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CORE AIM

Aim: to “optimally approximate' a probability measure P on X by a
discrete distribution Q;, = - 371", §(X;). Our starting point is a
discreteset X1, . .., X,, of pointsin X’ (n > m) that we aim to “thin'.
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BASIC PROBLEM SETUP

We have: a target distribution P, and a set of samples X; — from the
samples we form an empirical distribution Q,,:

P Qni= > 0(X:)

But: n is large and it is expensive to compute with all n samples.
Or: @, is not actually that good an approximation to P.

So: We choose m < n and then try to find a representative subset of
samples of size m that minimises

1 m
“difference” | P, — 25()(1‘) givenm; {X;}7%, C {X;}i,
mis
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BASIC PROBLEM SETUP

We refer to this as optimal quantisation.

Our task will be to define some appropriate measure of *"difference”
to do this, and thereby to find an appropriate representative subset.

OPTIMAL QUANTISATION OF PROBABILITY MEASURES USING MAXIMUM MEAN DISCREPANCY : ONURTEYMUR



BASIC PROBLEM SETUP

Note: We are concerned with (somehow) minimising:

1 m
“diff P, =) (X i ; { Xt Xikie
ifference < - ; ( )) givenm; {X;}i% C {Xi}iy

This is not the same as:

0“diff.”<%zn:5(X %i ) {Xihily c{X i

1 m
“dif.” | P, — X; X X
o s (P 3 300x) ) < 1 ©
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BASIC PROBLEM SETUP

Sc{1,...,n}
[S|=m

. 1 &
argmin MMD (P, — Zé(X,-))
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SOME RELATED APPROACHES

® Minimise Wasserstein distance [Graf & Luschgy 2007]

® Minimise power function' (worse-case interpolation error)
[de Marchi et al. 2005; Santin & Haasdonk 2017]

¢ Support points (minimise “energy distance’) [Mak & Joseph 2018]
® Minimise Stein discrepancy to optimally weight { X; }7* ;
[Liu & Lee 2017]

® Minimum energy designs [Joseph 2015,2019]
e ““Kernel herding" [Chen et al. 2010; Lacoste-Julien et al. 2015]
® "Stein points" [Chen et al. 2018]

® Stein Variational Gradient Descent [Liu & Wang 2019; Duncan et al. 2018]
e ““Kernel Thinning" [Dwivedi & Mackey 2021]

® **Cube Thinning" [Chopin & Ducrocq 2021]
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OUTLINE

Motivating examples

Introduction to Maximum mean discrepancy (MMD)

Algorithms for selecting points

Some theory

Heuristics
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EXAMPLE 1. HISTORY MATCHING

Coreidea: establish which inputs x € X toacomputer
model f(-) could have generated a known output y.

e Construct a surrogate or emulator f trained on evaluations of f —
use this to determine which x are compatible with y, while
accounting for uncertainty introduced by the emulation.

* Fixat,and say x is plausible if | C[f ()]~ V2(E[f(2)] — v)|| < t.

e This defines a plausible region

R(X, fry,t) = {w € X+ |[Cf ()] /*{E[f ()] — y}] <t}
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EXAMPLE 1. HISTORY MATCHING

Fit emulator f; using current dataset D;

Identify plausible region R;(X;, fi, vy, t)
Sample {X{,..., X!} CR;
=i+l Sample {X{,..., X! } CR;
Evaluate f(X%),--- , f(X%)

Append new evaluations to D;.
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EXAMPLE 1. HISTORY MATCHING

In practical settings R; can be very complicated — non-convex, highly
curved boundaries, disconnected regions etc.

Checking whether a point z is in R; is easy. But characterising the
entire region is very difficult.

Depending on which statistical model one uses for f, there might be
different optimal ways of selecting the new points (Uniform
sampling? Space-filling design? Sobol' sequence? ...)

Some of these may be difficult to do given the form of R; (Taking the
intersection of an existing low-discrepancy set with R;? Does this
guarantee anything?)
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EXAMPLE 1. HISTORY MATCHING

Many good reasons to use MMD instead:
¢ itdoesn't care about the region R; being really complicated,

® it can "correct' statistical inaccuracies caused by having to
perform rejection sampling when first identifying R;,

e theoretical guarantees in some settings:

If f is a Gaussian process (very common), a natural quantification of the
uncertainty present is via the maximum eigenvalue of its integrated covariance

U(X, X) = Amax {// E(x,x’)db{(x)dl/{(x/)} ,
XXX
and using MMD sampling we have U (X, X) = O(m™").
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EXAMPLE 2: BAYESIAN QUADRATURE

Let g be a function that we would like to integrate against P.

7z = / g(x) dP(z)
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EXAMPLE 2: BAYESIAN QUADRATURE

Let g be a function that we would like to integrate against P.

> 9(Xi), (Xi~P)
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EXAMPLE 2: BAYESIAN QUADRATURE

Instead: Model g(x) a priori as a Gaussian process with covariance k,
then condition on “data' D = {g(X;)}7- .
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EXAMPLE 2: BAYESIAN QUADRATURE

Instead: Model g(x) a priori as a Gaussian process with covariance k,
then condition on “data' D = {g(X;)}1- ;.
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EXAMPLE 2: BAYESIAN QUADRATURE

This gives a probabilistic approximation to Z —its (Gaussian)
posterior distribution p(Z|D).

m
std[Z|D] =  min MMDpy ( > wia(Xi)>
€R i=1

. . 1 &
This is bounded above by MMD pj, (E ; 5(XZ-)>

[Huszar & Duvenaud (2012), Briol et al. (2015)]
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EXAMPLE 2: BAYESIAN QUADRATURE

It's quite common here that ¢ is complicated and expensive to
evaluate, but P is something straightforward like a Gaussian or
uniform distribution (against which the integration of k required to
calculate MMD is easy).

So MMD can be tractable and useful in this setting.
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EXAMPLE 3: THINNING OF MCMC OUTPUT

See Marina's talk ;)
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MAXIMUM MEAN DISCREPANCY

Let - X be a measurable space,
« P(X) be the set of probability distributions on X/,
« F be some set of bounded real-valued functions on X'.

For P, € P(X), adiscrepancy is a quantity of the form

Jrap= [raq

If Dr(P,Q) = 0implies P = @ then F is called measure-deter-
mining, and D r is also called an integral probability metric.

D]:(Pa Q) = sup
feF
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MAXIMUM MEAN DISCREPANCY —INTUITION
(Images borrowed/looted from Arthur Gretton)

’ Samples from P and Q 1 Samples from P and Q
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MAXIMUM MEAN DISCREPANCY — INTUITION

N h functi
Smooth function S Smooth function
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MAXIMUM MEAN DISCREPANCY — INTUITION

Bounded continuous function

Bounded continuous function
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MAXIMUM MEAN DISCREPANCY

Recall the general form of an integral probability metric:

DA(P.Q) = sup [rar- [faq

Choose a kernel k and consider its RKHS H (k).

duces a Hilbert space H(k) : X — R for which (i) forallz € X, k(-,x) €

Akernel is a symmetric, positive definite function k : X x X — R. k repro-
H(k), and (i) forallz € X and f € H(k), (k(-, ), f)umw) = f(x).

Let B(k) = {f € H(k) : (f, f)nm) < 1} be the unit ballin H (k).

Setting F to be B(k) defines the maximum mean discrepancy.
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MAXIMUM MEAN DISCREPANCY

Why this choice?

® Opportunity to easily enforce different degrees of smoothness
through choice of the kernel £.

e If P and/or ) are empirical distributions, we can write
Dy (k) (P, Q) in closed form using only kernel evaluations.

® Furthermore in this setting D (Pn, @m) is a consistent
estimator of D) (P, Q) and the rate of convergence is
independent of d.

e Since kernels can be defined on arbitrary domains X', MMD can
used to measure distances between measures on eg. graphs,
strings, etc., (not just RY).
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OTHER USES OF MMD

Has been used for (amongst other things):

¢ Hypothesis testing [Fukumizu et al. 2008; Gretton et al. 2012;

Doran et al. 2014, Chwialkowski and Gretton 2014]
® Density estimation [Song et al. 2007,2008; Sriperumbudur 2011]
L] Clustering [Jegelka et al. 2009]
® Causal discovery [Sgouritsa et al. 2013; Chen et al. 2014; Schélkopf et al. 2015]
o Statistical model criticism [Lloyd & Ghahramani 2015; Kim et al. 2016]
e MCMC [Sejdinovic et al. 2014]
e ABC [Park et al. 2016]
¢ Training generative models [Li et al. 2015; Dziugaite et al. 2015]

OPTIMAL QUANTISATION OF PROBABILITY MEASURES USING MAXIMUM MEAN DISCREPANCY : ONURTEYMUR



MAXIMUM MEAN DISCREPANCY

MMD can be written in closed form (without the supremum).

k)PQ /kxydP )dP(y)

=2 [[ .y aP@) Q) + [[ by dQ) dQ()

With Q = Z 0(X;), this becomes

1 m
MMDp(Q)* = — > k(X X)) Z/k X;,z)dP(x)

1,7=1

+ / k(z,y) dP(z) dP(y)
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TRACTABILITY OF MMD

**But what about the integral with respect to P?"

For general or unknown P is this not usually possible.

® In many useful cases, combinations of P and k are in fact
tractable. (table below from [Briol et al. 2015])

e Otherwise consider using Kernel Stein Discrepancy instead.

‘ X ™ k Reference
[0,1]7 Unif(X) Wendland TP Oates et al. (2016b)
[0,1]¢ Unif(X) Matérn Weighted TP Sec. 5.4
[0, l]d Unif(X) Exponentiated Quadratic Use of error function
R4 Mixt. of Gaussians Exponentiated Quadratic Kennedy (1998)
s Unif(X) Gegenbauer Sec. 5.5
Arbitrary  Unif(X) / Mixt. of Gauss. Trigonometric Integration by parts
Arbitrary Unif(X) Splines ‘Wahba (1990)
Arbitrary Known moments Polynomial TP Briol et al. (2015)
Arbitrary Known 9 log () Gradient-based Kernel ~ Oates et al. (2016a, 2017a)
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BACK TO OUR PROBLEM

Given m < n, we'd like to find
a minimiser of MMDp(Q)) over
size-m subsets of { X1, ..., X, }.

1 m
argmin MMDp, —25(Xi)
A Sc{l,...,’n} mi_l
- : |S|=m
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A SIMPLE SEQUENTIAL ALGORITHM

Given a set of samples X7, ..., X;_; that we use to form a measure
Qi1 =75 Z;;ll d(X;) that minimises MMD p ,(Q;—1) over all
possible size (i — 1) subsets, we select for the next point X; that
which minimises MMD p ,(Q;), where Q; = % }:1 I(X;).

Notation: The indices of the points we select will be written:
7T(1),7T(2),..,,7T(m) ) 7'['() € {1,,%}
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A SIMPLE SEQUENTIAL ALGORITHM

M; :L2 Z (X5, X;)—2 ifk(xj,y) dP(y)+ff k(z,y) dP(x) dP(y)
43" J

) i—1
M,y :ﬁ Z, k(XX — 25 EJ: [ k(X;.y)dP(y)+ [ [ k(z,y) dP(z) dP(y)
753

i1 i-1
Mi_Mi—1:<y%>7<7.7]71)2> > /*7()(.1'-,)(_,/)4-1.% > k(Xj,Xi)-l-%gk(XuXi)
3,3’ J
i—1

_(%,]E ) [A(X ) dP(y)— fk(wa)dP( )
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A SIMPLE SEQUENTIAL ALGORITHM

i—1
7(i) € argmin 1k(Xj,Xj) + > k(X X5) —i/ k(z, X;)dP(x)
je{l,...,n} 2 =1
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A SIMPLE SEQUENTIAL ALGORITHM

2 se H -' - 2
DK WL, . . -.“_s

R, TR -#e?"'?" =9 A R
1 .'l,;ﬁia 3 ‘r“. ". g ..1-.;:,'*“ 1 9 o)) )8 3

:—‘-_.‘{7-%,;" %ﬁ"ﬁ"_. 97
04 el * 0 5
-1 . -1 a1

. o
-2 -1 0 1 2 ) -1 0 1 2
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A SIMPLE SEQUENTIAL ALGORITHM

Issues:

¢ This algorithm is greedy. (It scans through, and calculates with,
all n points at each iteration).

This makes it (potentially) expensive.

¢ This algorithm is myopic. (It chooses the next point optimally,
but this may not be the best long-term strategy).

This makes it (potentially) inaccurate.
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NON-MYOPIC ALGORITHM

What if we chose more than one point simultaneously?
® Greater statistical efficiency?
e Computationally favourable? (Or if not: acceptable overhead?)

® Can we implement it cleverly?
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NON-MYOPIC ALGORITHM

Choose s points simultaenously. Write the index of the i'th point
within iteration j as w(3, j), i.e. (4, -) € {1,...,n}*. Then pick:

index set of size s

1
m(i,-) € argmin |—= E k(X;, X;)
Se{l,...,n}s 2. i’
€Lt [ “jes

i—1 s
YYD k(X gy X)) — isZ/k‘(:U,Xj)dP(:E)

i'=1j=14€S jes
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INTEGER QUADRATIC PROGRAMMES

We can rewrite this problem as an
integer quadratic programme (IQP),

and in doing so use state-of-the-art discrete optimisation codes.
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INTEGER QUADRATIC PROGRAMMES

Letv € {0,...,s}" : 37 ) vj = s beavector listing the number of
copies of each sample that are selected at iteration i.

Algorithm chooses: { X5, X4, X10, X5, X3}

X1 Xo X3 Xy X5 X X7 Xg X9 Xyo
U:( 0 0 1 0 2 1 0 0 0 1 )

OPTIMAL QUANTISATION OF PROBABILITY MEASURES USING MAXIMUM MEAN DISCREPANCY : ONURTEYMUR



INTEGER QUADRATIC PROGRAMMES

i—1 s
argmin % Z k‘(Xj,Xj/) + ZZZ k(Xﬂ(i/7j>,Xj/) —is ka(.T,XJ)dP(J?)

Se{1,...n}5 | jies i’ jj'eSs jes

argmin %’UTK’U +¢Ty suchthat 1Tv=s
veENG

Ky =k(X;,Xy), 1;:=1forj=1,...,n,

i—1 s
=33 (X, Xj) — is/k(m,Xj)dP(x)

ir=14'=1
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NON-MYOPIC SELECTION
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NON-MYOPIC SELECTION
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BATCH ALGORITHM

Myopic algorithm is O(nm?), non-myopic algorithm is O(n*(ms)?).
In both, the algorithm scans all n possible points at every iteration.

We can mini-batch the candidate set { X1, ..., X, } and retainb < n
at each iteration, then choose s > 1 samples from each batch of b.

This approach has complexity O(b*(ms)?). In practice we find this
makes it tractable in many settings.
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THEOREMS

Let {X;}" ; C X be fixed. Consider an index sequence 7 of length
m and with selection size s. Then for all m > 1 there is a C such that

2
MMD py 225 w(i4))
1—1] 1
2 1+ logm
< min MMDpk<Zwl i)) o2 (—g)
1Tw=1 —1 m
w; >0 v

optimal (weighted) quantisation
of P achievable with the candidate set
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THEOREMS

2:

Let {X;}!"; C X beindependently sampled from P. Consider an
index sequence 7 of length m and with selection size s. Then for all
s € Nand allm,n > 1, there are constants C, C’, v such that

2
EMMDM( ZZ& 7]))

i=1j=1
! !
< log(C”) 49 (02—1— log(nC’)> <1+logm>'
ny v m
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THEOREMS

3:

Consider a P-invariant, time-homogeneous, reversible Markov
chain { X, };eny C X. Consider an index sequence 7 of length m and
selection subset size s. Then there are constants C, C’, C”, v such
that

2
E |MMDp ZZ& )
i=1j=1
< log(C") N % +9 (02 N log(nC”)> (1+10gm) .
ny n m
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THEOREMS

4:

Let each mini-batch {X]Z ?:1 C X be independently sampled from
. Consider an index sequence 7 of length m. Then V m,n > 1 there
are constants C, C’ such that

2
1 m S i
E [MMDp, (% Zzé(X;r(i,j)))

i=1j=1
/ !
< log(C”) 4o (02 N log(bC’)) (1 +logm> '
by 07 m
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REMARKS ¢ LACUNAE

® Bounds are all independent of s. (Does not necessarily imply
that s = 1is optimal; indeed experiments show otherwise.)

What's missing:
® Mini-batch result in dependent sampling context. Seems
achievable but technically involved.
e Different regimes of mini-batching. (ie. non-independent
mini-batches). This seems harder.

¢ Output from non P-stationary Markov chains. (ie. chains that
have not yet converged.)
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EXPERIMENTS & HEURISTICS
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