# Interpolation and experimental design with volume sampling 

Rémi Bardenet<br>CNRS \& CRIStAL, Univ. Lille, France

CRIStAL



Figure: Adrien Hardy, Ayoub Belhadji, Pierre Chainais, Arnaud Poinas

## Prologue: numerical integration and DPPs

Tight interpolation rates in RKHSs

Volume sampling for experimental design

# Prologue: numerical integration and DPPs 

## Tight interpolation rates in RKHSs

Volume sampling for experimental design

## The goal is to approximate

$$
\int f \mathrm{~d} \mu=\int f(x) \omega(x) \mathrm{d} x \approx \sum_{i=1}^{N} w_{i} f\left(x_{i}\right)
$$

- How to choose the nodes $x_{i}$ ?
- How to choose the weights $w_{i}$ ?


## Monte Carlo integration (importance sampling, MCMC, etc.)

- Choose the nodes randomly, and the weights $w_{i}=w\left(x_{i}, x_{-i}\right)$.
- Typical error is

$$
\sqrt{\mathbb{E}\left[\int f \mathrm{~d} \mu-\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)\right]^{2}} \sim \frac{1}{\sqrt{N}} .
$$

## Projection DPPs

- Let $\left(\varphi_{k}\right)_{k=0, \ldots, N-1}$ be an orthonormal sequence in $L^{2}(\mu)$.
- Let $\mathrm{K}(x, y)=\sum_{k=0}^{N-1} \varphi_{k}(x) \varphi_{k}(y)$.


## Definition (Hough, Krishnapur, Peres, and Virág 2006)

## Projection DPPs

- Let $\left(\varphi_{k}\right)_{k=0, \ldots, N-1}$ be an orthonormal sequence in $L^{2}(\mu)$.
- Let $\mathrm{K}(x, y)=\sum_{k=0}^{N-1} \varphi_{k}(x) \varphi_{k}(y)$.


## Definition (Hough, Krishnapur, Peres, and Virág 2006)

 $X=\left\{x_{1}, \ldots, x_{N}\right\}$ is the DPP with kernel K and reference measure $\mu$ if$$
x_{1}, \ldots, x_{N} \sim \frac{1}{N!} \operatorname{det}\left[K\left(x_{i}, x_{\ell}\right)\right]_{i, \ell=1}^{N} \mathrm{~d} \mu\left(x_{1}\right) \ldots \mathrm{d} \mu\left(x_{N}\right) .
$$

## Projection DPPs

- Let $\left(\varphi_{k}\right)_{k=0, \ldots, N-1}$ be an orthonormal sequence in $L^{2}(\mu)$.
- Let $\mathrm{K}(x, y)=\sum_{k=0}^{N-1} \varphi_{k}(x) \varphi_{k}(y)$.


## Definition (Hough, Krishnapur, Peres, and Virág 2006)

 $X=\left\{x_{1}, \ldots, x_{N}\right\}$ is the DPP with kernel K and reference measure $\mu$ if$$
x_{1}, \ldots, x_{N} \sim \frac{1}{N!} \operatorname{det}\left[K\left(x_{i}, x_{\ell}\right)\right]_{i, \ell=1}^{N} \mathrm{~d} \mu\left(x_{1}\right) \ldots \mathrm{d} \mu\left(x_{N}\right) .
$$

1. If $\mu=\sum_{x \in \mathcal{X}} \delta_{x}$, one recovers

$$
\mathbb{P}(A \subset X)=\operatorname{det} \mathbf{K}_{A}
$$

2. $x_{1} \sim \frac{1}{N} \mathrm{~K}(x, x) \mathrm{d} \mu(x)$ so that $\mathbb{E} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{\mathrm{K}\left(x_{i}, x_{i}\right)}=\int f \mathrm{~d} \mu$.
3. A natural choice of $\varphi_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is orthogonal polynomials w.r.t. $\mu$.


## Theorem (Bardenet and Hardy 2020)

Let $\mu(\mathrm{d} x)=\omega(x) \mathrm{d} x$ with $\omega$ separable, $\mathscr{C}^{1}$, positive on $(-1,1)^{d}$, and satisfying a regularity assumption. Let $\varepsilon>0$. If $x_{1}, \ldots, x_{N}$ stands for the associated OPE, then for $f \mathscr{C}^{1}$ vanishing outside $[-1+\varepsilon, 1-\varepsilon]^{d}$,

$$
\sqrt{N^{1+1 / d}}\left(\sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{\mathrm{K}\left(x_{i}, x_{i}\right)}-\int f(x) \mu(\mathrm{d} x)\right) \xrightarrow[N \rightarrow \infty]{\operatorname{law}} \mathcal{N}\left(0, \Omega_{f, \omega}^{2}\right),
$$

where

$$
\Omega_{f, \omega}^{2}=\frac{1}{2} \sum_{k_{1}, \ldots, k_{d}=0}^{\infty}\left(k_{1}+\cdots+k_{d}\right) \widehat{\left(\frac{f \omega}{\omega_{e q}^{\otimes d}}\right)}\left(k_{1}, \ldots, k_{d}\right)^{2},
$$

and $\omega_{e q}^{\otimes d}(x)=\pi^{-d}\left(1-x^{2}\right)^{-1 / 2}$.

- As seen today ${ }^{1}$, for $\mu=\mathrm{d} x$, assumptions can be relaxed and K be taken such that $\mathrm{K}(x, x) \propto 1$.

[^0]
# Prologue: numerical integration and DPPs 

Tight interpolation rates in RKHSs

Volume sampling for experimental design

- Consider the RKHS $\mathcal{F}$ with kernel $\kappa$, i.e. the completion of

$$
\left\{\sum_{i=1}^{M} \alpha_{i} \kappa\left(x_{i}, \cdot\right), M \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, x_{1}, \ldots, x_{M} \in \mathbb{R}^{d}\right\}
$$

for the inner product defined by $\langle\kappa(x, \cdot), \kappa(y, \cdot)\rangle_{\mathcal{F}}:=\kappa(x, y)$.
basis $\left(e_{n}\right)$ of $L^{2}(\mathrm{~d} \mu)$ and $\sigma_{n} \rightarrow 0$ such that, pointwise,

- Consider the RKHS $\mathcal{F}$ with kernel $\kappa$, i.e. the completion of

$$
\left\{\sum_{i=1}^{M} \alpha_{i} \kappa\left(x_{i}, \cdot\right), M \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, x_{1}, \ldots, x_{M} \in \mathbb{R}^{d}\right\} .
$$

for the inner product defined by $\langle\kappa(x, \cdot), \kappa(y, \cdot)\rangle_{\mathcal{F}}:=\kappa(x, y)$.

- Under general assumptions, $\mathcal{F} \subset L^{2}(\mathrm{~d} \mu)$, is dense, there is an ON basis $\left(e_{n}\right)$ of $L^{2}(\mathrm{~d} \mu)$ and $\sigma_{n} \rightarrow 0$ such that, pointwise,

$$
\kappa(x, y)=\sum_{n \geqslant 1} \sigma_{n} e_{n}(x) e_{n}(y) .
$$

- Consider the RKHS $\mathcal{F}$ with kernel $\kappa$, i.e. the completion of

$$
\left\{\sum_{i=1}^{M} \alpha_{i} \kappa\left(x_{i}, \cdot\right), M \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}, x_{1}, \ldots, x_{M} \in \mathbb{R}^{d}\right\} .
$$

for the inner product defined by $\langle\kappa(x, \cdot), \kappa(y, \cdot)\rangle_{\mathcal{F}}:=\kappa(x, y)$.

- Under general assumptions, $\mathcal{F} \subset L^{2}(\mathrm{~d} \mu)$, is dense, there is an ON basis $\left(e_{n}\right)$ of $L^{2}(\mathrm{~d} \mu)$ and $\sigma_{n} \rightarrow 0$ such that, pointwise,

$$
\kappa(x, y)=\sum_{n \geqslant 1} \sigma_{n} e_{n}(x) e_{n}(y) .
$$

- In that case, $f \in \mathcal{F}$ if and only if $\sum_{n} \sigma_{n}^{-1}\left|\left\langle f, e_{n}\right\rangle\right|^{2}$ converges.
- Let $f \in \mathcal{F}, g \in L^{2}(\mathrm{~d} \mu)$ then

$$
\begin{equation*}
\left|\int f g \mathrm{~d} \mu-\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)\right| \leqslant\|f\|_{\mathcal{F}}\left\|\mu_{g}-\sum_{i=1}^{N} w_{i} \kappa\left(x_{i}, .\right)\right\|_{\mathcal{F}} \tag{1}
\end{equation*}
$$

where

$$
\mu_{g}=\int g(x) \kappa(x, .) \mathrm{d} \mu(x)
$$

is the mean element of $g$.

- Once the nodes $x_{1}, \ldots, x_{N}$ are known, minimizing the RHS of (1) in $w$ boils down to inverting an $N \times N$ matrix.
- Let $f \in \mathcal{F}, g \in L^{2}(\mathrm{~d} \mu)$ then

$$
\begin{equation*}
\left|\int f g \mathrm{~d} \mu-\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)\right| \leqslant\|f\|_{\mathcal{F}}\left\|\mu_{g}-\sum_{i=1}^{N} w_{i} \kappa\left(x_{i}, .\right)\right\|_{\mathcal{F}}, \tag{1}
\end{equation*}
$$

where

$$
\mu_{g}=\int g(x) \kappa(x, .) \mathrm{d} \mu(x)
$$

is the mean element of $g$.

- Once the nodes $x_{1}, \ldots, x_{N}$ are known, minimizing the RHS of (1) in $w$ boils down to inverting an $N \times N$ matrix.

Remember $\kappa(x, y)=\sum_{n \geqslant 1} \sigma_{n} e_{n}(x) e_{n}(y)$.

## Algorithm 1: DPP

- Take $\mathrm{K}(x, y)=\sum_{n=1}^{N} e_{n}(x) e_{n}(y)$.
- Let $x_{1}, \ldots, x_{N} \sim 1 / N!\operatorname{det}\left[K\left(x_{i}, x_{j}\right)\right] \mathrm{d} \mu\left(x_{1}\right) \ldots \mathrm{d} \mu\left(x_{N}\right)$.
- Solve the linear problem for the weights $w_{1}, \ldots, w_{N}$.

Remember $\kappa(x, y)=\sum_{n \geqslant 1} \sigma_{n} e_{n}(x) e_{n}(y)$.

## Algorithm 1: DPP

- Take $\mathrm{K}(x, y)=\sum_{n=1}^{N} e_{n}(x) e_{n}(y)$.
$\rightarrow$ Let $x_{1}, \ldots, x_{N} \sim 1 / N!\operatorname{det}\left[K\left(x_{i}, x_{j}\right)\right] \mathrm{d} \mu\left(x_{1}\right) \ldots \mathrm{d} \mu\left(x_{N}\right)$.
- Solve the linear problem for the weights $w_{1}, \ldots, w_{N}$.


## Theorem (Belhadji, Bardenet, and Chainais 2019)

Assume $\sum_{n=1}^{N}\left|\left\langle g, e_{n}\right\rangle\right|^{2} \leqslant 1$. Let $r_{N}=\sum_{m \geqslant N+1} \sigma_{m}$, then

$$
\mathbb{E}\left\|\mu_{g}-\sum_{i=1}^{N} w_{i} \kappa\left(x_{i}, \cdot\right)\right\|_{\mathcal{F}}^{2} \leqslant 2 \sigma_{N+1}+2\left(N r_{N}+\sum_{\ell=2}^{N} \frac{\sigma_{1}}{\ell!^{2}}\left(\frac{N r_{N}}{\sigma_{1}}\right)^{\ell}\right)
$$

## Algorithm 2: volume sampling

- Let $x_{1}, \ldots, x_{N} \sim Z^{-1} \operatorname{det}\left[\kappa\left(x_{i}, x_{j}\right)\right] \mathrm{d} \mu\left(x_{1}\right) \ldots \mathrm{d} \mu\left(x_{N}\right)$
- Again, solve the linear program for the weights $w_{1}, \ldots, w_{N}$.


## Theorem (Belhadji, Bardenet, and Chainais 2020b)

## Algorithm 2: volume sampling

- Let $x_{1}, \ldots, x_{N} \sim Z^{-1} \operatorname{det}\left[\kappa\left(x_{i}, x_{j}\right)\right] \mathrm{d} \mu\left(x_{1}\right) \ldots \mathrm{d} \mu\left(x_{N}\right)$
- Again, solve the linear program for the weights $w_{1}, \ldots, w_{N}$.


## Theorem (Belhadji, Bardenet, and Chainais 2020b)

Assume again $\sum_{n=1}^{N}\left|\left\langle g, e_{n}\right\rangle\right|^{2} \leqslant 1$. Then

$$
\mathbb{E}\left\|\mu_{g}-\sum_{i=1}^{N} w_{i} \kappa\left(x_{i}, \cdot\right)\right\|_{\mathcal{F}}^{2} \leqslant \sigma_{N}\left(1+\beta_{N}\right),
$$

where $\beta_{N}=\min _{M \in[2: N]}\left[(N-M+1) \sigma_{N}\right]^{-1} \sum_{m \geqslant M} \sigma_{m}$.

- It is known ${ }^{2}$ that $\inf _{\substack{Y \subset \mathcal{F} \\ \operatorname{dim} Y=N}} \sup _{\|g\|_{d \omega} \leqslant 1} \inf _{y \in Y}\left\|\mu_{g}-y\right\|_{\mathcal{F}}^{2}=\sigma_{N+1}$.

[^1]- Robustness to RKHS hypothesis / model choice.
- Practical relevance of RKHS hypothesis.
- What should $g \in L^{2}(\mu)$ be in $\int f g d \mu$ ?
- How do we efficiently sample from continuous volume sampling without spectral knowledge? See e.g. Rezaei and Gharan 2019.
- Kernel interpolation is similar to column-subset selection for linear regression ${ }^{3}$, where DPPs and VS yield similar bounds ${ }^{4}$.

[^2]
## Prologue: numerical integration and DPPs

Tight interpolation rates in RKHSs

Volume sampling for experimental design

- Consider $\varphi_{1}, \cdots, \varphi_{p} \in L^{2}(\Omega)$ linearly independent, and

$$
\begin{equation*}
Y=\varphi(X) \beta+\varepsilon \tag{2}
\end{equation*}
$$

where

- Consider $\varphi_{1}, \cdots, \varphi_{p} \in L^{2}(\Omega)$ linearly independent, and

$$
\begin{equation*}
Y=\varphi(X) \beta+\varepsilon, \tag{2}
\end{equation*}
$$

where

- $X=\left(x_{1}, \cdots, x_{k}\right)^{T}$, where $x_{1}, \ldots, x_{k} \in \Omega \subset \mathbb{R}^{d}$,
- Consider $\varphi_{1}, \cdots, \varphi_{p} \in L^{2}(\Omega)$ linearly independent, and

$$
\begin{equation*}
Y=\varphi(X) \beta+\varepsilon, \tag{2}
\end{equation*}
$$

where
$-X=\left(x_{1}, \cdots, x_{k}\right)^{T}$, where $x_{1}, \ldots, x_{k} \in \Omega \subset \mathbb{R}^{d}$,

- $Y=\left(y_{1}, \cdots, y_{k}\right)^{T} \in \mathbb{R}^{k}$,
- Consider $\varphi_{1}, \cdots, \varphi_{p} \in L^{2}(\Omega)$ linearly independent, and

$$
\begin{equation*}
Y=\varphi(X) \beta+\varepsilon, \tag{2}
\end{equation*}
$$

where

- $X=\left(x_{1}, \cdots, x_{k}\right)^{T}$, where $x_{1}, \ldots, x_{k} \in \Omega \subset \mathbb{R}^{d}$,
- $Y=\left(y_{1}, \cdots, y_{k}\right)^{T} \in \mathbb{R}^{k}$,
- $\varepsilon \in \mathbb{R}^{k}$ is $\mathcal{N}\left(0, \sigma^{2} I_{k}\right)$.
$\rightarrow$ Assuming $\beta \sim \mathcal{N}\left(0, \Lambda^{-1}\right)$, the posterior mean for $\beta$ is
- Consider $\varphi_{1}, \cdots, \varphi_{p} \in L^{2}(\Omega)$ linearly independent, and

$$
\begin{equation*}
Y=\varphi(X) \beta+\varepsilon, \tag{2}
\end{equation*}
$$

where

- $X=\left(x_{1}, \cdots, x_{k}\right)^{T}$, where $x_{1}, \ldots, x_{k} \in \Omega \subset \mathbb{R}^{d}$,
- $Y=\left(y_{1}, \cdots, y_{k}\right)^{T} \in \mathbb{R}^{k}$,
- $\varepsilon \in \mathbb{R}^{k}$ is $\mathcal{N}\left(0, \sigma^{2} I_{k}\right)$.
- $\varphi(X)=\left(\varphi_{j}\left(x_{i}\right)\right) \in \mathbb{R}^{k \times p}$ is the design matrix.
$\rightarrow$ Assuming
the posterior mean for $\beta$ is $\hat{\beta}=\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)^{-1} \varphi(X)^{T} Y$,
* The posterior covariance matrix is
- Consider $\varphi_{1}, \cdots, \varphi_{p} \in L^{2}(\Omega)$ linearly independent, and

$$
\begin{equation*}
Y=\varphi(X) \beta+\varepsilon, \tag{2}
\end{equation*}
$$

where

- $X=\left(x_{1}, \cdots, x_{k}\right)^{T}$, where $x_{1}, \ldots, x_{k} \in \Omega \subset \mathbb{R}^{d}$,
- $Y=\left(y_{1}, \cdots, y_{k}\right)^{T} \in \mathbb{R}^{k}$,
- $\varepsilon \in \mathbb{R}^{k}$ is $\mathcal{N}\left(0, \sigma^{2} I_{k}\right)$.
- $\varphi(X)=\left(\varphi_{j}\left(x_{i}\right)\right) \in \mathbb{R}^{k \times p}$ is the design matrix.
- Assuming $\beta \sim \mathcal{N}\left(0, \wedge^{-1}\right)$, the posterior mean for $\beta$ is

$$
\begin{equation*}
\hat{\beta}=\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)^{-1} \varphi(X)^{T} Y \tag{3}
\end{equation*}
$$

- The posterior covariance matrix is
- Consider $\varphi_{1}, \cdots, \varphi_{p} \in L^{2}(\Omega)$ linearly independent, and

$$
\begin{equation*}
Y=\varphi(X) \beta+\varepsilon \tag{2}
\end{equation*}
$$

where

- $X=\left(x_{1}, \cdots, x_{k}\right)^{T}$, where $x_{1}, \ldots, x_{k} \in \Omega \subset \mathbb{R}^{d}$,
- $Y=\left(y_{1}, \cdots, y_{k}\right)^{T} \in \mathbb{R}^{k}$,
- $\varepsilon \in \mathbb{R}^{k}$ is $\mathcal{N}\left(0, \sigma^{2} I_{k}\right)$.
- $\varphi(X)=\left(\varphi_{j}\left(x_{i}\right)\right) \in \mathbb{R}^{k \times p}$ is the design matrix.
- Assuming $\beta \sim \mathcal{N}\left(0, \wedge^{-1}\right)$, the posterior mean for $\beta$ is

$$
\begin{equation*}
\hat{\beta}=\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)^{-1} \varphi(X)^{T} Y \tag{3}
\end{equation*}
$$

- The posterior covariance matrix is

$$
\sigma^{2}\left(\varphi(X)^{\top} \varphi(X)+\Lambda\right)^{-1}
$$

- Minimizing the posterior covariance is often replaced by

$$
\begin{equation*}
\min _{x_{1}, \ldots, x_{k} \in \Omega} h\left(\varphi(X)^{\top} \varphi(X)+\Lambda\right), \tag{4}
\end{equation*}
$$

where, e. g., $h=h_{A} \triangleq \operatorname{Tr}\left(\cdot^{-1}\right)$ or $h=h_{D} \triangleq \operatorname{det}\left(.^{-1}\right)$.
where
${ }^{6}$ Pukelsheim 1993.
${ }^{7}$ Pronzato and Pázman 2013.

- Minimizing the posterior covariance is often replaced by

$$
\begin{equation*}
\min _{x_{1}, \ldots, x_{k} \in \Omega} h\left(\varphi(X)^{\top} \varphi(X)+\Lambda\right), \tag{4}
\end{equation*}
$$

where, e. g., $h=h_{A} \triangleq \operatorname{Tr}\left(\cdot^{-1}\right)$ or $h=h_{D} \triangleq \operatorname{det}\left(.^{-1}\right)$.

- Still a nonconvex problem, requires enumeration when $\Omega$ finite.
where
${ }^{6}$ Pukelsheim 1993.
${ }^{7}$ Pronzato and Pázman 2013.
- Minimizing the posterior covariance is often replaced by

$$
\begin{equation*}
\min _{x_{1}, \ldots, x_{k} \in \Omega} h\left(\varphi(X)^{\top} \varphi(X)+\Lambda\right), \tag{4}
\end{equation*}
$$

where, e. g., $h=h_{A} \triangleq \operatorname{Tr}\left(\cdot^{-1}\right)$ or $h=h_{D} \triangleq \operatorname{det}\left(.^{-1}\right)$.

- Still a nonconvex problem, requires enumeration when $\Omega$ finite.
- A convex relaxation to (4) is

$$
\begin{equation*}
\min _{\nu \in \mathcal{M}(\Omega)} h\left(G_{\nu}(\varphi)+\Lambda\right) \text { s.t. } \nu(\Omega)=k, \tag{5}
\end{equation*}
$$

where

[^3]- Minimizing the posterior covariance is often replaced by

$$
\begin{equation*}
\min _{x_{1}, \ldots, x_{k} \in \Omega} h\left(\varphi(X)^{\top} \varphi(X)+\Lambda\right), \tag{4}
\end{equation*}
$$

where, e. g., $h=h_{A} \triangleq \operatorname{Tr}\left(\cdot^{-1}\right)$ or $h=h_{D} \triangleq \operatorname{det}\left(.^{-1}\right)$.

- Still a nonconvex problem, requires enumeration when $\Omega$ finite.
- A convex relaxation to (4) is

$$
\begin{equation*}
\min _{\nu \in \mathcal{M}(\Omega)} h\left(G_{\nu}(\varphi)+\Lambda\right) \text { s.t. } \nu(\Omega)=k, \tag{5}
\end{equation*}
$$

where

- $\mathcal{M}(\Omega)$ is the space of Borel measures on $\Omega$,

[^4]- Minimizing the posterior covariance is often replaced by

$$
\begin{equation*}
\min _{x_{1}, \ldots, x_{k} \in \Omega} h\left(\varphi(X)^{\top} \varphi(X)+\Lambda\right), \tag{4}
\end{equation*}
$$

where, e. g., $h=h_{A} \triangleq \operatorname{Tr}\left(\cdot^{-1}\right)$ or $h=h_{D} \triangleq \operatorname{det}\left(.^{-1}\right)$.

- Still a nonconvex problem, requires enumeration when $\Omega$ finite.
- A convex relaxation to (4) is

$$
\begin{equation*}
\min _{\nu \in \mathcal{M}(\Omega)} h\left(G_{\nu}(\varphi)+\Lambda\right) \text { s.t. } \nu(\Omega)=k, \tag{5}
\end{equation*}
$$

where

- $\mathcal{M}(\Omega)$ is the space of Borel measures on $\Omega$,
- $G_{\nu}(\varphi)=\left(\int_{\Omega} \varphi_{i}(x) \varphi_{j}(x) \mathrm{d} \nu(x)\right) \in \mathbb{R}^{p \times p}$.

[^5]- Minimizing the posterior covariance is often replaced by

$$
\begin{equation*}
\min _{x_{1}, \ldots, x_{k} \in \Omega} h\left(\varphi(X)^{\top} \varphi(X)+\Lambda\right), \tag{4}
\end{equation*}
$$

where, e. g., $h=h_{A} \triangleq \operatorname{Tr}\left(\cdot^{-1}\right)$ or $h=h_{D} \triangleq \operatorname{det}\left(.^{-1}\right)$.

- Still a nonconvex problem, requires enumeration when $\Omega$ finite.
- A convex relaxation to (4) is

$$
\begin{equation*}
\min _{\nu \in \mathcal{M}(\Omega)} h\left(G_{\nu}(\varphi)+\Lambda\right) \text { s.t. } \nu(\Omega)=k, \tag{5}
\end{equation*}
$$

where

- $\mathcal{M}(\Omega)$ is the space of Borel measures on $\Omega$,
- $G_{\nu}(\varphi)=\left(\int_{\Omega} \varphi_{i}(x) \varphi_{j}(x) \mathrm{d} \nu(x)\right) \in \mathbb{R}^{p \times p}$.
- One approximate solution to (4) is to sample i.i.d. from $\nu^{\star}$, and possibly apply a careful rounding procedure ${ }^{5}$.

[^6]
## Definition-Proposition

$\operatorname{PVS}(\nu, \varphi, \Lambda)$ is the point process on $\Omega$ with Janossy measures

$$
\begin{aligned}
j_{n}\left(x_{1}, \cdots, x_{n}\right) & \mathrm{d} x_{1} \cdots \mathrm{~d} x_{n} \\
& =\frac{\operatorname{det}\left(\varphi(x)^{T} \varphi(x)+\Lambda\right)}{\operatorname{det}\left(G_{\nu}(\varphi)+\Lambda\right) \exp (\nu(\Omega))} \mathrm{d} \nu\left(x_{1}\right) \cdots \mathrm{d} \nu\left(x_{n}\right) .
\end{aligned}
$$

for all $n \in \mathbb{N}$ and $x \in \Omega^{n}$, where $\varphi(x)=\left(\varphi_{i}\left(x_{j}\right)\right) \in \mathbb{R}^{n \times p}$.

- Note how the number of points in random so far.
- PVS favorizes diversity over i.i.d. samples from $\nu$.
- PVS generalizes seminal papers ${ }^{8}$ focusing on $\Omega$ finite or $\Lambda=0$. All of them condition on cardinality.

[^7]
## Proposition

Let $X$ be the DPP with kernel

$$
\mathrm{K}(x, y)=\varphi(x)\left(G_{\nu}(\varphi)+\Lambda\right)^{-1} \varphi(y)^{T}
$$

and reference measure $\nu$, and let $Y$ be an independent Poisson point process with intensity $\nu$. Then $X \cup Y$ follows $\operatorname{PVS}(\nu, \varphi, \Lambda)$.

- In particular, the average cardinality of the underlying DPP is

$$
\operatorname{Tr}\left(G_{\nu}(\varphi)\left(G_{\nu}(\varphi)+\Lambda\right)^{-1}\right)
$$

- When $\Lambda$ is large, we shouldn't expect much repulsion.
- Recall the convex relaxation of optimal design

$$
\begin{equation*}
\min _{\nu \in \mathcal{M}(\Omega)} h\left(G_{\nu}(\varphi)+\Lambda\right) \text { s.t. } \nu(\Omega)=k \tag{6}
\end{equation*}
$$

- Almost by definition
with equality when $\Lambda=0$.

[^8]- Recall the convex relaxation of optimal design

$$
\begin{equation*}
\min _{\nu \in \mathcal{M}(\Omega)} h\left(G_{\nu}(\varphi)+\Lambda\right) \text { s.t. } \nu(\Omega)=k \tag{6}
\end{equation*}
$$

- Almost by definition

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{det}\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)^{-1}\right]=\operatorname{det}\left(G_{\nu}(\varphi)+\Lambda\right)^{-1} \tag{7}
\end{equation*}
$$

with equality when $\Lambda=0$.

[^9]- Recall the convex relaxation of optimal design

$$
\begin{equation*}
\min _{\nu \in \mathcal{M}(\Omega)} h\left(G_{\nu}(\varphi)+\Lambda\right) \text { s.t. } \nu(\Omega)=k \tag{6}
\end{equation*}
$$

- Almost by definition

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{det}\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)^{-1}\right]=\operatorname{det}\left(G_{\nu}(\varphi)+\Lambda\right)^{-1} \tag{7}
\end{equation*}
$$

- More subtly,

$$
\begin{align*}
& \mathbb{E}\left[\operatorname{det}\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)^{-1}| | X \mid=k\right] \\
& \quad \leqslant \frac{k^{p}(k-p)!}{k!} \frac{\operatorname{det}\left(G_{\nu}(\varphi)+\Lambda\right)^{-1}}{1+\frac{p-1}{k-p+1}\left[1-\operatorname{det}\left(G_{\nu}(\varphi)\left(G_{\nu}(\varphi)+\Lambda\right)^{-1}\right)\right]} \tag{8}
\end{align*}
$$

with equality when $\Lambda=0$.

[^10]- Recall the convex relaxation of optimal design

$$
\begin{equation*}
\min _{\nu \in \mathcal{M}(\Omega)} h\left(G_{\nu}(\varphi)+\Lambda\right) \text { s.t. } \nu(\Omega)=k \tag{6}
\end{equation*}
$$

- Almost by definition

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{det}\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)^{-1}\right]=\operatorname{det}\left(G_{\nu}(\varphi)+\Lambda\right)^{-1} \tag{7}
\end{equation*}
$$

- More subtly,

$$
\begin{align*}
& \mathbb{E}\left[\operatorname{det}\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)^{-1}| | X \mid=k\right] \\
& \quad \leqslant \frac{k^{p}(k-p)!}{k!} \frac{\operatorname{det}\left(G_{\nu}(\varphi)+\Lambda\right)^{-1}}{1+\frac{p-1}{k-p+1}\left[1-\operatorname{det}\left(G_{\nu}(\varphi)\left(G_{\nu}(\varphi)+\Lambda\right)^{-1}\right)\right]} \tag{8}
\end{align*}
$$

with equality when $\Lambda=0$.

- This implies that

$$
\mathbb{E}\left[\left.\left(\frac{\operatorname{det}\left(\varphi(X)^{T} \varphi(X)+\Lambda\right)}{\operatorname{det}\left(\varphi\left(X_{\star}\right)^{T} \varphi\left(X_{\star}\right)+\Lambda\right)}\right)^{1 / p}| | X \right\rvert\,=k\right] \geqslant 1-\frac{p-1}{k} .
$$

[^11]An example with $\Omega=[0,1]^{2}, \varphi_{1}, \ldots, \varphi_{p}$ all bivariate polynomials

(c) Uniform distribution

(e) PVS (opt.)

(d) PVS (unif.)

(f) D-Optimal design

Plotting the $D$-efficiency

(g) $\Lambda=I_{10}$

(h) $\Lambda=10^{-2} I_{10}$

(i) $\Lambda=10^{-4} / 10$

## Wrapping up

- VS links the repulsiveness of the nodes with the smoothness of the target.

PhD and postdoc applications welcome!

- remi.bardenet@gmail.com

- VS links the repulsiveness of the nodes with the smoothness of the target.
© Volume sampling gives tight rates for interpolation in RKHSs. ${ }^{1011}$



## PhD and postdoc applications welcome!

- remi.bardenet@gmail.com

[^12]
## Wrapping up

- VS links the repulsiveness of the nodes with the smoothness of the target.
(-) Volume sampling gives tight rates for interpolation in RKHSs. ${ }^{1011}$
(-) If we manage to sample it, VS could be a powerful integration tool. See Yoann Jayer's PhD.
- VS yields elegant properties for optimal design in general design However, VS alone is not competitive with standard OD heuristics.


## PhD and postdoc applications welcome!

- remi.bardenet@gmail.com

[^13]
## Wrapping up

- VS links the repulsiveness of the nodes with the smoothness of the target.
(-) Volume sampling gives tight rates for interpolation in RKHSs. ${ }^{1011}$
© If we manage to sample it, VS could be a powerful integration tool. See Yoann Jayer's PhD.
- VS yields elegant properties for optimal design in general design spaces.


## PhD and postdoc applications welcome!

- remi.bardenet@gmail.com

[^14]
## Wrapping up

- VS links the repulsiveness of the nodes with the smoothness of the target.
(-) Volume sampling gives tight rates for interpolation in RKHSs. ${ }^{1011}$
(-) If we manage to sample it, VS could be a powerful integration tool. See Yoann Jayer's PhD.
- VS yields elegant properties for optimal design in general design spaces.
(2) However, VS alone is not competitive with standard OD heuristics.


## PhD and postdoc applications welcome!

- remi.bardenet@gmail.com

[^15]
## Wrapping up

- VS links the repulsiveness of the nodes with the smoothness of the target.
(3) Volume sampling gives tight rates for interpolation in RKHSs. ${ }^{1011}$
(-) If we manage to sample it, VS could be a powerful integration tool. See Yoann Jayer's PhD.
- VS yields elegant properties for optimal design in general design spaces.
(2) However, VS alone is not competitive with standard OD heuristics.
- VS can still be a useful component for stochastic search heuristics. ${ }^{12}$


## PhD and postdoc applications welcome!

- remi.bardenet@gmail.com

[^16]
## References I

Bardenet, R. and A. Hardy (2020). "Monte Carlo with Determinantal Point Processes". In: Annals of Applied Probability.
Belhadji, A., R. Bardenet, and P. Chainais (2019). "Kernel quadrature with determinantal point processes". In: Advances in Neural Information Processing Systems (NeurIPS).

- (2020a). "A determinantal point process for column subset selection". In: Journal of Machine Learning Research (JMLR).
- (2020b). "Kernel interpolation with continuous volume sampling". In: International Conference on Machine Learning (ICML).
Boyd, S. and L. Vandenberghe (2004). Convex Optimization. USA: Cambridge University Press.
Coeurjolly, J.-F., A. Mazoyer, and P.-O. Amblard (2021). "Monte Carlo integration of non-differentiable functions on $[0,1]^{\iota}, \iota=1, \ldots, d$, using a single determinantal point pattern defined on $[0,1]^{d "}$. In: Electronic Journal of Statistics.
Dereziński, M., F. Liang, and M.W. Mahoney (26-28 Aug 2020). "Bayesian experimental design using regularized determinantal point processes". In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine Learning Research. Online: PMLR, pp. 3197-3207.

Derezinski, M. and M. Mahoney (2020). "Determinantal Point Processes in Randomized Numerical Linear Algebra". In: arXiv preprint arXiv:2005.03185.
Dereziński, M., M.K. Warmuth, and D. Hsu (2019). Unbiased estimators for random design regression. arXiv pre-print.
Dereziński, M., M.K. Warmuth, and D.J. Hsu (2018). "Leveraged volume sampling for linear regression". In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems, pp. 2510-2519.
Hough, J. B., M. Krishnapur, Y. Peres, and B. Virág (2006). "Determinantal processes and independence". In: Probability surveys.
Nikolov, A., M. Singh, and U. T. Tantipongpipat (2019). "Proportional Volume Sampling and Approximation Algorithms for A-Optimal Design". In:
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '19. Society for Industrial and Applied Mathematics, pp. 1369-1386.
Pinkus, A. (2012). $N$-widths in Approximation Theory. Vol. 7. Springer Science \& Business Media.
Poinas, A. and R. Bardenet (2021). "On proportional volume sampling for experimental design in general spaces". In: In revision.

Pronzato, L. and A. Pázman (2013). Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties. Lecture Notes in Statistics 212. Springer-Verlag New York.
Pukelsheim, F. (1993). Optimal design of experiments. Vol. 50. siam.
Rezaei, A. and S. O. Gharan (2019). "A Polynomial Time MCMC Method for Sampling from Continuous Determinantal Point Processes". In: International Conference on Machine Learning, pp. 5438-5447.


[^0]:    ${ }^{1}$ Coeurjolly, Mazoyer, and Amblard 2021.

[^1]:    ${ }^{2}$ Pinkus 2012.

[^2]:    ${ }^{3}$ Derezinski and M. Mahoney 2020.
    ${ }^{4}$ Belhadji, Bardenet, and Chainais 2020a.

[^3]:    ${ }^{6}$ Pukelsheim 1993.
    ${ }^{7}$ Pronzato and Pázman 2013.

[^4]:    ${ }^{6}$ Pukelsheim 1993.
    ${ }^{7}$ Pronzato and Pázman 2013.

[^5]:    ${ }^{6}$ Pukelsheim 1993.
    ${ }^{7}$ Pronzato and Pázman 2013.

[^6]:    ${ }^{5}$ Boyd and Vandenberghe 2004, Chapter 7.5.2.
    ${ }^{6}$ Pukelsheim 1993.
    ${ }^{7}$ Pronzato and Pázman 2013.

[^7]:    ${ }^{8}$ Dereziński, Warmuth, and D.J. Hsu 2018; Nikolov, Singh, and Tantipongpipat 2019; Dereziński, Warmuth, and D. Hsu 2019; Dereziński, Liang, and M.W. Mahoney 2020.

[^8]:    ${ }^{9}$ Poinas and Bardenet 2021, In revision.

[^9]:    ${ }^{9}$ Poinas and Bardenet 2021, In revision.

[^10]:    ${ }^{9}$ Poinas and Bardenet 2021, In revision.

[^11]:    ${ }^{9}$ Poinas and Bardenet 2021, In revision.

[^12]:    ${ }^{10}$ Belhadji, Bardenet, and Chainais 2019.
    ${ }^{11}$ Belhadji, Bardenet, and Chainais 2020a.

[^13]:    ${ }^{10}$ Belhadji, Bardenet, and Chainais 2019.
    ${ }^{11}$ Belhadji, Bardenet, and Chainais 2020a.

[^14]:    ${ }^{10}$ Belhadji, Bardenet, and Chainais 2019.
    ${ }^{11}$ Belhadji, Bardenet, and Chainais 2020a.

[^15]:    ${ }^{10}$ Belhadji, Bardenet, and Chainais 2019.
    ${ }^{11}$ Belhadji, Bardenet, and Chainais 2020a.

[^16]:    ${ }^{10}$ Belhadji, Bardenet, and Chainais 2019.
    ${ }^{11}$ Belhadji, Bardenet, and Chainais 2020a.
    ${ }^{12}$ Poinas and Bardenet 2021.

