (and actually much more . . .)
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Introduction

More than 70 years of research in one slide

Improvements of standard MC : huge literature (already in the situation ι = d)

Stratified Monte-Carlo methods

MCMC, importance sampling

Bayesian quadrature

Quasi Monte-Carlo, Randomized Quasi Monte-Carlo methods

+ control variates, antitihetic methods, variance-reduction methods

. . .

General remarks : Either methods are

quite stable when d >> 1, computationally efficient, but CLT with
variance decrasing as N −1 ;

or have MSE much faster (N −1−2/d , N −3−2/d+ε) but more unstable when
d >> 1, not straightforward to implement, CLT does not always hold,
require strong assumptions on f (f ∈ C 1 or C d).
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More than 70 years of research in one slide

Improvements of standard MC : huge literature (already in the situation ι = d)

Stratified Monte-Carlo methods

MCMC, importance sampling

Bayesian quadrature

Quasi Monte-Carlo, Randomized Quasi Monte-Carlo methods

+ control variates, antitihetic methods, variance-reduction methods

. . .

Objective

provide a faster estimator than the standard MC one, for any fI , under
minimal assumptions on fI (no differentiability)

using a stochastic model . . .in particular a class of repulsive spatial point
processes . . .and in particular a specific Determinantal Point Process.
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Spatial point processes and DPPs

(Continuous) SPP on Rd

Let X be a spatial point process
defined on [0, 1]d , viewed as a
locally finite random measure :
x = {x1, . . . , xm }, xj ∈ [0, 1]d
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Intensity functions (the first two ones . . .and informally

ρ(u) = lim
|du |→0

E{N (du)}
|du ||dv |

and ρ(2)(u , v ) = lim
|du |,|dv |→0

E{N (du)N (dv )}
|du ||dv |

ρ(u)du ≈ Prob. to observe a point in B (u ,du).
ρ(2)(u , v )dudv ≈ Prob. to observe two distinct points in B (u ,du) and
B (v ,dv ).
if ρ(·) = ρ, X is said to be homogeneous ; ρ=mean number of point per
unit volume.
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Spatial point processes and DPPs

Repulsiveness and its statistical interest

Pair correlation function (assume ρ(·) > 0) :

g(u , v ) =
ρ(2)(u , v )
ρ(u)ρ(v )

=
ρ(2)(u , v )

ρ2
(homog.) = g0(‖v − u‖) (isotr.)
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Spatial point processes and DPPs

Repulsiveness and its statistical interest

Pair correlation function (assume ρ(·) > 0) :

g(u , v ) =
ρ(2)(u , v )
ρ(u)ρ(v )

=
ρ(2)(u , v )

ρ2
(homog.) = g0(‖v − u‖) (isotr.)

SPP for MC integration (ι = d for now)

Let X be a SPP on [0, 1]d with intensity parameter N and pcf g

µ̂(f ) = N −1
∑
u∈X

f (u) is such that E µ̂(f ) = µ(f )

and

Var µ̂(f ) = N −1
∫

[0,1]d
f (u)2du +

∫
[0,1]d

∫
[0,1]d

{
g(u , v ) − 1

}
f (u)f (v )dudv .
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Spatial point processes and DPPs

(Continuous) Determinantal point processes

X ∼ DPPBd (K ) for some kernel K . . .

. . .if its kth order intensity (k ≥ 1) writes

ρ(k )(u1, . . . , uk ) = det
[(
K (ui , uj )

)
i ,j=1,...,k

]
.

where K admits the Mercer decomposition K (u , v ) =
∑

j∈Nd
λjφj (u)φ̄j (v ),

where {φj }j forms an orthonormal basis of L2(Bd ) ; λj ∈ [0, 1]= eigenvalues.

Introduced by O. Macchi to model fermions ;

Appear in the study of eigenvalues of certain random matrices, zeroes of
Gaussian Analytic Functions (e.g. Permantle, Peres, Hough, Johanson,
Soshnikov,. . .)

Very tractable class of models of repulsive point processes. Assume
K (u , u) = N , then ρ(u) = N , and

g(u , v ) = N −2 det

(
N K (u , v )

K (u , v ) N

)
= 1 −

|K (u , v )|2

N 2
< 1 !!
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Spatial point processes and DPPs

Why DPPs are interesting ?

Assume K (u , u) = N (also valid for inhomogeneous)

Var µ̂(f ) = N −1
∫

[0,1]d
f (u)2du −N −2

∑
j ,k∈Nd

λjλk

∣∣∣∣∣∣
∫

[0,1]d
f (u)duφj (u)φ̄k (u)

∣∣∣∣∣∣2︸                                                       ︷︷                                                       ︸
≤0 ∀ sign(f )

Remark : Projection DPP, λj ∈ {0, 1}, in which case N is an integer.

Bardenet and Hardy’19

ι = d , build an ad-hoc OPE (Leg.
polyn.)

Pros : Var µ̂(f ) ∝ N −1−1/d ; CLT
for µ(f ) ;

Cons : f ∈ C 1
b ([0, 1]d ) and

compactly supported (due to
inhomog. kernel) ; ι < d cannot be
considered ; proofs very long.
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Main result

Our approach : DPP wrt Fourier basis

N = n1 × · · · × nd and EN = {1, . . . ,n1} × . . . {1, . . . ,nd } (#EN = N )
φj (u) = e2iπj

>u for u ∈ [0, 1]d

then we consider the (homogeneous) kernel K defined by

K (u , v ) =
∑
j∈EN

e2iπj
>(u−v ) =

d∏
`=1

K`(u`, v`) where K`(u`, v`) =
n∑̀
j=1

e2iπj (u`−v`)

︸                             ︷︷                             ︸
∝Dirichlet kernel in Sign. Proc.

.

Theorem (MCA’19) : Why taking EN as a rectangular set ?

Let X ∼ DPP[0,1]d (K ) and let I ⊆ {1, . . . , d }, then

XI ∼ (−1/NI c ) −DPPB ι (NI cKι)

where N = NI ×NI c and KI =
∏

`∈I K`. In particular, gXI
< 1, ∀I ! !
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Main result

An example of a 3d-realization
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Main result

Our main result

Fourier coefficient : f̂I (k ) =< fI , φk >

Assume fI ∈ H
s ([0, 1]ι) =

{
fI ∈ L

2 :
∑

k∈Zι (1 + ‖k‖∞)2s |f̂ (k )|2 < ∞
}
.

Theorem (CMA’19+)

Let d > 1 and assume N = n1 × · · · × nd s.t. n`N
−1/d → 1

(i) If s > 1/2 and ‖fI ‖∞ < ∞ then

Var
(
µ̂(fI )

)
∼ N −1−1/d σ2(fI ) with σ2(fI ) =

∑
k∈Zι

‖k‖1 |f̂I (k )|2.

√
N 1+1/d

(
µ̂(fI ) − µ(fI )

) d
→ N

(
0, σ2(fI )

)
.

(ii) If 0 < s < 1/2, then

Var
(
µ̂(fI )

)
= O

(
N −1−

2s
d

)
= o

(
N −1

)
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Simulation study
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Simulation study

Setting

Estimate µ(f ) for different d

1 For N = 100, . . . , 1000 an d = 1, . . . , 6 : 2500 replications of a Dirichlet
DPP producing N points in [0, 1]d ;

2 For each d and some given f :
1 Estimate µ(f ) for each N using the design constructed in dimension d ;
2 Linear regression of empirical variance vs. log(N ) and estimate the slope.

Estimate µ(fI ) for different ι

1 For N = 100, . . . , 1000 : 2500 replications of a Dirichlet DPP producing N
points in [0, 1]6 ;

2 For ι ∈ {6, . . . , 1} :
1 For a ι-dimensional function fI , estimate µ(fI ) for each N using the design

constructed in dimension 6 ;
2 Linear regression of empirical vs. log(N ) and estimate the slope.
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Simulation study

Bump : f ∈ Hs , for any s > 0

f (x ) ∝
∏d

i=1 exp
(
− 0.1
.25−(xi−.5)2

)
Estimation of µ(f ) via X

Estimation of µ(fI ) via XI (d = 6)
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Simulation study

Mix-cos : f ∈ H3/2

f (x ) ∝
∑d

i=1

{
0.1|cos(5π(xi − 1/2))| + (xi − 1/2)2

}
Estimation of

∫
fd via X Estimation of

∫
fI via XI (d = 6)

JF Coeurjolly MC integration with DPPs 21 / 27



Simulation study

“Lγ-norm” : f (x ) ∝
∑d

i=1 |ui − 1/2|1/4,

f ∈ H s for any s < 3/4
x

y

z

Estimation of µ(f ) via X Estimation µ(fI ) via XI (d = 6)
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Simulation study

A last example in the situation H s with s < 1/2

Particular case d = 1, B = [0, 1],

hγ(x ) =
∑
j>1

cos(2πjx )
2πj γ

, γ > 1/2.

Then hγ ∈ H
s for any 0 < s < γ − 1/2
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Simulation study

More simulations . . .

Simulations were made for d = 6
or 10 and any ι = 1, . . . , d for
additional functions, and for our
DirDPP design and for : BH-DPP
[BH’19], crudeMC, stratified
MC, Sobol, MaximinLHS,

Halton designs.

No projection From 6 − dimensional projected PP From 10 − dimensional projected PP

fbum
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MaximinLHS

Sobol
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Just impossible to sum up >20 figures (please refer to EJS’21) . . .but . . .

for a specific function, sample size, dimension : there were as expected
better methods (and actually much faster)

DirDPP was the only one to remain stable in terms of behaviour for all
considered functions, sample size, dimension d and for any ι = 1, . . . , d .
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Conclusion
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Conclusion

Summary :

A simple MC estimator based on a homogeneous projection DPP.

Universal result : unbiased est. and CLT with rate
√
N 1+1/d

Results available

for f ∈ H1/2, i.e. for some non-differentiable functions
on lower dimensional spaces

What I didn’t say :

Asymptotic normality “checked” (qqplots and Shapiro-Wilk test).

Asympt. CI for µ(fI ) ? Interesting fact when fI ∈ C
1
b ([0, 1]ι)

σ2(fI ) =
∑
j∈Z ι

‖j ‖1|f̂ (j )|2 ≤ 4π2
∫

[0,1]ι
‖∇fI (u)‖2du =: JI

⇒ JI is easily estimated (using again XI ! !), leading to a conservative
asympt. CI.
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Conclusion

Where to go ? (just a few perspectives)

for the same problem : other projection
kernels, infinite integrals

for a given f : inhomogeneous kernels to
exploit f

lots of possible statistical applications
(density estimation, regression,. . .) when a
random design is involved

d -dimensional sphere, torus, . . . ?

simulations=O(dN 3) (for now), not sequential
but code and replications are available :
https://github.com/AdriMaz

JF Coeurjolly MC integration with DPPs 27 / 27



Conclusion

Tricky Fourier basis

Just to give an idea, let’s consider d = 1

Var̂I1(f1) =
1

N

∑
j∈Z

| < f , φj > |
2 −

1

N 2

N∑
j ,k=1

| < f , φj φ̄k > |
2

=
1

N

∑
j∈Z

| < f , φj > |
2 −

1

N 2

N∑
j ,k=1

| < f , φj−k > |
2

=
1

N

∑
j∈Z

|f̂ (j )|2 −
1

N 2

∑
|j |≤N

(N − |j |)|f̂ (j )|2

=
1

N

∑
|j |≥N

|f̂ (j )|2 +
1

N 2

∑
|j |≤N

|j | |f̂ (j )|2

∼
1

N 2

∑
j∈Z

|j | |f̂ (j )|2
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