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Reliability assessment for complex systems

Reliability assessment for power
generation systems or subsystems

Simulation tool:
PyCaTSHOO developped by EDF

Rare event issue:
Monte-Carlo is ine�cient

Goal:
Accelerate reliability assessment

Example :
Spent fuel pool

⇒ variance reduction method needed, possibles solutions:

- Importance sampling (IS)

- Particle �lters methods:

Interacting particle system (IPS)
Sequential Monte-Carlo sampler (SMC)

T. Galtier The IPS method adapted to PDMP 3/28



Reliability assessment for complex systems

Reliability assessment for power
generation systems or subsystems

Simulation tool:
PyCaTSHOO developped by EDF

Rare event issue:
Monte-Carlo is ine�cient

Goal:
Accelerate reliability assessment

Example :
Spent fuel pool

⇒ variance reduction method needed, possibles solutions:

- Importance sampling (IS)

- Particle �lters methods:

Interacting particle system (IPS)
Sequential Monte-Carlo sampler (SMC)

T. Galtier The IPS method adapted to PDMP 3/28



Description of the system

Dynamical system characterized by physical variables

(temperature, pressure, water level )

System failure = physical variables hit a critical region

Components are in di�erent statuses (On, O�, broken),

which determine the dynamic of physical variables

Partial failures \ repairs \ control mechanisms

→ Piecewise deterministic Markovian processes (PDMP)

can model the state of the system.

See the books of Davis 1984, and Zhang et al. 2015
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Piecewise Deterministic Markovian processes (PDMP)

State of the system at time t:

Zt = (Xt ,Mt) ∈ Rd ×M

Xt : physical variables (≃continuous)
Mt : statuses of all components (discrete)

Xt is piecewise deterministic :

∂Xt

∂t
= FMt

(Xt)

Mt follow a jump process
Jumps' times :

PZSk
(Tk ≤ t) = 1− exp [−λMS

t]

Jumps' destination :

P
(
ZS ∈ B |Z−

S = z−
)
=

∫

B

Kz−(z) dνz−(z)
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PDMP is degenerate process

Zs = (Zt)t∈[0;s) : trajectory of the
state up to a time s

For a trajectory as with no
spontaneous jumps we have

P(Zs = as) = exp
[
− λM0

s
]
> 0

If λM0
and s are small:

∃ as , P(Zs = as) ≃ 1

→ Slows down the exploration of the
space of trajectories

T. Galtier The IPS method adapted to PDMP 6/28



Reliability assessment for PDMP

A: set of the trajectories with system
failure before tf

system failure = hit the danger zone

Goal : accelerate the estimation of

p = Pzo

(
Ztf ∈ A

)
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Problematic

We want to adapt IPS to PDMP

IPS relies on our capacity to simulate many di�erent

trajectories on short periods of time

→ Very unlikely for PDMP with low jump intensity.

In particular for reliable systems:

∃as , P(Zs = as) ≃ 1

How to force the di�erentiation of the simulated trajectories?
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IPS : background

Discretize time : 0 = τ0 < . . . < τk < · · · < τn = tf

Eτk
: the set of trajectories up to time τk

Markov:

fk(Zτk
) =

k∏

s=1

Qs(Zτs
|Zτs -1

)

For a distribution g and a function h : g(h) =
∫
h dg
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IPS :Target distributions

Discretize time : 0 = τ0 < . . . < τk < · · · < τn = tf

Eτk
: the set of trajectories up to time τk

The target distributions:

g∗

k (Zτk
) ∝

k∏

s=1

G∗

s (Zτs
)

k∏

s=1

Qs(Zτs
|Zτs -1

)

If A ⊂ supp
(∏n -1

s=1
G∗

s

)
then:

p = E
[
1A(Zτn

)
]
= g∗

n -1
Qn

(
1A(Zτn

)
∏n -1

s=1
G∗
s (Zτs

)

)n−1∏

k=1

g∗

k-1Qk

(
G∗

k

)

T. Galtier The IPS method adapted to PDMP 12/28



IPS : Sequentially approximate the target distributions

IPS yields some empirical approximations of g∗

k (h) and g∗

k-1Qk(h) :

ĝ∗

k (h) =
1

N

N∑

i=1

h
(∼

Z
i
τk

)
and ĝ∗

k-1Qk(h) =
1

N

N∑

i=1

h
(
Z
i
τk

)

p is estimated by:

p̂ = ĝ∗

n-1Qn

(
1A(Zτn

)
∏n−1

s=1
Gs(Zτs

)

)n−1∏

k=1

ĝ∗

k-1Qk

(
Gk

)
−→
n→∞

N (p,
σ2

IPS∗

N
)
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Instrumental target distributions

We want to estimate p = E
[
1A(Zτn

)
]
. A good choice of target

distribution would be :

g∗

k (Zτk
) =

E
[
1A(Zτn

)|Zτk

]

p

k∏

s=1

Qs(Zτs
|Zτs -1

)

But we do not know E
[
1A(Zτn

)|Zτk

]
, so we use instead

gk(Zτk
) ∝

Uk(Zτk
)

p

k∏

s=1

Qs(Zτs
|Zτs -1

)

where Us(Zτs
) is an approximation of E

[
1A(Zτn

)|Zτs

]

Potential function: Gs(Zτs
) =

Us (Zτs )
Us -1(Zτs -1

) , approximates G∗

s (Zτs
)
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IPS : Sequentially approximate the target distributions

IPS yields empirical approximations of gk
∗(h) and gk

∗Qk+1(h) :

ĝk∗(h) =
1

N

N∑

i=1

h
(∼

Z
i
τk

)
and ̂gk∗Qk+1(h) =

1

N

N∑

i=1

h
(
Z
i
τk+1

)
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p̂ = ̂gn-1∗Qn

(
1A(Zτn

)
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Gs
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The IPS algorithm

Start with k = 1, and Zj
τ0 =

∼

Z
j
τ0 = z0 (∀j).

While k ≤ n repeat these 2 steps incrementing k each time:

1 Simulate the trajectories Z1

τk
, . . . , ZN

τk
with

Z
j
τk

∼ Qk(Z
j
τk
|
∼

Z
j
τk -1

)

2 Re-sample the trajectories by drawing with replacement:

∼

Z
j
τk

∼
N∑

j=1

Gk(Z
j
τk
)

∑N
i=1

Gk(Zi
τk
)
δ
Z

j
τk

(.)

See Del Moral et al. 2004, or Garnier and Del Moral 2005
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Bene�ts of the re-sampling at each step

Re-sampling :
∼

Z
j
τk

∼
∑N

j=1

Gk (Z
j
τk

)
∑

N
i=1 Gk (Zi

τk
)
δ
Z

j
τk

(.)

Forget low-potential trajectories

Multiply high-potential trajectories

⇒ We focus computational power on trajectories that are likely to have a
greater impact on gk `s estimations
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Issue with PDMP

The trajectories to re-sample are already clumped together

→ Re-sampling interest is limited (not enough candidates)

The trajectories stay clumped together after the propagation

→ The target distributions are poorly represented,
especially its continuous component
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Force trajectories' di�erentiation

Focus on the propagation of a i th cluster with N i
k−1

trajectories

clumped together:
∼

Z
ij
τk -1

= a
(i)
τk -1

ij : index of the jth trajectory in the ith cluster

a
(i)
τk : the trajectory continuing a

(i)
τk -1

with the largest probability pi

Simulate Zi1
τk

= a
(i)
τk , and the remaining trajectories avoiding a

(i)
τk

∀j ≥ 2, Z
ij
τk ∼ Zτk

∣∣ Zτk -1
= a

(i)
τk -1

, Zτk
̸= a

(i)
τk

Reweight: W i1
k = pi

N
(i)
k -1

N
and ∀j ≥ 2, W

ij
k = (1− pi )

N
(i)
k -1

N(N
(i)
k -1

−1)
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How to simulate a trajectory Zτk avoiding aτk

Denote τ the time at which Zτk
di�er from aτk :

∀t < τ, Zt = at and Zτ ̸= aτ

τk-1 < τ ≤ τk ⇔ Zτk-1
= aτk-1 and Zτk

̸= aτk

We can compute the cdf of τ |τk-1 < τ ≤ τk . (Labeau 1996)

P

(
τ < t

∣∣τk-1 < τ ≤ τk

)
=

1− P(Zt = at

∣∣Zτk-1
= ak-1)

1− P(Zτk
= aτk

∣∣Zτk-1
= ak-1)

To simulate Zτk
knowing τk-1 < τ ≤ τk :

1 Simulate τ |τk-1 < τ ≤ τk by inverse method and set Z−

τ
= a

−

τ

2 Simulate Zτ |τ

3 Simulate Z(τ,τk ]|Zτ
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∼ Vk(Zτk
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−
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The IPS method

Start with k = 1, and Zj
τ0

=
∼

Z
j
τ0

= z0 (∀j).

While k ≤ n repeat these 2 steps incrementing k each time:

1 Simulate the trajectories Z1

τk
, . . . , ZN

τk
with

Z
j
τk

∼ Qk

(
Z
j
τk

∣∣∼Zj
τk -1

)

2 Re-sample the trajectories :

∼

Z
j
τk

∼
N∑

j=1

Gk(Z
j
τk
)

∑N
i=1

Gk(Zi
τk
)
δ
Z

j
τk

(.)

Finally p is estimated by :

p̂ = ĝ∗
nQn

(
1A(Zτn

)
∏n−1

s=1
Gs(Zτs

)

)n−1∏

k=1

ĝ∗

kQk

(
Gk(Zτk

)
)

where ĝ∗

k -1
Qk(B) =

1

N

∑N
j=1

δ
Z

j
τk

(B)
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The IPS method with weights

Start with k = 1, and Zj
τ0

=
∼

Z
j
τ0

= z0,
∼

W
j
0
= 1

N
(∀j).

While k ≤ n repeat these 2 steps incrementing k each time:

1 Simulate the trajectories Z1

τk
, . . . , ZN

τk
with

Z
j
τk

∼ Qk

(
Z
j
τk

∣∣∼Zj
τk -1

)
and set W

j
k =

∼

W
j
k -1

2 Re-sample the trajectories :

∼

Z
j
τk

∼
N∑

j=1

Gk(Z
j
τk
)W j

k -1∑N
i=1

Gk(Zi
τk
)W i

k -1

δ
Z

j
τk

(.) and
∼

W
j
k =

1

N

Finally p is estimated by :

p̂ = ĝ∗
nQn

(
1A(Zτn

)
∏n−1

s=1
Gs(Zτs

)

)n−1∏

k=1

ĝ∗

kQk

(
Gk(Zτk

)
)

where ĝ∗

k -1
Qk(B) =

∑N
j=1

W
j
k δZ j

τk

(B)
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Include Memorization method in the IPS method

Start with k = 1, and Z
j
τ0

=
∼

Z
j
τ0

= z0,
∼

W
j
0
= 1

N
(∀j).

While k ≤ n repeat these 2 steps incrementing k each time:

1 For each cluster, if N
(i)
k -1

= 1 then Z
i1
τk

∼ Qk , else:

Set Zi1
τk

= a
i
τk

and W i1
k = pi

N
(i)
k -1

N
,

and ∀j ≤ 2 simulate the trajectories Z
ij
τk with

Z
ij
τk ∼ Vk

(
Z
ij
τk |

∼

z
(i)
τk -1

)
and set W

ij
k = (1− pi )

N
(i)
k -1

N(N
(i)
k -1

− 1)

2 Re-sample the trajectories :

∼

Z
j
τk

∼
N∑

j=1

Gk(Z
j
τk
)W j

k -1∑N
i=1

Gk(Zi
τk
)W i

k -1

δ
Z

j
τk

(.), and
∼

W
j
k =

1

N

Finally p is still estimated using ĝ∗

k -1
Qk(B) =

∑N
j=1

W
j
k δZ j

τk

(B)
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Results : the system

System : Room heated by 2 components, p ≃ 2.73× 10−5
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Results

System : Room heated by 2 components, p ≃ 2.73× 10−5

IPS IPS + Memorization

n = 5
p̂ 2.86× 10−5 2.70× 10−5

σ̂2 1.78× 10−9 1.37× 10−10

n = 10
p̂ 2.85× 10−5 2.64× 10−5

σ̂2 1.08× 10−9 1, 07× 10−10

n = 20
p̂ 2.41× 10−5 2.81× 10−5

σ̂2 5.86× 10−10 1.20× 10−10

Table: Mean results, obtain from 100 runs of the methods with N = 104

residual re-sampling was used
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Conclusion and perspective

IPS+ Memorization is unbiased and satis�es a CLT

Include the memorization method in the propagation step of

the IPS yields smaller variances

IPS + Memorization can be generalized to PDMP with

boundaries

Is the generalization to other particle �lter methods possible?
SMC?

The memorization method unbalances the weights
→ Re-sampling would be triggered at each steps
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Thank you for your attention
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The SMC algorithm

Start with k = 1, and Zj
τ0 =

∼

Z
j
τ0 = z0,

∼

W
j
k = 1

N
(∀j).

While k ≤ n repeat this steps incrementing k each time:

1 Simulate the trajectories Z1
τk
, . . . , ZN

τk
with

Z
j
τk

∼ Qk(Z
j
τk
|
∼

Z
j
τk -1

)

2 If ESS < 0.2N : Re-sampling step

∼

Z
j
τk

∼
N∑

j=1

Gk(Z
j
τk
)

∼

W
j
k -1∑N

i=1 Gk(Zi
τk
,
∼

Zi
τk -1

)
∼

W i
k -1

δ
Z

j
τk

(.), and
∼

W
j
k =

1

N

else : Importance sampling step

∼

Z
j
τk

= Z
j
τk
, and

∼

W
j
k =

Gk(Z
j
τk
)

∼

W
j
k -1∑N

i=1 Gk(Zi
τk
,
∼

Zi
τk -1

)
∼

W i
k -1
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PDMP (the case without boundaries)

State space :

E =
∪

m∈M

Em =
∪

m∈M

{
(x ,m), x ∈ Rd

}

Between jumps :

ZS+t = ΦZS
(t)

Jumps' times :

PZS
(T ≤ t) = 1− exp [−λMS

t]

Jumps' destination :

P
(
ZS ∈ B |Z−

S = z−
)
=

∫

B

Kz−(z) dνz−(z)
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PDMP with boundaries

In a mode M the position X is
restricted to an open ΩM ⊂ Rd

The state space becomes:

E =
∪

m∈M

Em =
∪

m∈M

{
(x ,m), x ∈ Ωm

}

Jumps' times :

Pz(T ≤ t) =

{
1− exp [−λmt] if t < t∗z

1 if t ≥ t∗z

t∗z : Boundary hitting time starting from z

Boundaries model automatic control
mechanisms
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Model power generation systems

Component statuses :

M = {On,Off ,Failed}Nc

Intensities :
j(m,m+): transition from m to m+

(failure or repair)

λm =
∑

m+∈M

λj(m,m+)
m

Kernel :
if z = (x ,m) is not on a boundary

Kz

(
(x+,m+)

)
=

λ
j(m,m+)
m

λm

1x=x+
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