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A tributeto ...

O. Macchi L.-A. Cauchy and J.-Ph.-M. Binet

Det (AB)xx» = »_  Det AyyDet Byy:
YA =X

Determinantal Point Processes are ubiquitous...



Descents in series of i.i.d. digits : t s.t. X; > Xi.1

< Descents versus Uniform —
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Descents in random digits
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P(i € D) = k(0) = 0.45;  P((i,j) € D) = k(0)2 — k(i — j)k(j — i)
Whel'e ZmEZ k(m)tm = (1 - (1 - t)10)71 Borodin, Diaconis, Fulman 2010

Cov(D;, Diy1) = —0.0825



Eigenvalues of complex matrices with i.i.d. entries

Ginibre Uniform

P(A)  exp (—ATA) [TIv =P
i<j

Vandermonde determinant?



Eigenvalues of Hermitian matrices. Gaus. Unit. Ens.

A, Uniform Uniform, histogram 6
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Vandermonde determinant?
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Uniform Spanning Trees

Uniform Spanning Tree

Let S a subset of edges

S forms a UST

—

P(S) = Det [B" L' Bss6(|5/=n_1)

B is the incidence matrix;
L the Laplacian




What's interesting in DPPs

As illustrated : DPPs are repulsive !

— useful for diversity in random sampling / for space filling properties
in DoE

Not illustrated : DPPs are theoretically tractable negatively correlated
PP

— likelihoods analytically known, including Zs
— correlation functions (inclusion prob.) known at any order
— have exact simulation techniques

They are to negatively correlated PP what Poisson are for
independent PP, or what Gaussian are to SP






Today :
» Elements on Determinantal Point Processes (discrete case)
» Sampling DPPs
» Some applications (especially as coresets)



Point Process on a discrete space & «— {1,...,|X|}
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S:P(Scy)‘!
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PP on X = probability over 2%, set of subsets of X

Let Y be this process :
1. likelihoods (or probabilities of the sets)

VS C X,Pr(y=3S)
2. inclusion probabilities (marginals)

VSCXPr(Scy)=> Pr(y=5)
8§58
Alternately : Stochastic process ¢; indexed by X" with values in {0, 1}
Completely determined by the knowledge of Pr (¢j,,...,¢;,),Vi,¥n



Poisson PP on a discrete space X

Two disjoint subsets belongs to the process independently :

Pr(AUBCY)=Pr(AcCY)Pr(BcC)

In the alternative description, second-order inclusion

Pr(ci=1,5,=1)=Pr(s;=1)Pr(g=1)  Vi#j

Also called Bernoulli process since ¢; is i.i.d. Ber(P(e; = 1))



Determinantal PP on a discrete X

Let/ > K > 0bea|X| x |X| matrix (often symmetric)

A DPP is a PP which samples ) out of X such that

VS C X,Pr (S c)) =Det Kss

First and second order inclusion :

Pr ({I} C y) = Kj
Pr({i,j} CY) =KiKj—K; < KiKj=Pr({i} cY)Pr({j}cd)

Equivalent description : ¢; indexed by 1,...,|X|, defined by

Pr(ci=1)=KiiPr(ei=1,65=1) = KiK; — K5; ...



Likelihoods or L-ensemble

Different approach : Let L > 0 be a |X| x |X| matrix (often symm.)

A L-ensemble is a PP which samples ) out of X’ such that

Det Lss
ZSCX Det (Lss)
Det Lss
Det (L+1)

VS CX,Pr(¥y=8) =

DPP < L-ensemble? Recall Pr (SC V) =Y 5 sPr (¥ =35

L-ensemble are DPP : K = L(L+ )~
DPP are L-ensemble only if K < I : L = K(K — 1)~

— DPP with K a projection are not L-ensemble (cf UST)
(NB : Extended L-ensemble reduces the symmetry breaking ! see our arxiv sub’s)



Repulsion, or negative correlation

Looking at P(A C Y| B C Y) for A, B disjoint :

P(ACcYy, Bc))

» Poisson: P(ACY|BCY)= P(BCY) =P(AC))
ThUS, COV[E/,E/] =0
> DPP:P(Acy|Bcy)= PACY BCY) gy

P(BcY)

Thus, Cov[ej, 5] <0

“Strengh” of repulsion depends on K(orL) : usually constructed from
a kernel k(x,y)

Allow to quantify similarities between elements ...



An Interpretation

Elementary geometry : B = (by, ..., b,) = vol (P(b;))2 = Det B' B

a-aest(b,c)

Let B=(abc) = (aB') then

vol (P(a, b, ¢))? la —a(b, c)||? vol (P(b, c))?
DetB'B = (a'a—a'B'(B'B) 'B"aDetB'B

For K = B' B : matrix of similarities between features b,

Subsampling features by a DPP = seeking features that create a big
volume ! and are thus most diverse!



k DPP, just a flavor

For a DPP, || is random. How to get exactly k subsamples ?
1. Use a rank k projection matrix, see that soon, or
2. condition a DPP to || = k.

Det Lgs
>_s/|s|—« Det (Lss)

Partition function is an elementary symmetric polynomial :

3 Det(Ls) = ex(A) = >, IR,

S/|5]=k TN/ |T =k jET

1(|S] = k)

Pry =Sl =k) -

» More complicated analytically
» Sampling, same strategy (see later) but a little bit more difficult

(because of e.s.p.)
We have designed efficient approximations to ex(A). ..



Usefull properties—1

Let Y be a DPP with kernel K (or a L-ensemble L).
» The size |Y| of the sample is random and :

E[|Y|] = Tr[K] and Var[ |Y|] = Tr[K(I — K)]
E[lV]] = EX i = > K et Var[|[ Y]] = - Covlej,g] - ..
> If K is a projection operator on a k < |X’| dimensional subspace,
then |V| = k a.s.
TrK =3 NetVar[| Y]] = TTK(I — K) =37, (1 = X))

Such a DPP is called a projection DPP



Usefull properties—2

Let Y be a DPP with kernel K (or L).

» A DPP is a mixture of projection DPPs

Recall Cauchy-Binet formula Det (AB) x x» = >_y \|y |—|x| Det AxyDet By

IfL =3, Anvav, = VAVT then
DetLs = Z Det Vsy Det (,\ VT)yS
YAV =I5
= > DetVsyDet ViyDetAy
YAV =I5

= Z Det(ZVnV,T)S H)\n

YA |=|S] ney ney

= > Det K?’ 11 >

YA [=IS] ney



Sampling

fL=3, AVav) = VAV  and K& = (Yney VnVy ) g then

Det LS V- An
Prs)=-—r2-= > Detky T[]
Det (L+1) YA Tl ~ Sy 1+ A\

step

1. Keep v, if Ber(An/(1+ Ap)) =1
2. Construct a projection kernel with the eigenvectors kept.

Sample a projection DPP.



Sampling a projection DPP, idea

Afact : if X = (x4, X’), then
DetX'X = (x{x;—x{X(X X)X x;)Det X'" X’
— ||lx1 — Proj, (xs|span (X")||°Det X' X’
If K= VV' is a projection kernel, then
Det K = ||K, — Proj, (K1_|span (Kz, ,..., Ky )||°Det K’

o If n vectors have already been sampled, choose the (n + 1)-th with
a probability prop. to the MSE of its prediction from the first n!

— Implemented in the physical space, complexity O(Nk3) for a rank
k kernel in RV,

— Implemented in the associated RKHS, O(Nk?) .



lllustration




lllustration
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If Nis large ?

Exact sampling requires spectral components of L or K : O(|X|®)!
Ideas : be patient, or

Taylored algorithms for special DPPs (e.g. Wilson’s for USTs )
Approximate sampling, e.g. Gibbs

Approximate kernel :

. fL=B"B,B:DxN, eigen elements of L obtained from BB'.
- If k(x,y) = p(x — y), then necessarily 3P /¢ oc TF~(P) soshner

vyYyy

N —

Random Fourier Features :

K
Zexp 2irvex) where v ~ P Kodpo N /e2i“VXdP(l/)
k=1

If @ = (exp(2iTvXy),. .., exp(2iTvxy)) of dim. K x N then

plp = @(7—\y) Kﬁ*“ L and use the preceding trick



Applications of DPPs

Everywhere subsampling is interesting ...

» Subsampling Graphs, patches in images for reconstruction
(Launay et. al.)

» DoE (Fanuel, see Rémi later on). For example :
Let S be a projection dpp with kernel XX, X € R"™?  Then

E[X(Ts,:)] = X!
Consequence : E[Xgys] = Xty = argmin | Xw — y|[?.

» Monte-Carlo integration (see Jean-Francois) / statistical
estimation

» Coresets/Sketching



Application in estimation

Estimate statistics E[h(x)] where h: R —; RP

Let Cy be the empirical mean, and consider

N

1 h(x;)e;
:Nz
i=1

e is a doubly stochastic PP, i.e. Pr (g; = 1|x) = mi(x))

No Bias : E[C NZE[ (X) g Eeifx]|= NZE[ (xi) mi| =Elh(x)]

Variance : Var(C:] = 15 ZCov[h(X)a’ h(Xj)E/}

i )

Tjj — 7Tj7T/‘:|

= Var[Cul + 35 2 E[ G0y ™
i T



Variance, possible gain from negative correlations

If 7 = mjm; Poisson process

_ 1 ) 21 — T
Var[Cp] = Var[Cpn]+ N2 z,: E {h(x,) T,} (1)
Then, for C;
_ 1 Vh(x) T T
VarlC.] = VarlGel + 5 ; E [h(x)h(x) — | ©

h takes value in R* (resp. R~ ), a sampling process with negative
correlation (resp. positive) is better than the Poisson subsampling



Example of the correlation matrix
Let x; a series of 10000 i.i.d. r.v.
Subsamples 100 points, Lj = exp(—|| X; — X;||?/202)

Mixture of 3 Gaussian : probabilities [3/4 1/6 1/12]

4 kDPP sampling 4 random sampling
3 3
2 2
1 1
0 0
-1 -1
-2 -2
-3 -3
-4 -4

-2 6 -2 0 2 4




Example of the correlation matrix

Let x; a series of 10000 i.i.d. r.v.
Subsamples 100 points, Lj = exp(—|| X; — X;||?/202)

Mixture of 3 Gaussian : probabilities [1/3 1/3 1/3]

kDPP_sampling

random sampling

4 4
2 2
0 0
2 -2
-4 -4
6 6




Example of the correlation matrix
Estimate XX /10000 with 10000~" 3", e;x;x; /i
mi = M/N for random sampling (o)
m; approximated first order inclusion probability for kK DPP (OJ).

Plot the norm of matrices of st.d.; k = 10,50, 100, 150 ; 300 rff.

y bleu : non uniforme ; rouge : uniforme
T T T T T

0.5
of

-0.5 1

log Std

log k



Coresets

Suppose observing X a set of N points in RY bearing information
over a parameter # from a compact set © c RX.

Consider estimating 6 via minimization of a risk

L(x,0) =) f(x,0)

xeX

where f: RY x © — R+ a well behaved (Lipschitz in ) cost

Suppose N too large and/or f very complicated and costly to evaluate
— use of a subset of X a possibility

An ¢ coreset is a Y C X such that

V0 € .| L(X,0) — L(V.0)| < =L(X.0)




Random Coresets

Let p; a probability on 1,..., N.

Let Y be composed of M elements of X" taken independently (with
replacement) with probability pi.

Recall L(.X,6) Zf x;,0). Construct L(Y, 0) Z f( y,,e)

i=1
Choose small ¢, 4. Then, if M(e, §) is large enough

Pr (w), | L(X,0) — L(Y,0)] < L(X, 9)) >1-4

A good probability law in this problem : p; oc maxy 149

Once again, some samples may be over represented and diversity
may be beneficial !



DDP for coresets

To include negative correlation or diversity, sample a DPP or a k-DPP,
and form

~ f(y;, 0
(.0 - 3 )
i€y !
We proved that for DPP (and k DPP) :
» If || (or k) is large enough

Pr (vo,| L(x,0)—L(Y.,0)| < sL(X,G)) >1-4

We guarantee that DPP cannot be worse than i.i.d. sampling

» variance reduction due to negative correlation implies that DDP
are better



Application for clustering

L(X,0) = f(x,0) with f(x,0)= min |[x — cl?.

xXeXx

black: full k-means ; red: subsamples

Use the classical MNIST data base (7.10* handwrit-
ten digits)

AR similarity index between ground truth and sub-
sampling strategies (the closer to one the better)

no sampling
—-==+ m-DPP
"""" uniform iid

AR index

—'— sensitivity iid

%o 20 30
number of samples m



To conclude

Continuous framework : more to follow.

» Usefulness of DPP (and negatively associated processes) for
subsampling while conserving as much information as possible

» Promising applications in DoE, see works by e.g. Fanuel, Rémi

> A lot of work to do on these processes, notably their behavior in
high dimensions ; their sampling, their use in sensor
networks/distributed algorithms design . ..

More in
P Surveys Stat. (Bardenet et. al., Lavancier et. al.), ML (Kuleza &Taskar), Prob (Lyons&Peres, Hough et.al, Bacchelli) .. .
> arxiv:1803.01576 : Asymptotic Equivalence of Fixed-size and Varying-size Determinantal Point Processes, Bernoulli 2019
P arxiv:1803.08700 :Determinantal Point Processes for Coresets, JMLR 2020
> Est/MC integration : Bardenet&Hardy, Coeurjolly, Mazoyer, POA, Stat. Spat & EJS to appear.
P Recent arXiv papers Barthelmé, Tremblay, Usevitch and POA.
P and some conf. papers (e.g. EUSIPCO 2017, IEEE SSP 2018)



