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@ Simulator for the multi-year electricity distribution network planning.

o Costly-to-evaluate black-box stochastic simulator (Dutrieux, 2015).
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@ Goal: optimize planning strategy parameters to minimize technical
and economic outputs {e.g., total costs, quality of service}.
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Problem definition

e Input: planning strategy parameters X; € X.
e Outputs: noisy observations of latent functions fi,...,f; : X R.

o Noise is additive, normally distributed and homoscedastic.

Z,'.]_._ . Z,'.q .

X; Stochastic simulator Lig = fq(Xf) + Eige
with ¢jq ~ N(0,03)

Optimization problem:

x™ =argmin fi(x),..., fg(x)

xeX
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Multi-objective optimization

Goal: identify best trade-offs among
conflicting objectives. f(x)
¥a
Pareto domination: y ~ y' ’
® yq =Yg Vg ¥i )
e With at least one strict e
inequality.

Ya
¥s

Pareto set P: the set of all yo
non-dominated points.

fi(x)

f(X)} Figure: Pareto front F — {y1,ya,¥3} in a
bi-objective example.

P={xcX:ix X f(x) <

Pareto front F: the image of P.
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Overview

© Pareto Active Learning for Stochastic Simulators




Optimization using Gaussian processes

@ Goal: select sequence of inputs to evaluate fo- 7777 Punsten as
Xoyn=1... N. 9| e Fimmens . !," :
o At iteration n, previous observations e B _}’f“x\__.\_\_f;*’?
Lig....Zng used to model fy as a sample s 4
of a GP model £q ~+ mean ftn 4 and j s “’5:./
variance crnq (prediction of £, and LR —

uncertainty, respectively).

@ GP model used to guide the optimization.  Figure: GP constructed from
observations (dots). Latent

function (dashed), with

See Frazier (2018) for a tutorial. prediction (line} and uncertainty
interval (gray).
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Multi-objective noisy Bayesian optimisation
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Figll re. Example of Pareto fronts generated from
noisy observations.




PALS: Pareto Active Learning for Stochastic Simulators

/ Initial design /
!

o Modification of the PAL | Generate GP models [«—
algorithm (Zuluaga et al., 2013)
to stochastic simulators. ‘ Modelling ‘

|

Classification |

o Strategy: classify each x € X |

based on a region R,(x) € &Y. 1
| Selection |

See Barracosa, et al. (2021) for ]
details / Evaluate new point/
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is
classified according to R,(x}, built fa(x)
from GP prediction quantiles:

Ry ()

[

RN
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is f(x)
classified according to R,(x}, built
from GP prediction quantiles:
@ R of x is not dominated by )
another RIM": classify x as ":___ § s R™M2X(x)

A (x)
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is
classified according to R,(x}, built fo(x)

e GAERR e .. Rmax
from GP prediction quantiles: R (x)

Q@ R of x is not dominated by '

another RI™": classify x as

. . R;?TI.II"I(X) U

@ R"" of x is dominated by

another R"*: classify x as

Ai(x)
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is
classified according to R,(x}, built
from GP prediction quantiles:
Q@ R of x is not dominated by
another RI™": classify x as

fa(x)

@ RMn of x is dominated by
another R"*: classify x as

© Otherwise: x remains f1{x)
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is
classified according to Rp(x), built f2(x)
from GP prediction quantiles:
@ R of x is not dominated by
another R™": classify x as

@ RMn of x is dominated by
another R"®*: classify x as

© Otherwise: x remains f1{x)

Select Xpy1: _
Xpp1 = argmax |[|[R7""(x) — Ry (x)||
xe(FU
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Example
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Example 2
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Problem for example {g3)
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Example 3

Itaration 4 - Total evaluations: 800 + 200

a [Predictlon reglons antd o IOlmwr\'vatlona 1 yi"“nd mi"l’_:. 2 [xlf *10) -
25 250 " "
ot o @np
R 150
wmr worE .
Bl af
af s
A -5
REH -t
SE ol y i
200 200 5
- . . ! hi .
EUU - . -4l 2 2 At el0 BU0 [ ar nd i 1




Overview

© Numerical experiments




Numerical experiments

e Comparison with three approaches:
e Random.
o “Concentrated" Random Sampling (CoRS) (Barracosa, et al., 2021).
o ParEGO (Knowles, 2006} with El,.

@ 9 test problems:
o Bi-objective.
e Bi-dimensional and finite input space of size 21 x 21,
o Homoscedastic Gaussian white noise.
@ performance metrics:
o Volume of the symmetric difference (V) of the Pareto front.
o Classification error (M) of the Pareto set.
o Averaged over 500 runs of the algorithm.
@ Batches of 200 evaluations, and a total budget of 50,000 evaluations.
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Results
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, a "Concentrated” Random Sampling approach, a scalarization ParEGO
adapted with El;p, and PALS, for problem gz.




Table: Average metrics comparison {value in percentage), at final iteration, for a Random
approach, a “Concentrated” Random Sampling approach, a scalarization ParEGO adapted with
El;n, and PALS. The best metric values highlighted in bold with a green background. Metrics at
10% of the best metric are highlighted with a blue background.

Random CoRS Elx PALS
g Vd M Vc,r M Vd M Vd M

g 0774  7.240 0.630 6.867 0781 11.050 5.604
g 1005 1235 0:6287 1.363 %-
g 1.055 0.710 0.913 | 3.255

g 1212

g 1102 0903  7.864 3.254
g 1411 0695 1.513 0.387
g 0944 0.463 121531 0511  4.677 0.398
g 0.862 0.745 0732 6.332 0.620
g 1075 1.303 0.680 0633 2614 0.562  0.957
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Conclusions and future work

@ PALS shows interesting performances for the multi-objective
optimization of Stochastic Simulators:
e Better performance than random appreach.
e Always good performance for Pareto set estimation.

o Future work includes:

e Compare performance with other more complex algorithms
(Picheny, 2015; Herndndez-Lobato, et al. 2016).

o Study performance impact when facing non-Gaussian and/or
heteroscedastic simulators.

o Assess performance when dealing with increased input space size or
number cbjectives.
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The End

Thank you for your attention!
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Modeling?

At iteration n, GP models &, used to

generate predictions pt,(x) and Iy
prediction uncertainty a‘ﬁ(x). fa(x) pn(x) — v Bo(x)

Global uncertainty represented by a
region Rn(x):

Ralx) = {y CRY paadx) \Jrrf‘ (%] <y < pralx) | \I_-"'I_;.-’rrﬁ(x)}




Modeling?

At iteration n, GP models &, used to
generate predictions p,(x) and .
prediction uncertainty o2(x). f(x) Ry (x)

Global uncertainty represented by a
region R,(x}:

Ralx) — {y = R paa{x) \m'ﬁ(x] Y fratx) \frrlzj(xj}

For each x define:

@ an optimistic outcome R (x); fi(x)
@ a pessimistic outcome R}"™(x}.




Problem gy

Yolume of the symmetric difference (VUJ of the Pareto front (g‘; Glassiflcatlan arror (M) of tha Parslo sat {g1}
1ot ! !
0.25 = Pandom
o 2a55 Fo-
= PerEGDE] 5 s ParkGo el
Ew £ W = = =PaLS
Ew o .
oo c $,
= S woip & e, ]
£8 g N o
oo £ a
a 2 82 1
E g 82 N \\,‘
25 oo S,
Eh= g Yo, TR
= z o Ry
= ~ v
= N Rt
aa -
..
1} 1 2 2 1 =3 8 1 2 2 4 &
Evaluations wAi® Evaluations A0

Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem g).
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem go.




Problem g3
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem g3.
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem gy.
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem gs.
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem gg.
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem g7.




Problem gz
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem gg.
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Figure: Average metrics volume of symmetric difference (left) and classification error (right),
for a Random approach, an alternative random approach based on probability of
non-domination, a scalarization ParEGO adapted with El,, and PALS, for problem gg.




Table: Average metrics comparison {value in percentage), at final iteration, for a Random
approach, a “"Concentrated” Random Sampling approach, a scalarization ParEGO adapted with
El;n, and PALS. The best metric values highlighted in bold with a green background. Metrics at
5% of the best metric are highlighted with a blue background.

Random CoRS Elmn PALS
g Vd M Vc,r M Vd M Vd M
g 0774 7.240 0.630 6.867 0781 11.050  [OGSIN 5.604
g 1.005 1.235 0.660 [10.983 0:628° 1.263 0.955  1.050
g 1.055 3.580 1.017 0.710 3512 0.913 [3.255

g l212 2121 1.045 2113 [ 1073 2.278 1.132 | 1.934
g5 1102 3.858 0.662 0903 7.864 [0G9EN 3.254
gs 1411  0.695 0.443 0433 0471 1513 0.469 = 0.387

g 0.944 0463 | 2.531 0511 4.677 0.398
gz 0862 4392 0.745 4182 0.732 6.332 0.620  3.809
gy 1075 1393 0.680 1.106 0.633 2.614 0.562  0.957
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Problem’s Pareto sets
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