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and Ecole Nat. Sup. des Mines de Saint-Etienne (Ph.D. defense coming soon :)

Journées du GdR MASCOT-NUM, Day 1 (18/03/2009)

University Paris XIII - Galilée institute

david.ginsbourger@unine.ch GDR Mascot Num, 18/03/09



Introduction

The q-points Expected Improvement

Bonus: symmetrical covariance kernels

Motivations

Outline

1 Introduction

Motivations

2 The q-points Expected Improvement

Definition and basic properties

Derivation of the q-EI (cases q = 2 and q > 2)

Approximate optimization of the q-EI

3 Bonus: covariance kernels for predicting symmetrical functions

Kernels for GP with Invariant Realizations

Applications: simulating and interpolating invariant functions

david.ginsbourger@unine.ch GDR Mascot Num, 18/03/09



Introduction

The q-points Expected Improvement

Bonus: symmetrical covariance kernels

Motivations

General context

Amazing growth of computing power in numerical simulation

Powerful processors, clustering.

Scientific computing has reached maturity: FEM, Monte-Carlo, etc.

Paradox: since one always want more accurate results, computation

times are often stagnating and even sometimes increasing!

Examples of application domains

Crash-test simulation: ≈ 20h per ”run”

Nuclear plant: > 1hr to estimate neutronic criticality of a set of fuel rods

Simulation of the behaviour of a CO2 bubble stocked during 10000

years in a natural geological reservoir: several days.
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Gaussian Processes (GP) and functional learning

Approximating deterministic functions using GP’s (Kriging)

y : x ∈ D ⊂ R
d → y(x) ∈ R

y is seen as one realization of a GP Yx with mean µ and covariance kernel

k ∈ (x, x′) ∈ D × D ⊂ R
d × R

d → k(x, x′) ∈ R.

Basic assumptions and features of GP modeling

1 Kriging ≈ approximating y by conditioning Yx on the observations at a

learning set, both denoted by {X,Y} = {(x1, ..., xn), (y(x1), ..., y(xn))}

2 In practice, a parametric k is chosen beforhand (typically powered

exponential) and the parameters are estimated based on (X,Y).

Industrial examples (DICE consortium): crash-test simulations, nuclear

criticality studies, optimal conception of high-tech devices...
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Example of Ordinary Kriging Interpolation

Interpolation (right) of Branin’s function (left), known at 9 points (in red).

The kernel is k(x, x′) = σ
2
e
−
∑ 2

j=1

(
xj−x′

j
ψj

)2

with (σ2
, ψ) estimated by ML
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Ordinary Kriging Equations

A central property of OK, when k is known (and µ has a U(R) prior...)

[Y (x)|Y (X) = Y] ∼ N
(

m(x), s2(x)
)






m(x) = E[Y (x)|Y (X) = Y] = µ̂ + k(x)T K−1 (Y − µ̂✶n)

s2(x) = Var [Y (x)|Y (X) = Y] = σ
2 − k(x)T K−1k(x) +

(
1−✶

T
n K−1k(x)

)2

(
✶

T
n K−1✶n

)

µ̂ =
✶

T K−1Y

(✶T K−1✶)
, K =





k(x1, x1) k(x1, x2) ... k(x1, xn)
k(x2, x1) k(x2, x2) ... k(x2, xn)

... ... .... ....

k(xn, x1) ... .... k(xn, xn)



 and k(x) =





k(x, x1)
k(x, x2)

...

k(x, xn)
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The Expected improvement (EI) criterion

Expected Improvement

EI(x) = E
[
(min(Y (X)) − Y (x))+ |Y (X) = Y

]

M. Schonlau, W.J. Welch and D.R. Jones.

Efficient Global Optimization of Expensive
Black-box Functions

Journal of Global Optimization, 1998.

EI(x) = (min(y(X))−m(x))Φ

(
min(y(X))−m(x)

s(x)

)
+ s(x)φ

(
min(y(X))−m(x)

s(x)

)
,

where Φ and φ are the cdf and pdf of the standard gaussian law, respectively.
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Kriging-based optimization with EGO: results
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EGO: a sequential procedure

Sketch of the EGO Algorithm

1: function EGO(X, Y, p)
2: for i ← 1, p do
3: xnew

i
= argmaxx∈DEI(x) ⊲ with updated X and Y

4: X = X
⋃
{xnew

i
}

5: Y = Y
⋃
{y(xnew

i
)} ⊲ with updated X and Y

6: Update the covariance parameters and the kriging model
7: end for
8: end function

Major issue with sequentiality:

In industrial context, the project duration is more crucial than computation

time, provided that the latter can be distributed on multiple processors.

Algorithms such as EGO may be wasteful... they need to be parallelized!

Question: how to evaluate the added value of sampling q points?
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An introduction to the q-points EI

Background: (xnew
1 , ..., xnew

q ) has to be chosen such that the improvement

brought after evaluating y at the q locations be as large as possible.

By definition, we wish them to (a posteriori) maximize:

i(xnew
1 , ..., xnew

q ) := max{[min(y(X)) − y(xnew
1 )]+, ..., [min(y(X)) − y(xnew

q )]+}

=
[
min(y(X)) − min

(
y(xnew

1 ), ..., y(xnew
q )

)]+

This leads to the q-points expected improvement:

The q-EI criterion

EI(xnew
1 , ..., xnew

q ) := E

[(
min(y(X)) − min(Y (xnew

1 ), ...,Y (xnew
q ))

)+
|Y (X) = Y

]

Remark: The Y (xnew
j )′s are dependent random variables (also |Y (X) = Y).
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An illustration of the 2-points EI

Figure: 1 and 2-EI associated with a 2d degree polynom

The 2-EI optimal couple is here made of 2 local maxima of the 1-EI
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Definition and basic properties

Derivation of the q-EI (cases q = 2 and q > 2)

Approximate optimization of the q-EI

An illustration of the 2-points EI

Figure: 1 and 2-EI associated with a 1-dimensional linear function.

Now, the 2-EI optimal couple is made of two points around the 1-EI maximizer.

david.ginsbourger@unine.ch GDR Mascot Num, 18/03/09



Introduction

The q-points Expected Improvement

Bonus: symmetrical covariance kernels

Definition and basic properties

Derivation of the q-EI (cases q = 2 and q > 2)

Approximate optimization of the q-EI

q-EI optimal designs?

Xnew∗ = argmaxxnew
1

,...,xnew
q ∈S EI

(
xnew

1 , ..., xnew
q

)

This optimization is in dimension dq. Typically, dq ≥ 100

Since the objective function is noisy (empirical EI, computed by Monte-Carlo

method) and derivative-free, the problem is not straightforward.

First proposed approach

Solve the problem in a greedy way, in feeding the Kriging model with arbitrary

values (Kriging Believer and Constant Liar heuristic strategies).
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One heuristic strategy for the cases where q > 2

Constant Liar

The model is sequentially updated in setting the unkwown y(xnew
i ) values

equal to a fixed constant L ∈ R:

1: function CL(X, Y, L, q)
2: for i ← 1, q do
3: xnew

i
= argmaxx∈DEI(x) ⊲ with updated X and Y

4: X = X
⋃
{xnew

i
}

5: Y = Y
⋃
{L}

6: end for
7: end function

The constant L allows the user to control the repulsion created by the sequentially

visited points (L = max(Y) for a strong repulsion, L = min(Y) for a smooth repulsion)
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Using q-EI to monitor heuristic strategies

Left: Branin-Hoo function with DOE X9 (small black points) and 6 first points given by
the strategy CL[min(fBH(X9))] (large bullets).

Right: Histogram of 103 Monte Carlo simulated improvements brought by the 6-points

CL[min(fBH(X9))] strategy. The corresponding 6-points PI and EI are given above.
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A 6-dimensional case study: the ”Hartmann” function

y(x) = −
4∑

j=1

cj × exp

(
−

6∑

i=1

ai,j × (xi − pi,j)
2

)

a =





10.00 0.05 3.00 17.00
3.00 10.00 3.50 8.00

17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00
1.70 8.00 17.00 0.10
8.00 14.00 8.00 14.00




p =





0.1312 0.2329 0.2348 0.4047
0.1696 0.4135 0.1451 0.8828
0.5569 0.8307 0.3522 0.8732
0.0124 0.3736 0.2883 0.5743
0.8283 0.1004 0.3047 0.1091
0.5886 0.9991 0.6650 0.0381




c =





1.0
1.2
3.0
3.2





global minimum =−3.32

global minimizer = [0.202, 0.150, 0.477, 0.275, 0.312, 0.657]
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Derivation of the q-EI (cases q = 2 and q > 2)

Approximate optimization of the q-EI

20 iterations of EGO starting from a 50-points design

Figure: Starting from 50 points, the global optimum is reached in 15

iterations. EGO sequentially visits Hartmann’s bassin of global

minimum. It exploits the information given by the initial design.
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Derivation of the q-EI (cases q = 2 and q > 2)

Approximate optimization of the q-EI

90 iterations of EGO starting from a 10-points design

Figure: EGO find the minimum in 36 iterations: fast if we consider

that X has only 10 points. The sequence is here more exploratory.
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Optimizing by alternating CL and parallel evaluations

Idea: parallel synchronous optimization using CL at every iteration to get q

explorations points. The lies of CL are corrected at the end of each iteration,

after the parallel evaluations of the simulator.

Constant Liar with q points and nit iterations

1: function CLMIN.STAGES(X, Y, y, nproc , nit )
2: for i ← 1, nit do
3: L = min(Y)
4: for j ← 1, nproc do
5: xnew

j
= argmaxx∈DEI(x) ⊲ with X and YCL

6: X = X
⋃
{xnew

j
}

7: YCL = Y
⋃
{L}

8: end for
9: Y = Y

⋃
y({xnew

1
, . . . , xnew

nproc
}) ⊲ Parallel simulator evaluations

10: Re-estimation of the kriging model
11: end for
12: end function
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Approximate optimization of the q-EI

CL with 10 proc. in parallel, 50 initial points

Figure: The minimum is reached in 5 time units!
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CL with 10 proc. in parallel, 50 initial points

Figure: The algorithm alternates between a first exploration phase

(two first time units), a more exploratory phase (3rd et 4th time units),

and a final exploitation phase during which it finds the minimum.
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CL with 10 proc. in parallel, 10 initial points

Figure: Starting from a 10-points design, CLmin with 10 processors

finds the minimum in 7 time units.
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Derivation of the q-EI (cases q = 2 and q > 2)

Approximate optimization of the q-EI

CL with 10 proc. in parallel, 10 initial points

Figure: The algorithm starts by exploring and condamn less

promizing zones, then finds the optimal zone and visits it until

convergence. It finally leaves again to explorate further...
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Conclusion and perspectives for the q − EI

Experimental feed-back

Computing kriging-based multipoints criteria by MC is affordable

whatever the dimension of the space of inputs

The Constant Liar heuristic strategy gave very promizing results on 1-,

2-, and 6-dimensional toy examples

Tracks for future works

Apply these tools to real world problems (currently done with a nuclear

safety application)

Optimize the q-EI (mutating good candidate designs ?)
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Aim of this work

Industrial problem:

Let us assume that a set of physical symmetries leave y unchanged

...how can we take it into account within GP techniques?

Mathematical formulation:

if G is a finite groupe acting on D via

Φ : (x, g) ∈ D × G −→ Φ(x, g) = g.x ∈ D

what properties must k satisfy for Yx to have its paths invariant by Φ?
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Main property

Definition Y has its paths invariant under the action Φ if

∀ω ∈ Ω, ∀x ∈ D, ∀g ∈ G, Yx(ω) = Yg.x(ω)

Theorem: Let Y be a centered process (not necessarily gaussian!!!)

Y has invariant paths under Φ (up to a modification)

⇔
∃ a d.p. kernel kZ such that kY (x, x′) =

∑
(g,g′)∈G2 kZ (g.x, g′.x′)
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Applications: simulating and interpolating invariant functions

Application: A smooth symmetrical 2-D GP

Idea: to build processes with paths invariant under Φ on the basis of a

stationary process Y , by simply symmetrizing it:

∀x ∈ D, Y
Φ
x =

1

2
(Yx + Ys(x)) =

1

2
(Y(x1,x2) + Y(x2,x1))

The covariance kernel of the new process Y Φ is given by:

k
XΦ (x, x

′
) =

1

4
[kX (x − x

′
) + kX (s(x) − x

′
) + kX (x − s(x

′
)) + kX (s(x) − s(x

′
))]

=
1

4

[
e
−||(x1−x′

1
,x2−x′

2
)||2

+ e
−||(x1−x′

1
,x′

2
−x2)||2

+ e
−||(x′

1
−x1,x2−x′

2
)||2

+ e
−||(x′

1
−x1,x

′
2
−x2)||2

]

Note that Y Φ inheritates from Y ’s smoothness, including on the axis of

symmetry {x ∈ R
2 : s(x) = x}.
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Simulation of a smooth symmetrical 2-D GP

Figure: One path of GP with symmetrized Gaussian kernel
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Kriging with a symmetrized kernel

Figure: From left to right:

symmetrized Branin function (f ),

a 9-points DOE X obtained by i.i.d. uniform drawings on the square,

the DOE symmetrized from X with respect to f ’s axis of symmetry.
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Kriging with a symmetrized kernel

Figure: Kriging f on the basis of X (9 points), with Gaussian

covariance

ISE on a 21 × 21-elements test grid: 820.93
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Kriging with a symmetrized kernel

Figure: Kriging f on the basis of Xsym (18 points), with Gaussian

covariance

ISE on a 21 × 21-elements test grid: 694.11
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Kriging with a symmetrized kernel

Figure: Kriging on the basis of X, with symmetrized Gaussian

covariance

ISE on a 21 × 21-elements test grid: 330.26
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Conclusion and perspectives

It is not reasonable to make predictions using classical covariance kernels

when invariances under some group actions are known a priori.

Symmetrizing stationary kernels provides a convenient way of getting

invariant GPs with nice smoothness properties.

Future issues to be addressed include

investigating broader classes of invariant kernels

applying symmetrical Kriging to higher-dimensional industrial cases

learning symmetries from data
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Thank you for your Attention : )
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Any questions?
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