An introduction to Determinantal Point Processes

Pierre-Olivier Amblard
with many interactions with (and inputs from) Simon Barthelmé and Nicolas Tremblay and collab. with Jeff Coeurjolly \& Adrien Mazoyer

CNRS, GIPSA-lab, U. Grenoble-Alpes, France

W'p "Kernel and sampling methods for design and quantization", Gdr MascoNum 2021

A tribute to ...
O. Macchi

L.-A. Cauchy and J.-Ph.-M. Binet

Det $(\boldsymbol{A} \boldsymbol{B})_{\mathcal{X} \mathcal{X}^{\prime}}=\sum_{\mathcal{Y} \backslash|\mathcal{Y}|=|\mathcal{X}|}$ Det $\boldsymbol{A}_{\mathcal{X} \mathcal{Y}}$ Det $\boldsymbol{B}_{\mathcal{Y X}}{ }^{\prime}$

Determinantal Point Processes are ubiquitous...

Descents in series of i.i.d. digits : t s.t. $X_{t}>X_{t+1}$

$$
406678091775295
$$

Descents in random digits

$$
\begin{aligned}
& \left.\begin{array}{|l|l|l|l|l|}
\mid n-0.0
\end{array} \right\rvert\, \\
& P(i \in D)=k(0)=0.45 ; \quad P((i, j) \in D)=k(0)^{2}-k(i-j) k(j-i) \\
& \text { where } \sum_{m \in \mathbb{Z}} k(m) t^{m}=\left(1-(1-t)^{10}\right)^{-1} \text { Borodin, Diaconis, Fulman } 2010 \\
& \operatorname{Cov}\left(D_{i}, D_{i+1}\right)=-0.0825
\end{aligned}
$$

Eigenvalues of complex matrices with i.i.d. entries

$$
P(\boldsymbol{\lambda}) \propto \exp \left(-\boldsymbol{\lambda}^{\dagger} \boldsymbol{\lambda}\right) \underbrace{\prod_{\text {Vandermonde determinant }}{ }^{2}}_{\substack{i<j}}\left|\lambda_{i}-\lambda_{j}\right|^{2}
$$

Eigenvalues of Hermitian matrices. Gaus. Unit. Ens.

$$
\lambda, \text { Uniform }
$$

Uniform, histogram $\delta \lambda$

$$
P(\boldsymbol{\lambda}) \propto \exp \left(-\frac{\|\boldsymbol{\lambda}\|^{2}}{2}\right) \underbrace{\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}}
$$

Vandermonde determinant ${ }^{2}$

Uniform Spanning Trees

Uniform Spanning Tree

Let \mathcal{S} a subset of edges \mathcal{S} forms a UST \Longleftrightarrow

$$
P(\mathcal{S})=\operatorname{Det}\left[\boldsymbol{B}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{B}\right]_{\mathcal{S S}} \delta_{(|\mathcal{S}|=n-1)}
$$

\boldsymbol{B} is the incidence matrix;
\boldsymbol{L} the Laplacian

What's interesting in DPPs

As illustrated: DPPs are repulsive!
\hookrightarrow useful for diversity in random sampling / for space filling properties in DoE

Not illustrated: DPPs are theoretically tractable negatively correlated PP
\hookrightarrow likelihoods analytically known, including Zs
\hookrightarrow correlation functions (inclusion prob.) known at any order
\hookrightarrow have exact simulation techniques
They are to negatively correlated PP what Poisson are for independent PP, or what Gaussian are to SP

Today :

- Elements on Determinantal Point Processes (discrete case)
- Sampling DPPs
- Some applications (especially as coresets)

Point Process on a discrete space $\mathcal{X} \longleftrightarrow\{1, \ldots,|\mathcal{X}|\}$

PP on $\mathcal{X}=$ probability over $2^{\mathcal{X}}$, set of subsets of \mathcal{X}
Let \mathcal{Y} be this process :

1. likelihoods (or probabilities of the sets)

$$
\forall \mathcal{S} \subset \mathcal{X}, \operatorname{Pr}(\mathcal{Y}=\mathcal{S})
$$

2. inclusion probabilities (marginals)

$$
\forall \mathcal{S} \subset \mathcal{X}, \operatorname{Pr}(\mathcal{S} \subset \mathcal{Y})=\sum_{\mathcal{S}^{\prime} \supset \mathcal{S}} \operatorname{Pr}\left(\mathcal{Y}=\mathcal{S}^{\prime}\right)
$$

Alternately: Stochastic process ε_{t} indexed by \mathcal{X} with values in $\{0,1\}$
Completely determined by the knowledge of $\operatorname{Pr}\left(\varepsilon_{i_{1}}, \ldots, \varepsilon_{i_{n}}\right), \forall \mathbf{i}, \forall n$

Poisson PP on a discrete space \mathcal{X}

Two disjoint subsets belongs to the process independently :

$$
\operatorname{Pr}(\mathcal{A} \cup \mathcal{B} \subset \mathcal{Y})=\operatorname{Pr}(\mathcal{A} \subset \mathcal{Y}) \operatorname{Pr}(\mathcal{B} \subset \mathcal{Y})
$$

In the alternative description, second-order inclusion

$$
\operatorname{Pr}\left(\varepsilon_{i}=1, \varepsilon_{j}=1\right)=\operatorname{Pr}\left(\varepsilon_{i}=1\right) \operatorname{Pr}\left(\varepsilon_{j}=1\right) \quad \forall i \neq j
$$

Also called Bernoulli process since ε_{t} is i.i.d. $\operatorname{Ber}\left(P\left(\varepsilon_{t}=1\right)\right)$

Determinantal PP on a discrete \mathcal{X}

Let $\boldsymbol{I} \geq \boldsymbol{K} \geq 0$ be a $|\mathcal{X}| \times|\mathcal{X}|$ matrix (often symmetric)
A DPP is a PP which samples \mathcal{Y} out of \mathcal{X} such that

$$
\forall \mathcal{S} \subset \mathcal{X}, \operatorname{Pr}(\mathcal{S} \subset \mathcal{Y})=\operatorname{Det} \boldsymbol{K}_{\mathcal{S S}}
$$

First and second order inclusion :

$$
\begin{aligned}
\operatorname{Pr}(\{i\} \subset \mathcal{Y}) & =\boldsymbol{K}_{i i} \\
\operatorname{Pr}(\{i, j\} \subset \mathcal{Y})=\boldsymbol{K}_{i i} \boldsymbol{K}_{j j}-\boldsymbol{K}_{i j}^{2} & <\boldsymbol{K}_{i i} \boldsymbol{K}_{j j}=\operatorname{Pr}(\{i\} \subset \mathcal{Y}) \operatorname{Pr}(\{j\} \subset \mathcal{Y})
\end{aligned}
$$

Equivalent description : ε_{i} indexed by $1, \ldots,|\mathcal{X}|$, defined by

$$
\operatorname{Pr}\left(\varepsilon_{i}=1\right)=\boldsymbol{K}_{i j} ; \operatorname{Pr}\left(\varepsilon_{i}=1, \varepsilon_{j}=1\right)=\boldsymbol{K}_{i i} \boldsymbol{K}_{i j}-\boldsymbol{K}_{i j}^{2} ; \ldots
$$

Likelihoods or L-ensemble

Different approach : Let $\boldsymbol{L} \geq 0$ be a $|\mathcal{X}| \times|\mathcal{X}|$ matrix (often symm.)

A L-ensemble is a PP which samples \mathcal{Y} out of \mathcal{X} such that

$$
\begin{aligned}
\forall \mathcal{S} \subset \mathcal{X}, \operatorname{Pr}(\mathcal{Y}=\mathcal{S}) & =\frac{\operatorname{Det} \boldsymbol{L}_{\mathcal{S S}}}{\sum_{\mathcal{S} \subset \mathcal{X}} \operatorname{Det}\left(\boldsymbol{L}_{\mathcal{S S}}\right)} \\
& =\frac{\operatorname{Det} \boldsymbol{L}_{\mathcal{S S}}}{\operatorname{Det}(\boldsymbol{L}+\boldsymbol{I})}
\end{aligned}
$$

DPP \Longleftrightarrow L-ensemble? Recall $\operatorname{Pr}(\mathcal{S} \subset \mathcal{Y})=\sum_{\mathcal{S}^{\prime} \supset \mathcal{S}} \operatorname{Pr}\left(\mathcal{Y}=\mathcal{S}^{\prime}\right)$
L-ensemble are DPP : $\boldsymbol{K}=\boldsymbol{L}(\boldsymbol{L}+\boldsymbol{I})^{-1}$
DPP are L-ensemble only if $\boldsymbol{K}<\boldsymbol{I}: \boldsymbol{L}=\boldsymbol{K}(\boldsymbol{K}-\boldsymbol{I})^{-1}$
\hookrightarrow DPP with \boldsymbol{K} a projection are not L-ensemble (cf UST)
(NB : Extended L-ensemble reduces the symmetry breaking! see our arxiv sub's)

Repulsion, or negative correlation

Looking at $P(A \subset \mathcal{Y} \mid B \subset \mathcal{Y})$ for A, B disjoint :

- Poisson : $P(A \subset \mathcal{Y} \mid B \subset \mathcal{Y})=\frac{P(A \subset \mathcal{Y}, B \subset \mathcal{Y})}{P(B \subset \mathcal{Y})}=P(A \subset \mathcal{Y})$

Thus, $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0$

- DPP : $P(A \subset \mathcal{Y} \mid B \subset \mathcal{Y})=\frac{P(A \subset \mathcal{Y}, B \subset \mathcal{Y})}{P(B \subset \mathcal{Y})}<P(A \subset \mathcal{Y})$

Thus, $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]<0$
"Strengh" of repulsion depends on $\boldsymbol{K}($ or $\boldsymbol{L})$: usually constructed from a kernel $k(x, y)$
Allow to quantify similarities between elements ...

An Interpretation

$\underline{\text { Elementary geometry : } \boldsymbol{B}=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right) \Rightarrow \operatorname{vol}\left(P\left(\boldsymbol{b}_{i}\right)\right)^{2}=\operatorname{Det} \boldsymbol{B}^{\top} \boldsymbol{B}, ~}$

Let $\boldsymbol{B}=(\boldsymbol{a} \boldsymbol{b} \boldsymbol{c})=\left(\boldsymbol{a} \boldsymbol{B}^{\prime}\right)$ then

$$
\begin{aligned}
\operatorname{vol}(P(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}))^{2} & =\|\boldsymbol{a}-\hat{\boldsymbol{a}}(\boldsymbol{b}, \boldsymbol{c})\|^{2} \operatorname{vol}(P(\boldsymbol{b}, \boldsymbol{c}))^{2} \\
\operatorname{Det} \boldsymbol{B}^{\top} \boldsymbol{B} & =\left(\mathbf{a}^{\top} \boldsymbol{a}-\mathbf{a}^{\top} \boldsymbol{B}^{\prime}\left(\boldsymbol{B}^{\prime \top} \boldsymbol{B}^{\prime}\right)^{-1} \boldsymbol{B}^{\prime \top} \boldsymbol{a}\right) \operatorname{Det} \boldsymbol{B}^{\top \top} \boldsymbol{B}^{\prime}
\end{aligned}
$$

For $\boldsymbol{K}=\boldsymbol{B}^{\top} \boldsymbol{B}$: matrix of similarities between features \boldsymbol{b}_{i}
Subsampling features by a DPP = seeking features that create a big volume! and are thus most diverse !

k DPP, just a flavor

For a DPP, $|\mathcal{Y}|$ is random. How to get exactly k subsamples?

1. Use a rank k projection matrix, see that soon, or
2. condition a DPP to $|\mathcal{Y}|=k$.

$$
\operatorname{Pr}(\mathcal{Y}=\mathcal{S}| | \mathcal{Y} \mid=k) \quad=\frac{\text { Det } \boldsymbol{L}_{\mathcal{S S}}}{\sum_{\mathcal{S} /|\mathcal{S}|=k} \operatorname{Det}\left(\boldsymbol{L}_{\mathcal{S S}}\right)} \mathbf{1}(|\mathcal{S}|=k)
$$

Partition function is an elementary symmetric polynomial :

$$
\sum_{\mathcal{S} /|\mathcal{S}|=k} \operatorname{Det}\left(\boldsymbol{L}_{\mathcal{S}}\right)=\boldsymbol{e}_{k}(\boldsymbol{\lambda})=\sum_{\mathcal{J} \subset\{1, \ldots, N\} /|\mathcal{J}|=k} \prod_{j \in \mathcal{J}} \lambda_{j}
$$

- More complicated analytically
- Sampling, same strategy (see later) but a little bit more difficult (because of e.s.p.)
We have designed efficient approximations to $e_{k}(\boldsymbol{\lambda}) \ldots$

Usefull properties-1

Let \mathcal{Y} be a DPP with kernel \boldsymbol{K} (or a L-ensemble \boldsymbol{L}).

- The size $|\mathcal{Y}|$ of the sample is random and:

$$
E[|\mathcal{Y}|]=\operatorname{Tr}[\boldsymbol{K}] \text { and } \operatorname{Var}[|\mathcal{Y}|]=\operatorname{Tr}[\boldsymbol{K}(\boldsymbol{I}-\boldsymbol{K})]
$$

$$
E[|\mathcal{Y}|]=E \sum \varepsilon_{i}=\sum K_{i j} \text { et } \operatorname{Var}[|\mathcal{Y}|]=\sum \operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right] \ldots
$$

- If \boldsymbol{K} is a projection operator on a $k<|\mathcal{X}|$ dimensional subspace, then $|\mathcal{Y}|=k$ a.s.
$\operatorname{Tr} \boldsymbol{K}=\sum \lambda_{i}$ et $\left.\operatorname{Var}[\mid \mathcal{Y}]\right]=\operatorname{Tr} \boldsymbol{K}(\boldsymbol{I}-\boldsymbol{K})=\sum_{i} \lambda_{i}\left(1-\lambda_{i}\right)$
Such a DPP is called a projection DPP

Usefull properties-2

Let \mathcal{Y} be a DPP with kernel \boldsymbol{K} (or \boldsymbol{L}).

- A DPP is a mixture of projection DPPs

Recall Cauchy-Binet formula $\operatorname{Det}(\boldsymbol{A B})_{\mathcal{X} \mathcal{X}^{\prime}}=\sum_{\mathcal{Y} \backslash|\mathcal{Y}|=|\mathcal{X}|}$ Det $\boldsymbol{A}_{\mathcal{X} \mathcal{Y}}$ Det $\boldsymbol{B}_{\mathcal{Y} \mathcal{X}^{\prime}}$

$$
\text { If } \boldsymbol{L}=\sum_{n} \lambda_{n} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\top}=\boldsymbol{V} \boldsymbol{\wedge} \boldsymbol{V}^{\top} \text { then }
$$

$$
\text { Det } \begin{aligned}
\boldsymbol{L}_{\mathcal{S}} & =\sum_{\mathcal{Y} \backslash|\mathcal{Y}|=|\mathcal{S}|} \operatorname{Det} \boldsymbol{V}_{\mathcal{S} \mathcal{Y}} \operatorname{Det}\left(\boldsymbol{\Lambda} \boldsymbol{V}^{\top}\right) \mathcal{Y} \mathcal{S} \\
& =\sum_{\mathcal{Y} \backslash|\mathcal{Y}|=|\mathcal{S}|} \operatorname{Det} \boldsymbol{V}_{\mathcal{S} \mathcal{Y}} \operatorname{Det} \boldsymbol{V}_{\mathcal{S} \mathcal{Y}}^{\top} \operatorname{Det} \boldsymbol{\Lambda} \mathcal{Y} \\
& =\sum_{\mathcal{Y} \backslash|\mathcal{Y}|=|\mathcal{S}|} \operatorname{Det}\left(\sum_{n \in \mathcal{Y}} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\top}\right)_{\mathcal{S}} \prod_{n \in \mathcal{Y}} \lambda_{n} \\
& =\sum_{\mathcal{Y} \backslash|\mathcal{Y}|=|\mathcal{S}|} \operatorname{Det} \boldsymbol{K}_{\mathcal{S}}^{V_{\mathcal{Y}}} \prod_{n \in \mathcal{Y}} \lambda_{n}
\end{aligned}
$$

Sampling

If $\boldsymbol{L}=\sum_{n} \lambda_{n} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\top}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\boldsymbol{T}}$ and $\boldsymbol{K}_{\mathcal{S}}^{\boldsymbol{V}_{\boldsymbol{\nu}}}=\left(\sum_{n \in \mathcal{Y}} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\top}\right)_{\mathcal{S}}$ then
$\operatorname{Pr}(\mathcal{S})=\frac{\operatorname{Det} \boldsymbol{L}_{S}}{\operatorname{Det}(\boldsymbol{L}+\boldsymbol{I})}=\sum_{\mathcal{Y} \backslash|\mathcal{Y}|=|\mathcal{S}|} \underbrace{\text { Det } \boldsymbol{K}_{\mathcal{Y}}^{V_{y}}}_{\text {step2 }} \underbrace{\prod_{n \in \mathcal{Y}} \frac{\lambda_{n}}{1+\lambda_{n}}}_{\text {step } 1}$

1. Keep \boldsymbol{v}_{n} if $\operatorname{Ber}\left(\lambda_{n} /\left(1+\lambda_{n}\right)\right)=1$
2. Construct a projection kernel with the eigenvectors kept.

Sample a projection DPP.

Sampling a projection DPP, idea

A fact: if $\boldsymbol{X}=\left(\boldsymbol{x}_{1}, \boldsymbol{X}^{\prime}\right)$, then

$$
\begin{aligned}
\text { Det } \boldsymbol{X}^{\top} \boldsymbol{X} & =\left(\boldsymbol{x}_{1}^{\top} \boldsymbol{x}_{1}-\boldsymbol{x}_{1}^{\top} \boldsymbol{X}^{\prime}\left(\boldsymbol{X}^{\top} \boldsymbol{X}^{\prime}\right)^{-1} \boldsymbol{X}^{\top \top} \boldsymbol{x}_{1}\right) \operatorname{Det} \boldsymbol{X}^{\top \top} \boldsymbol{X}^{\prime} \\
& =\| \boldsymbol{x}_{1}-\operatorname{Proj}_{\perp}\left(x_{1} \mid \operatorname{span}\left(\boldsymbol{X}^{\prime}\right) \|^{2} \operatorname{Det} \boldsymbol{X}^{\top \top} \boldsymbol{X}^{\prime}\right.
\end{aligned}
$$

If $\boldsymbol{K}=\boldsymbol{V} \boldsymbol{V}^{\top}$ is a projection kernel, then

$$
\text { Det } \boldsymbol{K}=\| \boldsymbol{K}_{1, .}-\operatorname{Proj}_{\perp}\left(\boldsymbol{K}_{1, .} \mid \operatorname{span}\left(\boldsymbol{K}_{2, .,}, \ldots, \boldsymbol{K}_{n, .}\right) \|^{2} \operatorname{Det} \boldsymbol{K}^{\prime}\right.
$$

- If n vectors have already been sampled, choose the $(n+1)$-th with a probability prop. to the MSE of its prediction from the first n !
\hookrightarrow Implemented in the physical space, complexity $O\left(N k^{3}\right)$ for a rank k kernel in \mathbb{R}^{N},
\hookrightarrow Implemented in the associated RKHS, $O\left(N k^{2}\right)$.

Illustration

Illustration

Probabilité pour les 5 premieres iterations

If N is large?

Exact sampling requires spectral components of \boldsymbol{L} or $\boldsymbol{K}: \mathcal{O}\left(|\mathcal{X}|^{3}\right)$! Ideas: be patient, or

- Taylored algorithms for special DPPs (e.g. Wilson's for USTs)
- Approximate sampling, e.g. Gibbs
- Approximate kernel :

1. If $\boldsymbol{L}=\boldsymbol{B}^{\top} \boldsymbol{B}, \boldsymbol{B}: D \times N$, eigen elements of \boldsymbol{L} obtained from $\boldsymbol{B} \boldsymbol{B}^{\top}$.
2. If $k(x, y)=\varphi(x-y)$, then necessarily $\exists P / \varphi \propto T F^{-1}(P)_{\text {Boohner }}$

Random Fourier Features:
$\widehat{\varphi(x)}=\sum_{k=1}^{K} \exp \left(2 i \pi \nu_{k} x\right)$ where $\nu_{k} \sim P \xrightarrow{K \rightarrow+\infty} \varphi(x)=\int e^{2 i \pi \nu x} d P(\nu)$
If $\varphi=\left(\exp \left(2 i \pi \nu x_{1}\right), \ldots, \exp \left(2 i \pi \nu x_{N}\right)\right)$ of $\operatorname{dim} . K \times N$ then
$\varphi^{\dagger} \varphi=\widehat{\varphi(x-y)} \xrightarrow{K \rightarrow+\infty} L$ and use the preceding trick

Applications of DPPs

Everywhere subsampling is interesting ...

- Subsampling Graphs, patches in images for reconstruction (Launay et. al.)
- DoE (Fanuel, see Rémi later on). For example :

Let S be a projection dpp with kernel $X X^{\top}, X \in \mathbb{R}^{n \times d}$. Then

$$
E\left[X_{(S,:)}^{\dagger}\right]=X^{\dagger}
$$

Consequence : $E\left[X_{S,:}^{-1} y_{S}\right]=X^{\dagger} y=\arg \min \|X w-y\|^{2}$.

- Monte-Carlo integration (see Jean-François) / statistical estimation
- Coresets/Sketching

Application in estimation

Estimate statistics $\mathrm{E}[h(x)]$ where $h: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{p}$
Let C_{N} be the empirical mean, and consider

$$
C_{\pi}=\frac{1}{N} \sum_{i=1}^{N} \frac{h\left(x_{i}\right) \varepsilon_{i}}{\pi_{i}}
$$

ε is a doubly stochastic PP, i.e. $\operatorname{Pr}\left(\varepsilon_{i}=1 \mid x\right)=\pi_{i}\left(x_{i}\right)$
No Bias: $\mathrm{E}\left[C_{\pi}\right]=\frac{1}{N} \sum_{i=1}^{N} \mathrm{E}\left[\frac{h\left(x_{i}\right)}{\pi_{i}} \mathrm{E}\left[\varepsilon_{i} \mid x_{i}\right]\right]=\frac{1}{N} \sum_{i=1}^{N} \mathrm{E}\left[\frac{h\left(x_{i}\right)}{\pi_{i}} \pi_{i}\right]=\mathrm{E}[h(x)]$
Variance : $\operatorname{Var}\left[C_{\pi}\right]=\frac{1}{N^{2}} \sum_{i, j} \operatorname{Cov}\left[\frac{h\left(x_{i}\right) \varepsilon_{i}}{\pi_{i}}, \frac{h\left(x_{j}\right) \varepsilon_{j}}{\pi_{j}}\right]$

$$
=\operatorname{Var}\left[C_{N}\right]+\frac{1}{N^{2}} \sum_{i, j} \mathrm{E}\left[h\left(x_{i}\right) h\left(x_{j}\right) \frac{\pi_{i j}-\pi_{i} \pi_{j}}{\pi_{i} \pi_{j}}\right]
$$

Variance, possible gain from negative correlations

If $\pi_{i j}=\pi_{i} \pi_{j}$ Poisson process

$$
\begin{equation*}
\operatorname{Var}\left[C_{P}\right]=\operatorname{Var}\left[C_{N}\right]+\frac{1}{N^{2}} \sum_{i} \mathrm{E}\left[h\left(x_{i}\right)^{2} \frac{1-\pi_{i}}{\pi_{i}}\right] \tag{1}
\end{equation*}
$$

Then, for C_{π}

$$
\begin{equation*}
\operatorname{Var}\left[C_{\pi}\right]=\operatorname{Var}\left[C_{P}\right]+\frac{1}{N^{2}} \sum_{i \neq j} \mathrm{E}\left[h\left(x_{i}\right) h\left(x_{j}\right) \frac{\pi_{i j}-\pi_{i} \pi_{j}}{\pi_{i} \pi_{j}}\right] \tag{2}
\end{equation*}
$$

h takes value in \mathbb{R}^{+}(resp. \mathbb{R}^{-}), a sampling process with negative correlation (resp. positive) is better than the Poisson subsampling

Example of the correlation matrix

Let \boldsymbol{x}_{i} a series of 10000 i.i.d. r.v.
Subsamples 100 points, $\boldsymbol{L}_{i j}=\exp \left(-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} / 2 \sigma^{2}\right)$
Mixture of 3 Gaussian : probabilities [3/4 1/6 1/12]

Example of the correlation matrix

Let \boldsymbol{x}_{i} a series of 10000 i.i.d. r.v.
Subsamples 100 points, $\boldsymbol{L}_{i j}=\exp \left(-\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2} / 2 \sigma^{2}\right)$
Mixture of 3 Gaussian : probabilities [1/3 1/3 1/3]

Example of the correlation matrix

Estimate $X X^{\top} / 10000$ with $10000^{-1} \sum_{i} \varepsilon_{i} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} / \pi_{i}$
$\pi_{i}=M / N$ for random sampling (०)
π_{i} approximated first order inclusion probability for k DPP (\square).
Plot the norm of matrices of st.d. ; $k=10,50,100,150 ; 300 \mathrm{rff}$.

Coresets

Suppose observing \mathcal{X} a set of N points in \mathbb{R}^{d} bearing information over a parameter θ from a compact set $\Theta \subset \mathbb{R}^{k}$.
Consider estimating θ via minimization of a risk

$$
L(\mathcal{X}, \theta)=\sum_{x \in \mathcal{X}} f(x, \theta)
$$

where $f: \mathbb{R}^{d} \times \Theta \rightarrow \mathbb{R}^{+}$a well behaved (Lipschitz in θ) cost
Suppose N too large and/or f very complicated and costly to evaluate
\Longrightarrow use of a subset of \mathcal{X} a possibility
An ε coreset is a $\mathcal{Y} \subset \mathcal{X}$ such that

$$
\forall \theta \in \Theta,|L(\mathcal{X}, \theta)-L(\mathcal{Y}, \theta)| \leq \varepsilon L(\mathcal{X}, \theta)
$$

Random Coresets

Let p_{i} a probability on $1, \ldots, N$.
Let \mathcal{Y} be composed of M elements of \mathcal{X} taken independently (with replacement) with probability p_{i}.
Recall $L(\mathcal{X}, \theta)=\sum_{i=1}^{N} f\left(x_{i}, \theta\right)$. Construct $\widehat{L}(\mathcal{Y}, \theta)=\sum_{i=1}^{M} \frac{f\left(y_{i}, \theta\right)}{M p_{i}}$.
Choose small ε, δ. Then, if $M(\varepsilon, \delta)$ is large enough

$$
\operatorname{Pr}(\forall \theta,|L(\mathcal{X}, \theta)-\widehat{L}(\mathcal{Y}, \theta)| \leq \varepsilon L(\mathcal{X}, \theta)) \geq 1-\delta
$$

A good probability law in this problem : $p_{i} \propto \max _{\theta} \frac{f\left(x_{i}, \theta\right)}{L}$ Once again, some samples may be over represented and diversity may be beneficial!

DDP for coresets

To include negative correlation or diversity, sample a DPP or a k-DPP, and form

$$
\widehat{L}(\mathcal{Y}, \theta)=\sum_{i \in \mathcal{Y}} \frac{f\left(y_{i}, \theta\right)}{\pi_{i}}
$$

We proved that for DPP (and k DPP) :

- If $|\mathcal{Y}|$ (or k) is large enough

$$
\operatorname{Pr}(\forall \theta,|L(\mathcal{X}, \theta)-\widehat{L}(\mathcal{Y}, \theta)| \leq \varepsilon L(\mathcal{X}, \theta)) \geq 1-\delta
$$

We guarantee that DPP cannot be worse than i.i.d. sampling

- variance reduction due to negative correlation implies that DDP are better

Application for clustering

$$
L(\mathcal{X}, \theta)=\sum_{x \in \mathcal{X}} f(x, \theta) \text { with } f(x, \theta)=\min _{c \in \theta}\|x-c\|^{2} .
$$

black: full k-means ; red: subsamples

Use the classical MNIST data base (7.10 ${ }^{4}$ handwritten digits)
AR similarity index between ground truth and subsampling strategies (the closer to one the better)

To conclude

Continuous framework : more to follow.

- Usefulness of DPP (and negatively associated processes) for subsampling while conserving as much information as possible
- Promising applications in DoE, see works by e.g. Fanuel, Rémi
- A lot of work to do on these processes, notably their behavior in high dimensions ; their sampling, their use in sensor networks/distributed algorithms design ...
More in
- Surveys Stat. (Bardenet et. al., Lavancier et. al.), ML (Kuleza \&Taskar), Prob (Lyons\&Peres, Hough et.al, Bacchelli) ..
- arXiv: 1803.01576 : Asymptotic Equivalence of Fixed-size and Varying-size Determinantal Point Processes, Bernoulli 2019
- arXiv:1803.08700 : Determinantal Point Processes for Coresets, JMLR 2020
- Est/MC integration : Bardenet\&Hardy, Coeurjolly, Mazoyer, POA, Stat. Spat \& EJS to appear.
- Recent arXiv papers Barthelmé, Tremblay, Usevitch and POA.
- and some conf. papers (e.g. EUSIPCO 2017, IEEE SSP 2018)

