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A tribute to . . .

O. Macchi L.-A. Cauchy and J.-Ph.-M. Binet

Det (AB)XX ′ =
∑

Y \|Y |=|X |

Det AXYDet BYX ′

Determinantal Point Processes are ubiquitous...



Descents in series of i.i.d. digits : t s.t. Xt > Xt+1

4 0 6 6 7 8 0 9 1 7 7 5 2 9 5

P(i ∈ D) = k(0) = 0.45; P((i , j) ∈ D) = k(0)2 − k(i − j)k(j − i)

where
∑

m∈Z k(m)tm = (1− (1− t)10)−1
Borodin, Diaconis, Fulman 2010

Cov(Di ,Di+1) = −0.0825



Eigenvalues of complex matrices with i.i.d. entries

P(λ) ∝ exp
(
−λ†λ

) ∏
i<j

|λi − λj |2︸ ︷︷ ︸
Vandermonde determinant2



Eigenvalues of Hermitian matrices. Gaus. Unit. Ens.

P(λ) ∝ exp

(
−‖ λ‖

2

2

) ∏
i<j

(λi − λj )
2

︸ ︷︷ ︸
Vandermonde determinant2



Uniform Spanning Trees

Let S a subset of edges

S forms a UST

⇐⇒

P(S) = Det [B>L†B]SSδ(|S|=n−1)

B is the incidence matrix ;
L the Laplacian



What’s interesting in DPPs

As illustrated : DPPs are repulsive !

↪→ useful for diversity in random sampling / for space filling properties
in DoE

Not illustrated : DPPs are theoretically tractable negatively correlated
PP

↪→ likelihoods analytically known, including Zs

↪→ correlation functions (inclusion prob.) known at any order

↪→ have exact simulation techniques

They are to negatively correlated PP what Poisson are for
independent PP, or what Gaussian are to SP





Today :
I Elements on Determinantal Point Processes (discrete case)
I Sampling DPPs
I Some applications (especially as coresets)



Point Process on a discrete space X ←→ {1, . . . , |X |}

PP on X = probability over 2X , set of subsets of X

Let Y be this process :
1. likelihoods (or probabilities of the sets)

∀S ⊂ X ,Pr
(
Y = S

)
2. inclusion probabilities (marginals)

∀S ⊂ X ,Pr
(
S ⊂ Y

)
=
∑
S′⊃S

Pr
(
Y = S ′

)
Alternately : Stochastic process εt indexed by X with values in {0,1}

Completely determined by the knowledge of Pr (εi1 , . . . , εin ),∀i ,∀n



Poisson PP on a discrete space X

Two disjoint subsets belongs to the process independently :

Pr
(
A ∪ B ⊂ Y

)
= Pr

(
A ⊂ Y

)
Pr
(
B ⊂ Y

)

In the alternative description, second-order inclusion

Pr (εi = 1, εj = 1) = Pr (εi = 1)Pr (εj = 1) ∀i 6= j

Also called Bernoulli process since εt is i.i.d. Ber(P(εt = 1))



Determinantal PP on a discrete X

Let I ≥ K ≥ 0 be a |X | × |X | matrix (often symmetric)

A DPP is a PP which samples Y out of X such that

∀S ⊂ X ,Pr
(
S ⊂ Y

)
= Det KSS

First and second order inclusion :

Pr
(
{i} ⊂ Y

)
= K ii

Pr
(
{i , j} ⊂ Y

)
= K iiK jj − K 2

ij < K iiK jj = Pr ({i} ⊂ Y)Pr ({j} ⊂ Y)

Equivalent description : εi indexed by 1, . . . , |X |, defined by

Pr (εi = 1) = K ii ; Pr (εi = 1, εj = 1) = K iiK jj − K 2
ij ; . . .



Likelihoods or L-ensemble

Different approach : Let L ≥ 0 be a |X | × |X | matrix (often symm.)

A L-ensemble is a PP which samples Y out of X such that

∀S ⊂ X ,Pr
(
Y = S

)
=

Det LSS∑
S⊂X Det (LSS)

=
Det LSS

Det (L + I)

DPP⇐⇒ L-ensemble? Recall Pr
(
S ⊂ Y

)
=
∑
S′⊃S Pr

(
Y = S ′

)
L-ensemble are DPP : K = L(L + I)−1

DPP are L-ensemble only if K < I : L = K (K − I)−1

↪→ DPP with K a projection are not L-ensemble (cf UST)
(NB : Extended L-ensemble reduces the symmetry breaking ! see our arxiv sub’s)



Repulsion, or negative correlation

Looking at P (A ⊂ Y| B ⊂ Y) for A,B disjoint :

I Poisson : P (A ⊂ Y| B ⊂ Y) =
P (A ⊂ Y, B ⊂ Y)

P (B ⊂ Y)
=P (A ⊂ Y)

Thus, Cov[εi , εj ] = 0

I DPP : P (A ⊂ Y| B ⊂ Y) =
P (A ⊂ Y, B ⊂ Y)

P (B ⊂ Y)
<P (A ⊂ Y)

Thus, Cov[εi , εj ] < 0

“Strengh” of repulsion depends on K (orL) : usually constructed from
a kernel k(x , y)

Allow to quantify similarities between elements . . .



An Interpretation

Elementary geometry : B = (b1, . . . ,bn)⇒ vol (P(bi ))2 = Det B>B

a

c

b
a-aest(b,c)

Let B = (a b c) = (a B′) then

vol (P(a,b,c))2 = ‖a − â(b,c)‖2 vol (P(b,c))2

Det B>B = (a>a − a>B′(B′>B′)−1B′>a)Det B′>B′

For K = B>B : matrix of similarities between features bi

Subsampling features by a DPP = seeking features that create a big
volume ! and are thus most diverse !



k DPP, just a flavor

For a DPP, |Y| is random. How to get exactly k subsamples?
1. Use a rank k projection matrix, see that soon, or
2. condition a DPP to |Y| = k .

Pr
(
Y = S

∣∣|Y| = k
)

=
Det LSS∑

S/|S|=k Det (LSS)
1(|S| = k)

Partition function is an elementary symmetric polynomial :∑
S/|S|=k

Det (LS) = ek (λ) =
∑

J⊂{1,...,N}/|J |=k

∏
j∈J

λj

I More complicated analytically
I Sampling, same strategy (see later) but a little bit more difficult

(because of e.s.p.)
We have designed efficient approximations to ek (λ). . .



Usefull properties–1

Let Y be a DPP with kernel K (or a L-ensemble L).

I The size |Y| of the sample is random and :

E [|Y|] = Tr[K ] and Var[ |Y|] = Tr[K (I − K )]

E [|Y|] = E
∑
εi =

∑
Kii et Var[|Y|] =

∑
Cov[εi , εj ] . . .

I If K is a projection operator on a k < |X | dimensional subspace,
then |Y| = k a.s.

TrK =
∑
λi et Var[|Y|] = TrK (I − K ) =

∑
i λi (1− λi )

Such a DPP is called a projection DPP



Usefull properties–2

Let Y be a DPP with kernel K (or L).

I A DPP is a mixture of projection DPPs

Recall Cauchy-Binet formula Det (AB)XX ′ =
∑

Y \|Y |=|X| Det AXYDet BYX ′

If L =
∑

n λnvnv>
n = VΛV T then

Det LS =
∑

Y \|Y |=|S|
Det VSYDet (ΛV>)YS

=
∑

Y \|Y |=|S|
Det VSYDet V>

SYDet ΛY

=
∑

Y \|Y |=|S|
Det

(∑
n∈Y

vnv>
n
)
S

∏
n∈Y

λn

=
∑

Y \|Y |=|S|
Det K VY

S

∏
n∈Y

λn



Sampling

If L =
∑

n λnvnv>n = VΛV T and K VY
S =

(∑
n∈Y vnv>n

)
S then

Pr
(
S
)

=
Det LS

Det (L + I)
=

∑
Y \|Y |=|S|

Det K VY
Y︸ ︷︷ ︸

step2

∏
n∈Y

λn

1 + λn︸ ︷︷ ︸
step1

1. Keep vn if Ber
(
λn/(1 + λn)

)
= 1

2. Construct a projection kernel with the eigenvectors kept.

Sample a projection DPP.



Sampling a projection DPP, idea

A fact : if X = (x1,X ′), then

Det X T X = (x>1 x1 − x>1 X ′(X ′>X ′)−1X ′>x1)Det X ′>X ′

=
∥∥x1 − Proj⊥(x1

∣∣span (X ′)
∥∥2Det X ′>X ′

If K = VV> is a projection kernel, then

Det K =
∥∥K 1,. − Proj⊥(K 1,.

∣∣span (K 2,., . . . ,K n,.)
∥∥2Det K ′

• If n vectors have already been sampled, choose the (n + 1)-th with
a probability prop. to the MSE of its prediction from the first n !

↪→ Implemented in the physical space, complexity O(Nk3) for a rank
k kernel in RN ,

↪→ Implemented in the associated RKHS, O(Nk2) .



Illustration

-1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4



Illustration
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If N is large?

Exact sampling requires spectral components of L or K : O(|X |3) !

Ideas : be patient, or
I Taylored algorithms for special DPPs (e.g. Wilson’s for USTs )
I Approximate sampling, e.g. Gibbs
I Approximate kernel :

1. If L = B>B, B : D × N, eigen elements of L obtained from BB>.
2. If k(x , y) = ϕ(x − y), then necessarily ∃P/ϕ ∝ TF−1(P) Bochner

Random Fourier Features :

ϕ̂(x) =
K∑

k=1

exp(2iπνk x) where νk ∼ P K→+∞−→ ϕ(x) =

∫
e2iπνxdP(ν)

If ϕ =
(

exp(2iπνx1), . . . , exp(2iπνxN)
)

of dim. K × N then

ϕ†ϕ = ̂ϕ(x − y)
K→+∞−→ L and use the preceding trick



Applications of DPPs

Everywhere subsampling is interesting . . .

I Subsampling Graphs, patches in images for reconstruction
(Launay et. al.)

I DoE (Fanuel, see Rémi later on). For example :

Let S be a projection dpp with kernel XX>,X ∈ Rn×d . Then

E [X †(S,:)] = X †

Consequence : E [X−1
S,: yS] = X †y = arg min ‖ Xw − y‖2.

I Monte-Carlo integration (see Jean-François) / statistical
estimation

I Coresets/Sketching



Application in estimation

Estimate statistics E[h(x)] where h : Rd −→ Rp

Let CN be the empirical mean, and consider

Cπ =
1
N

N∑
i=1

h(xi )εi

πi

ε is a doubly stochastic PP, i.e. Pr (εi = 1
∣∣x) = πi (xi )

No Bias : E
[
Cπ
]
=

1
N

N∑
i=1

E
[h(xi )

πi
E
[
εi
∣∣xi
]]

=
1
N

N∑
i=1

E
[h(xi )

πi
πi

]
=E[h(x)]

Variance : Var[Cπ] =
1

N2

∑
i,j

Cov
[h(xi )εi

πi
,

h(xj )εj

πj

]
= Var[CN ] +

1
N2

∑
i,j

E
[
h(xi )h(xj )

πij − πiπj

πiπj

]



Variance, possible gain from negative correlations

If πij = πiπj Poisson process

Var[CP ] = Var[CN ] +
1

N2

∑
i

E
[
h(xi )

2 1− πi

πi

]
(1)

Then, for Cπ

Var[Cπ] = Var[CP ] +
1

N2

∑
i 6=j

E
[
h(xi )h(xj )

πij − πiπj

πiπj

]
(2)

h takes value in R+ (resp. R−), a sampling process with negative
correlation (resp. positive) is better than the Poisson subsampling



Example of the correlation matrix

Let x i a series of 10000 i.i.d. r.v.

Subsamples 100 points, Lij = exp(−‖ x i − x j‖2/2σ2)

Mixture of 3 Gaussian : probabilities [3/4 1/6 1/12]
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Example of the correlation matrix

Let x i a series of 10000 i.i.d. r.v.

Subsamples 100 points, Lij = exp(−‖ x i − x j‖2/2σ2)

Mixture of 3 Gaussian : probabilities [1/3 1/3 1/3]
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Example of the correlation matrix
Estimate XX>/10000 with 10000−1∑

i εix ix>i /πi

πi = M/N for random sampling (◦)

πi approximated first order inclusion probability for k DPP (�).

Plot the norm of matrices of st.d. ; k = 10,50,100,150 ; 300 rff.
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Coresets

Suppose observing X a set of N points in Rd bearing information
over a parameter θ from a compact set Θ ⊂ Rk .

Consider estimating θ via minimization of a risk

L(X , θ) =
∑
x∈X

f (x , θ)

where f : Rd ×Θ→ R+ a well behaved (Lipschitz in θ) cost

Suppose N too large and/or f very complicated and costly to evaluate
=⇒ use of a subset of X a possibility

An ε coreset is a Y ⊂ X such that

∀θ ∈ Θ, | L(X , θ)− L(Y, θ)| ≤ εL(X , θ)



Random Coresets

Let pi a probability on 1, . . . ,N.

Let Y be composed of M elements of X taken independently (with
replacement) with probability pi .

Recall L(X , θ) =
N∑

i=1

f (xi , θ). Construct L̂(Y, θ) =
M∑

i=1

f (yi , θ)

Mpi
.

Choose small ε, δ. Then, if M(ε, δ) is large enough

Pr
(
∀θ, | L(X , θ)− L̂(Y, θ)| ≤ εL(X , θ)

)
≥ 1− δ

A good probability law in this problem : pi ∝ maxθ
f (xi ,θ)

L
Once again, some samples may be over represented and diversity
may be beneficial !



DDP for coresets

To include negative correlation or diversity, sample a DPP or a k -DPP,
and form

L̂(Y, θ) =
∑
i∈Y

f (yi , θ)

πi

We proved that for DPP (and k DPP) :
I If |Y| (or k ) is large enough

Pr
(
∀θ, | L(X , θ)− L̂(Y, θ)| ≤ εL(X , θ)

)
≥ 1− δ

We guarantee that DPP cannot be worse than i.i.d. sampling
I variance reduction due to negative correlation implies that DDP

are better



Application for clustering

L(X , θ) =
∑
x∈X

f (x , θ) with f (x , θ) = min
c∈θ
‖x − c‖2.

Use the classical MNIST data base (7.104 handwrit-
ten digits)
AR similarity index between ground truth and sub-
sampling strategies (the closer to one the better)



To conclude

Continuous framework : more to follow.
I Usefulness of DPP (and negatively associated processes) for

subsampling while conserving as much information as possible
I Promising applications in DoE, see works by e.g. Fanuel, Rémi
I A lot of work to do on these processes, notably their behavior in

high dimensions ; their sampling, their use in sensor
networks/distributed algorithms design . . .

More in

I Surveys Stat. (Bardenet et. al., Lavancier et. al.), ML (Kuleza &Taskar), Prob (Lyons&Peres, Hough et.al, Bacchelli) . . .

I arXiv:1803.01576 : Asymptotic Equivalence of Fixed-size and Varying-size Determinantal Point Processes, Bernoulli 2019

I arXiv:1803.08700 : Determinantal Point Processes for Coresets, JMLR 2020

I Est/MC integration : Bardenet&Hardy, Coeurjolly, Mazoyer, POA, Stat. Spat & EJS to appear.

I Recent arXiv papers Barthelmé, Tremblay, Usevitch and POA.

I and some conf. papers (e.g. EUSIPCO 2017, IEEE SSP 2018)


