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core aim

Aim: to `optimally approximate' a probability measure P on X by a
discrete distribution Qm = 1

m

!m
i=1 δ(Xi). Our starting point is a

discrete set X1, . . . , Xn of points in X (n ≫ m) that we aim to `thin'.
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basic problem setup

We have: a target distribution P , and a set of samples Xi – from the
samples we form an empirical distribution Qn:

P Qn := 1
n

n"

i=1
δ(Xi)

But: n is large and it is expensive to compute with all n samples.
Or: Qn is not actually that good an approximation to P .

So: We choose m ≪ n and then try to find a representative subset of
samples of size m that minimises

“difference”
#

P ,
1
m

m"

i=1
δ(Xi)

$

given m ; {Xi}m
i=1 ⊂ {Xi}n

i=1
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basic problem setup

We refer to this as optimal quantisation.

Our task will be to define some appropriate measure of ``difference''
to do this, and thereby to find an appropriate representative subset.
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basic problem setup

Note: We are concerned with (somehow) minimising:

“difference”
#

P ,
1
m

m"

i=1
δ(Xi)

$

given m ; {Xi}m
i=1 ⊂ {Xi}n

i=1

This is not the same as:

• “diff.”
#

1
n

n"

i=1
δ(Xi) ,

1
m

m"

i=1
δ(Xi)

$

; {Xi}m
i=1 ⊂ {Xi}n

i=1

• “diff.”
#

P ,
1
m

m"

i=1
δ(Xi)

$

; {Xi}m
i=1 ⊂ X
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basic problem setup

argmin
S⊂{1,...,n}

|S|=m

MMD
#

P ,
1
m

m"

i=1
δ(Xi)

$
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some related approaches

• Minimise Wasserstein distance [Graf & Luschgy 2007]

• Minimise `power function' (worse-case interpolation error)
[de Marchi et al. 2005; Santin & Haasdonk 2017]

• Support points (minimise `energy distance') [Mak & Joseph 2018]

• Minimise Stein discrepancy to optimally weight {Xi}n
i=1

[Liu & Lee 2017]

• Minimum energy designs [Joseph 2015,2019]

• ``Kernel herding" [Chen et al. 2010; Lacoste-Julien et al. 2015]

• ``Stein points'' [Chen et al. 2018]

• Stein Variational Gradient Descent [Liu & Wang 2019; Duncan et al. 2018]

• ``Kernel Thinning'' [Dwivedi & Mackey 2021]

• ``Cube Thinning'' [Chopin & Ducrocq 2021]
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outline

• Motivating examples
• Introduction to Maximum mean discrepancy (MMD)
• Algorithms for selecting points
• Some theory
• Heuristics

optimal quantisation of probability measures using maximummean discrepancy : onur teymur



example 1: history matching

Core idea: establish which inputs x ∈ X to a computer
model f(·) could have generated a known output y.

• Construct a surrogate or emulator f trained on evaluations of f –
use this to determine which x are compatible with y, while
accounting for uncertainty introduced by the emulation.

• Fix a t, and say x is plausible if ‖C[f(x)]−1/2(E[f(x)] − y)‖ < t.
• This defines a plausible region

R(X , f, y, t) = {x ∈ X : ‖C[f(x)]−1/2{E[f(x)] − y}‖ < t}
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example 1: history matching

Fit emulator fi using current dataset Di

Identify plausible region Ri(Xi, fi, y, t)

Sample {Xi
1, . . . , Xi

m} ⊂ Ri

Sample {Xi
1, . . . , Xi

m} ⊂ Ri

Evaluate f(Xi
1), · · · , f(Xi

m)

Append new evaluations to Di.

i = i + 1
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example 1: history matching

In practical settings Ri can be very complicated – non-convex, highly
curved boundaries, disconnected regions etc.

Checking whether a point x is in Ri is easy. But characterising the
entire region is very difficult.

Depending on which statistical model one uses for f , there might be
different optimal ways of selecting the new points (Uniform
sampling? Space-filling design? Sobol' sequence? ...)

Some of these may be difficult to do given the form of Ri (Taking the
intersection of an existing low-discrepancy set with Ri? Does this
guarantee anything?)
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example 1: history matching

Many good reasons to use MMD instead:
• it doesn't care about the region Ri being really complicated,
• it can `correct' statistical inaccuracies caused by having to

perform rejection sampling when first identifying Ri,
• theoretical guarantees in some settings:

If f is a Gaussian process (very common), a natural quantification of the
uncertainty present is via the maximum eigenvalue of its integrated covariance

U(Σ, X ) = λmax

%&&

X ×X
Σ(x, x′)dU(x)dU(x′)

'
,

and using MMD sampling we have U(Σ, X ) = O(m−1).
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example 2: bayesian quadrature

Let g be a function that we would like to integrate against P .

Z =
&

g(x) dP (x)

g(x)

P (x)
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example 2: bayesian quadrature

Let g be a function that we would like to integrate against P .

Z ≈ 1
n

n"

i=1
g(Xi) , (Xi ∼ P )

g(x)

P (x)
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example 2: bayesian quadrature

Instead: Model g(x) a priori as a Gaussian process with covariance k,
then condition on `data' D = {g(Xi)}n

i=1.
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example 2: bayesian quadrature

This gives a probabilistic approximation to Z – its (Gaussian)
posterior distribution p(Z|D).

std[Z|D] = min
w1,...,wm

∈ R
MMDP,k

#
m"

i=1
wiδ(Xi)

$

This is bounded above by MMDP,k

#
1
m

m"

i=1
δ(Xi)

$

[Huszár & Duvenaud (2012), Briol et al. (2015)]
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example 2: bayesian quadrature

It's quite common here that g is complicated and expensive to
evaluate, but P is something straightforward like a Gaussian or
uniform distribution (against which the integration of k required to
calculate MMD is easy).

So MMD can be tractable and useful in this setting.
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example 3: thinning of mcmc output

See Marina's talk :)
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maximummean discrepancy

Let • X be a measurable space,
• P(X ) be the set of probability distributions on X ,
• F be some set of bounded real-valued functions on X .

For P, Q ∈ P(X ), a discrepancy is a quantity of the form

DF (P, Q) = sup
f∈F

((((
&

f dP −
&

f dQ

((((

( If DF (P, Q) = 0 implies P = Q then F is called measure-deter-
mining, and DF is also called an integral probability metric. )
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maximummean discrepancy – intuition
(Images borrowed/looted from Arthur Gretton)

((((
&

f dP −
&

f dQ

((((
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maximummean discrepancy – intuition

sup
f∈F1

((((
&

f dP −
&

f dQ

((((

optimal quantisation of probability measures using maximummean discrepancy : onur teymur



maximummean discrepancy – intuition

sup
f∈F2

((((
&

f dP −
&

f dQ

((((
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maximummean discrepancy

Recall the general form of an integral probability metric:

DF (P, Q) = sup
f∈F

((((
&

f dP −
&

f dQ

((((

Choose a kernel k and consider its RKHS H(k).

( A kernel is a symmetric, positive definite function k : X × X → R. k repro-
duces a Hilbert space H(k) : X → R for which (i) for all x ∈ X , k(·, x) ∈
H(k), and (ii) for all x ∈ X and f ∈ H(k), 〈k(·, x), f〉H(k) = f(x). )

Let B(k) = {f ∈ H(k) : 〈f, f〉H(k) ≤ 1} be the unit ball in H(k).

Setting F to be B(k) defines the maximum mean discrepancy.
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maximummean discrepancy

Why this choice?
• Opportunity to easily enforce different degrees of smoothness

through choice of the kernel k.
• If P and/or Q are empirical distributions, we can write

DH(k)(P, Q) in closed form using only kernel evaluations.
• Furthermore in this setting DB(k)(Pn, Qm) is a consistent

estimator of DB(k)(P, Q) and the rate of convergence is
independent of d.

• Since kernels can be defined on arbitrary domains X , MMD can
used to measure distances between measures on eg. graphs,
strings, etc., (not just Rd).
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other uses of mmd

Has been used for (amongst other things):

• Hypothesis testing [Fukumizu et al. 2008; Gretton et al. 2012;
Doran et al. 2014, Chwialkowski and Gretton 2014]

• Density estimation [Song et al. 2007,2008; Sriperumbudur 2011]

• Clustering [Jegelka et al. 2009]

• Causal discovery [Sgouritsa et al. 2013; Chen et al. 2014; Schölkopf et al. 2015]

• Statistical model criticism [Lloyd & Ghahramani 2015; Kim et al. 2016]

• MCMC [Sejdinovic et al. 2014]

• ABC [Park et al. 2016]

• Training generative models [Li et al. 2015; Dziugaite et al. 2015]
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maximummean discrepancy

MMD can be written in closed form (without the supremum).

DB(k)(P, Q)2 =
&&

k(x, y) dP (x) dP (y)

− 2
&&

k(x, y) dP (x) dQ(y) +
&&

k(x, y) dQ(x) dQ(y)

With Q = 1
m

m"

i=1
δ(Xi), this becomes

MMDP,k(Q)2 = 1
m2

m"

i,j=1
k(Xi, Xj) − 2

m

m"

i=1

&
k(Xi, x) dP (x)

+
&&

k(x, y) dP (x) dP (y)
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tractability of mmd

``But what about the integral with respect to P ?''

For general or unknown P is this not usually possible.
• In many useful cases, combinations of P and k are in fact

tractable. (table below from [Briol et al. 2015])

• Otherwise consider using Kernel Stein Discrepancy instead.
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back to our problem

Given m ≪ n, we'd like to find
a minimiser of MMDP,k(Q) over
size-m subsets of {X1, . . . , Xn}.

argmin
S⊂{1,...,n}

|S|=m

MMDP,k

#
1
m

m"

i=1
δ(Xi)

$
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a simple sequential algorithm

Given a set of samples X1, . . . , Xi−1 that we use to form a measure
Qi−1 = 1

i−1
!i−1

j=1 δ(Xj) that minimises MMDP,k(Qi−1) over all
possible size (i − 1) subsets, we select for the next point Xi that
which minimises MMDP,k(Qi), where Qi = 1

i

!i
j=1 δ(Xj).

Notation: The indices of the points we select will be written:
π(1), π(2), . . . , π(m) , π(·) ∈ {1, . . . , n}
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a simple sequential algorithm

Mi = 1
i2

i!
j,j′

k(Xj ,Xj′ )− 2
i

i!
j

)
k(Xj ,y) dP (y)+

))
k(x,y) dP (x) dP (y)

Mi−1 = 1
(i−1)2

i−1!
j,j′

k(Xj ,Xj′ )− 2
i−1

i−1!
j

)
k(Xj ,y) dP (y)+

))
k(x,y) dP (x) dP (y)

Mi−Mi−1=
*

1
i2 − 1

(i−1)2

+i−1!
j,j′

k(Xj ,Xj′ )+ 2
i2

i−1!
j

k(Xj ,Xi)+ 1
i2 k(Xi,Xi)

−( 2
i
− 2

i−1 )
i−1!

j

)
k(Xj ,y) dP (y)− 2

i

)
k(Xi,y) dP (y)
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a simple sequential algorithm

π(i) ∈ argmin
j∈{1,...,n}

,
1
2k(Xj , Xj) +

i−1"

i′=1
k(Xπ(i′), Xj) − i

&
k(x, Xj)dP (x)

-
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a simple sequential algorithm
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a simple sequential algorithm

Issues:

• This algorithm is greedy. (It scans through, and calculates with,
all n points at each iteration).

This makes it (potentially) expensive.

• This algorithm is myopic. (It chooses the next point optimally,
but this may not be the best long-term strategy).

This makes it (potentially) inaccurate.
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non-myopic algorithm

What if we chose more than one point simultaneously?
• Greater statistical efficiency?
• Computationally favourable? (Or if not: acceptable overhead?)
• Can we implement it cleverly?
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non-myopic algorithm

Choose s points simultaenously. Write the index of the i'th point
within iteration j as π(i, j), i.e. π(i, ·) ∈ {1, . . . , n}s. Then pick:

π(i, ·) ∈ argmin
S∈{1,...,n}s

.

/1
2

"

j,j′∈S

k(Xj , Xj′)

+
i−1"

i′=1

s"

j=1

"

j′∈S

k(Xπ(i′,j), Xj′) − is
"

j∈S

&
k(x, Xj)dP (x)

0

1

index set of size s
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integer quadratic programmes

We can rewrite this problem as an

integer quadratic programme (IQP),

and in doing so use state-of-the-art discrete optimisation codes.
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integer quadratic programmes

Let v ∈ {0, . . . , s}n :
!n

j=1 vj = s be a vector listing the number of
copies of each sample that are selected at iteration i.

Algorithm chooses: {X5, X6, X10, X5, X3}

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

v = ( 0 0 1 0 2 1 0 0 0 1 )

(n = 10, s = 5)
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integer quadratic programmes

argmin
S∈{1,...,n}s

,
1
2

!
j,j′∈S

k(Xj , Xj′ ) +
i−1!

i′

s!
j

!
j′∈S

k(Xπ(i′,j), Xj′ ) − is
!
j∈S

)
k(x, Xj)dP (x)

-

argmin
v∈Ns

0

1
2v⊤Kv + ci⊤v such that 1⊤v = s

Kj,j′ := k(Xj , Xj′), 1j := 1 for j = 1, . . . , n,

ci
j :=

i−1"

i′=1

s"

j′=1
k(Xπ(i′,j′), Xj) − is

&
k(x, Xj) dP (x)
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non-myopic selection

1 point at a time 4 points at a time 12 points together
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non-myopic selection
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batch algorithm

Myopic algorithm is O(nm2), non-myopic algorithm is O(ns(ms)2).

In both, the algorithm scans all n possible points at every iteration.

We can mini-batch the candidate set {X1, . . . , Xn} and retain b ≪ n
at each iteration, then choose s > 1 samples from each batch of b.

This approach has complexity O(bs(ms)2). In practice we find this
makes it tractable in many settings.
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theorems

1:

Let {Xi}n
i=1 ⊂ X be fixed. Consider an index sequence π of length

m and with selection size s. Then for all m ≥ 1 there is a C such that

MMDP,k

2

3 1
ms

m"

i=1

s"

j=1
δ(Xπ(i,j))

4

5
2

≤ min
1⊤w=1
wi≥0

MMDP,k

#
n"

i=1
wiδ(Xi)

$2

6 78 9
optimal (weighted) quantisation

of P achievable with the candidate set

+C2
:1 + log m

m

;
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theorems

2:

Let {Xi}n
i=1 ⊂ X be independently sampled from P . Consider an

index sequence π of length m and with selection size s. Then for all
s ∈ N and all m, n ≥ 1, there are constants C , C ′, γ such that

E

.

</MMDP,k

2

3 1
ms

m"

i=1

s"

j=1
δ(Xπ(i,j))

4

5
2
0

=1

≤ log(C ′)
nγ

+ 2
:

C2 + log(nC ′)
γ

; :1 + log m

m

;
.
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theorems

3:

Consider a P -invariant, time-homogeneous, reversible Markov
chain {Xi}i∈N ⊂ X . Consider an index sequence π of length m and
selection subset size s. Then there are constants C , C ′, C ′′, γ such
that

E

.

</MMDP,k

2

3 1
ms

m"

i=1

s"

j=1
δ(Xπ(i,j))

4

5
2
0

=1

≤ log(C ′)
nγ

+ C ′′

n
+ 2

:
C2 + log(nC ′)

γ

; :1 + log m

m

;
.
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theorems

4:

Let each mini-batch {Xi
j}b

j=1 ⊂ X be independently sampled from
µ. Consider an index sequence π of length m. Then ∀ m, n ≥ 1 there
are constants C , C ′ such that

E

.

</MMDP,k

2

3 1
ms

m"

i=1

s"

j=1
δ(Xi

π(i,j))

4

5
2
0

=1

≤ log(C ′)
bγ

+ 2
:

C2 + log(bC ′)
γ

; :1 + log m

m

;
.
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remarks & lacunae

• Bounds are all independent of s. (Does not necessarily imply
that s = 1 is optimal; indeed experiments show otherwise.)

What's missing:
• Mini-batch result in dependent sampling context. Seems

achievable but technically involved.
• Different regimes of mini-batching. (ie. non-independent

mini-batches). This seems harder.
• Output from non P -stationary Markov chains. (ie. chains that

have not yet converged.)
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experiments & heuristics
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