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Chair of Risk, Safety and Uncertainty quantification

The Chair carries out research projects in the field of uncertainty quantification for
engineering problems with applications in structural reliability, sensitivity analysis, model

calibration and reliability-based design optimization

Research topics
® Uncertainty modelling for engineering systems
® Structural reliability analysis

® Surrogate models (polynomial chaos expansions, Kriging, support vector
machines)

® Bayesian model calibration and stochastic inverse problems

® Global sensitivity analysis

® Reliability-based design optimization

http://www.rsuq.ethz.ch
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The SAMOS project

® The SAMOS project (“SurrogAte Modelling for stOchastic Simulators”) is funded by the Swiss National
Science Foundation under Grant # 175524 (May 2018 - April 2022).

® |t is devoted to the development of innovative methods to ... build surrogate models for stochastic
simulators!

Xujia Zhu

Today’s talk on “Stochastic polynomial chaos expansions for emulating
stochastic simulators”

Nora Liithen

Today’s talk on “Surrogating stochastic simulators using spectral methods
and advanced statistical modeling”
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Deterministic vs. stochastic simulators

Simulators

Deterministic simulators Stochastic simulators
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Example: wind turbine simulation

Wind generation Aero-servo-elastic simulator
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Example: epidemiology

Terminology
* 5, number of susceptible individuals at time +
® /i number of infected individuals at time ¢

e F,: number of recovered individuals at time ¢

System dynamics

* Susceptible individuals can get infected due to
close contact with infected individuals {5 — 1)

® |nfected individuals can recover and becomes
immune to future infections {7 — i)

®* Random contact and recovery modelled with
Poisson processas
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An nverview of sinckastin emulatos Mazscathim Wiorkshop - Manch 11, 2081 3. Sunret Srds




Example: mathematical finance

Geometrical Brownian motion
Simulation with p = 0.05, r=0.8

dSt :/AStdt—FOStth

Stock arice

® S,: stock price, W;: Wiener process

® . drift, o: volatility

n n.z 0.4 0.6 0.8 1
Time [vear|

Asian option

® The payoff (of a call option) is contingent on the average price of the underlying asset
1 t
C = max{Ar — K,0}, with A, = E/ Sudu.
0
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Outline

Introduction and literature
Generalized lambda distributions

Generalized lambda/PCE models
With replications
Without replications

Application examples
Analytical example
Stochastic SIR model
Wind turbine application

Conclusions & outlook
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Formal definition

® A (scalar) stochastic simulator M is a mapping:
M :Dx xQ—R
(z,w) = Ms(z,w)
where Dx is the input parameters space and {2, 7, P} is a probability space
® When fixing & = xo, the output is a random variable Y| X = x¢ = M, (xo,w)

® When fixing the seed w = wo we get a deterministic simulator = — M (x,wo) (a.k.a. trajectory)

Latent variables
M can be seen as a deterministic function M of input parameters x and latent variables Z:
MS(II),OJ) = M (213, Z(UJ))

mn*
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Computational costs induced by stochastic simulators

® Replications are needed to estimate the PDF of Y| X =
® Many runs must be carried out by varying X for uncertainty propagation, sensitivity analysis,
optimization, etc.

® Realistic simulators (e.g. for wind turbine design) are costly

Need for surrogate models
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Requirements

Our goal is to develop a methodology that is:
® Non-intrusive (i.e. that considers the stochastic simulator as a black box)
® General-purpose: no restrictive assumption (e.g. Gaussian) on the family of the output distribution is
made
® Able to tackle the full distribution of Y| X = z, but also quantities of interest (e.g. mean, variance,
quantiles)

® Providing a representation of Y| X = x easy to sample from

mn*
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Existing approaches

The literature on stochastic simulators is both old and new:

® Replication-based approaches
® Gaussian models

® Estimation of the conditional distribution

Latent variable models

Random field representations

AT
mn*

An overview of stochastic emulators MascotNum Workshop — March 11, 2021 B. Sudret 11/45



Replication-based approaches

Main idea .. . . .
¢ Estimate distributions/Qols based on replications

® Treat the estimated parameters as outputs from a
deterministic simulator and apply standard surrogate
models

Literature
® Stochastic Kriging: Ankenman ef al. {2008) Stochastic Kriging for simulation metamodeling. Oper. Res.

* Quantile Kriging: Plumlee & Tuo {2014) Building accurate emulators for stochastic simulations via guantife Kriging, Technometrics
* Kernel density estimation: Moutoussamy af al, (2015) Ennlators for stochastic simulation codes, ESAIM: Math, Model, Num. Anal,

* Generalized lambda madel: Zhu & Sudret (2020) Replication-based emulation of the response distribution of stochastic simulators
using generalized lambda distributions, Int. J. Uncertainty Quantification
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Assuming normality: Kriging models

Main idea
® Response distributions are normal

® Mean function u(x) and log-variance function log(V (x)) are modeled by Gaussian processes

Literature
® Full Bayesian setup: Goldberg et al. (1997) Regression with input-dependent noise: a Gaussian process treatment, NIPS10

® |terative fitting: Marrel et al. (2012) Global sensitivity analysis of stochastic computer models with joint metamodels, Stat. Comput.

® Maximum likelihood: Binois et al. (2018) Practical heteroscedastic Gaussian process modeling for large simulation experiments, J.
Comput. Graph. Stat.
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Conditional distribution estimation

Main approaches
® Estimate the joint distribution of (X, Y") by kernel smoothing, then compute the conditional PDF by:

f(=z,y)
f(x)

® Use parametric models to represent the conditional distribution directly

flylz)=

Literature
® Kernel smoothing: Hall et al. (2004) Cross-validation and the estimation of conditional probability densities, J. Amer. Stat. Assoc.

® Vine copula: Kraus & Czado (2017) D-vine copula based quantile regression, Comput. Stat. Data Anal.

® Generalized lambda model: Zhu & Sudret (2021) Emulation of stochastic simulators using generalized lambda models, Submitted to
SIAM/ASA J. Unc. Quant.

P 11 N —
mn*

An overview of stochastic emulators MascotNum Workshop — March 11, 2021 B. Sudret 14/45



Latent variable models

Main idea

* Introduce explicitly latent variables Z into a deterministic model to emulate the random nature of
stochastic simulators
Y(@) < M, 2)
Literature

® Yan & Perdikaris (2019) Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems, Comput.
Mech.

® Stochastic polynomial chaos expansions for emulating stochastic simulators (Talk X. Zhu)
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Random field approaches

Main idea

® Consider the stochastic simulator as a random field indexed by the input variables:
Yz (w) = M (z, Z(w))
® Fixing the internal stochasticity (w = wo) gives access to trajectories x — M(x, Z(wo))

Literature

® Azzj et al. (2019) Surrogate modeling of stochastic functions-application to computational electromagnetic dosimetry, Int. J.
Uncertainty Quantification

® Azzi et al. (2020) Sensitivity analysis for stochastic simulators using differential entropy, Int. J. Uncertainty Quantification

® Surrogating stochastic simulators using spectral methods and advanced statistical modeling (Talk N. Lithen)
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Outline

Generalized lambda distributions
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Definition

® The Freimer-Mudholkar-Kollia-Lin (FMKL) lambda distribution is defined through its quantile function
Q(u; A) by 4 parameters

L 1 (ud—1 (Q—uw) -1
Q(U7A)>‘1+>\2< s - 1

where:
— )1 is the location parameter
— A2 > 0 is the scale parameter

— A3, A4 are shape parameters
® The PDF is obtained by:

A2 . -1
Ty (y;A) = Q,(i_ N " T (1w withu = Q™" (y; A)

mn*
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Properties
o Standard normal & Student's t (5) 15 Exponential {1} . Weibull (1,2)
’ Analytical —— analytical | ~ Analytical
04 —aLD —GLD —GLD oe-
= 0.3
03 | 0e
0.2
0.2 04-
05
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® GLDs approximate well unimodal PDFs (bell-, U-shaped, bounded and unbounded)

® )3 and A4 control the shape and boundedness

—00, A3 <0 400, A <0
Bi(A) = ) . Bu(A) = 1
M e A >0 M+t xgx M>0
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Moments

® The mean value and variance read:

) 7i( 11 )
p=M Ao \ A3 +1 A+ 1
defgg_(dz—df)
A3

where (B is the Beta function):

1
4= L Bg+1,1) — = B(1, A +1)
)\3 )\4
1 2 1
do= —DB(2\s+1,1) — Bs+ 1, A+ 1)+ — B(1,2\ + 1
2 2 (X3 +1,1) o As+ 1, + )-|—>\Z ( 4 )
P - ) _
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Summary chart
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® Blue points: infinite
support

* Red points: finite support,
’ with PDF = 0 at the bound
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Outline

Generalized lambda/PCE models
With replications
Without replications
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Problem statement

Let us consider a stochastic simulator M s and the following experimental design with replications
* Experimental design of size NV in the X-space: X = {z",2® ... ™}

* R replications for each (¥ € X VO = {yt) 2y

Two approaches

Zhu & Sudret (2020) Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions, Int. J. Uncertainty Quantification

® Infer-and-fit: infer a lambda distribution for each point (¥ of the experimental design, then fit a sparse
polynomial chaos expansion to the parameters A

® Joint inference: improve the previous results by maximum likelihood optimization

P 11 N —
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Local inference of lambda distributions (“Infer”)

Estimate A¥) based on Y = {y(*V, ... y-®)}

® Maximum likelihood estimation

R
NG A2
A’ = argmax lo
g Y Tz:; g (u)\al + (1 _ Ui,r)k‘ll)

@7

where

A3 Y
— T, i, 1 uiril 1-— 1,7 4—-1
uszl(y“;A),y<’>:Q(ui,r;A)=A1+( e )

A2 A3 A4
® Nonlinear equation that can be solved numerically (@ is a monotonically increasing function)

Polynomial chaos expansions

* Fit 4 PCEs from the lambda data points A = {5\(1), . ,:\(N)}
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Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991; 2003); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

® We assume here for simplicity that the input parameters are independent with
X~ fx;,i=1,...,d

® PCE is also applicable in the general case using an isoprobabilistic transform X — =

The polynomial chaos expansion for a deterministic simulator X — Mg(X) reads:

Ma(X) = Z e
acNd
where:
] are basis functions (multivariate orthonormal polynomials)

® a. are coefficients to be computed (coordinates)
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Polynomial chaos expansions

Truncation schemes

® “Full basis” of degree p:

q=1

v T T
do oo
aedM=JaeN"; Yy a,<p Sl

i=1 DM

O @ @ o o o
012 3 456

® g-norm truncation: “
q=05
. e
M a sle « - - . .
M M def e
ac AP = saeNY; |lallg = E af | <pp, 0<g<l1 e
i=1 e @ « o o . .
o @ @ o ¢ o -
01 2 “3] 4 5 6
® Sparse expansion: A only contains relevant basis functions taken out of a
candidate basis
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Fitting polynomial chaos expansions (“Fit”)

e Gather the data from the “Fit"-step: {(=D,AM) (2@, 2@) (2™, AN}

® Represent the distribution parameters A by polynomial chaos expansions

Ae(@) ~ NS (x5 a) = Z ar.atal(z) fork=1,3,4
ac A

A2 () = AbC (z;a) = exp < Z ag,awa(w)>
ac Ay

® PCE coefficients are calibrated by the sparse regression method Hybrid-LARS

Blatman & Sudret (2011) Adaptive sparse polynomial chaos expansion based on Least Angle Regression, J. Comput. Phys.

mn*
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Improvement: joint fitting

Rationale
® The results of the Infer-and-fit algorithm depends on the accuracy of the local inference

® Idea: build a global model for the joint distribution of inputs and outputs:

Ixy(z,y) = frix (y] ) fx(x)

where the conditional PDF is represented by a lambda model:

Ty (@5 a) = fyix (v A%z @) - fx (@)

Procedure

Find the optimal PCE coefficients a that minimize the Kullback-Leibler divergence between fx y and

GLD .
X,y

a=argmin Dk, (fx,v | Xy (-5 a))

T, e
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Corresponding loss function

Solution

After some basic algebra, the minimization problem reduces to:

a=argminEx y [logfy‘x (Y; )\PC(X; a))]

Estimator

® The PCE bases for A°(x) are taken from the “Infer-and-Fit” approach

* The expectation w.rt. X and Y is computed from the experimental design X = {z"), ... ™},
with R replications in each point (outputs y*™):
;&
a= argmm— Zlogfyp( ) \PC (gl ))
i=1 r=1
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lllustration of the algorithm

Toy example

20 0
® Analytical lambda model 10 | s
A (%) = 50a% — 7527 + 352 — 4 u-i l | |||| || | | || | l | ”
Az(z)  exp{—32 + 3z — 1) a-lﬂ-: 3 g |-
As(x} = =02+ 0.7z -zu-: g
Mz} =04 — 0.6z g !
4] 0.2 0.4 0.6 0.8 1
z
* Experimental design of ¥ — 20, replications 1 — 40
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lllustration of the algorithm

Joint fitting
6 14 15 12 5
Refarence Q
& Loeal icfrence 1.2 - t
4 Irfer-ymi-it
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o a5 1 ;|
X I
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Outline

Generalized lambda/PCE models

Without replications
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Introduction

Goal
Propose a framework to build a stochastic emulator without replications (... that can also be applied if
there is replicated data)

Rationale

The joint fitting estimator does not require replications!

a =argminfx y [Iog Foon (V; )\PG(X; (1,))]

20 20
d o BREE

ol WL i

apfy £

With Without
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Procedure

Ingredients
e An experimental design X = {«*), ..., ™} and model evaluations y© = M(z(i), )
® Pre-selected PC bases for the four polynomial chaos expansions of \;(z),i =1, ... ,4

Selection of PCE bases

® PCE models for the mean and variance of the model output built using the feasible generalized
least-square method

e Use the PCE basis of uu(x) (resp. log o*(x)) for A1 (resp. A2)

® PCE of degree 1 for A3 and A4 (it is assumed that the shape of the response distribution does not vary
nonlinearly with x)

T, e
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Algorithm 1: Feasible generalized least-squares (FGLS)

: Input: Computational budget N

2. Initialization

P 1 S —
mn*

Experimental design X = {z(), ... (M)}

Model evaluations Y = {y® & M(xz(i), ), i=1,... N}
Set k = 0. Estimate the mean function 1o (x) by ordinary least-squares % Fix the basis after (p, ¢) search

FGLS
while NotConverged do
Subtract the estimated mean from the data, i.e. 79 =y — p, (w(i))
Estimate the variance function 6% (x) based on {(:1:<i),210g |r(i) ) Ji=1, ... ,N}
k+—k+1
Use &i (x) as weight to estimate fix (x) by weighted least-squares
end

. Return PCE expansions of () and log o2 (x)
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Feasible generalized least-squares (FGLS): illustration

0 0.2 0.4 0.6 0.8 1 0] 02 0.4 0.6 0.8 1

lteration 10
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Outline

Application examples
Analytical example
Stochastic SIR model
Wind turbine application
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Error metrics for stochastic emulators

Wasserstein distance

e ltis the L? distance between the quantile functions:
def

sV, 7) 2 @y — O[22 = / (Qv () — Qv (w)* du
0

Normalized Wasserstein distance

 Ex [diys (Y(X), YEM(X))]
°T Var [Y]

mn*
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Geometric Brownian motion

dSt =T St dt =+ ) St th

® S,: stock price, W;: Wiener process
® x: drift, x2: volatility
® The analytical distribution of S; exists (It6’s calculus)
St(:c)/So ~ EN ((331 — 33%/2) t, i) t)
Setup
X1 ~U(0,0.1), X2 ~ U(0.1,0.4)
* Y =S fort=1isofinterest, ie. Y(x) ~ LN (z1 — 23/2,22)

® Experimental design: X are generated using the Latin hypercube sampling

® No replications
AT o
mnt
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PDF predictions (ED with NV = 500)
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Convergence study

¢ Experimental design of size 250,

500, 1000, 2000, 4000

® 50 independent runs for each scenario

®* Normalized Wasserstein distance as a performance indicator

11 U
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5 [ Per g
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Outline

Application examples

Stochastic SIR model
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Stochastic SIR model
* . = S5+ I + H1;: total population

®* 5:: number of susceptible individuals at time {

* I,: number of infected individuals at time ¢ (| i L N | :
; 1 .
* [i.: number of recovered individuals attime ¢ £ L : ] "" L 2 i : T,ﬂ,
P g gty BTy
Setup ti / Tﬁ*ﬂ" !
* Total population A = 2000 gt i t 'f'r. g i t
® The initial condition: S, ~ L4(1300, 1800), ey f‘." Tely "TT
fo ~ U(20,200) AT ML AT IR
* Y {x): total number of infected individuals Tt L
during the outbreak {(without counting fiy)
Binois et 58 (207 8 Practivs! eleroscadas e Qe morsss mocbing for o sivoiziion eooeimenls, o Gorpol, Grapn, Slal
I;ml An nuarview of stnokastin emulatos MasneiMLm Warsshrp — Mash 11, 2021 B. Suner 840




PDF predictions (ED with

-2 L
5 X 10 1 w10

15

[ Relercuce

o
0 50 100 150 200 250 Led] 100 150 200 250 300 350 400 450
ar = (1304, 0610 @ o= (1500}, 1204
-2
ng =10
[ Rekereuce;
—3Lakl
LB — KCDE
04
0.z
o .
1]
100 200 300 400 500 604 200 i 400 500 00 700
o= (160K, 1358} wo= {1711, 16/)

An nverview of sinckastin emulatos MasneiMLm Warsshrp — Mash 11, 2021 B. Suner &40



Convergence study

¢ Experimental design of size 250, 500, 1000, 2000, 4000
® 50 independent runs for each scenario

®* Normalized Wasserstein distance as a performance indicator

0. ; ; :
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N
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Outline

Application examples

Wind turbine application
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Wind turbine application

* Five input variables:
— Mean speed £/, turbulence intensity { and shear exponent « are uniformly
distributed in the following domain

Muan speed Lz

w—_————————— 7 o ¥ o
f —duperbound 5, dpperaguae | LT Laperband Iﬁ g
o — et Rrn e — e L [ e —Laper Luard \f-=Lint
g .\\ \\. ! 2 patri et |
, LET e 15
~ M % il
EETE L -g ! e, B i NI S ot
R 03 s
54 e T e o n
e oo s
_ 1 L A
E u i i) a2 o 15 FI1) u L1 (L3 14 L (L8

It

— Ar density p ~ (4{0.5, 1.4}, inclination angle 3 ~ L{{—10, 1U)
¢ Model output: maximum flapwise bending moment ¥ = M,

Simulation
® 485 training points with 50 replications

®* 120 test points with 500 replications
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PDF predictions
The normalized Wasserstein distance is = = 0.013
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Predictions of quantities of interest

Mean and standard deviation
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Qol predictions

Quantiles

x10"

2

1] 05

N

g
R? =0.043

AT
e

AT

L)

0.5

K2 = 0.957

15

An nverview of stnckastin emulaios

tasnmML m Warsshnp — Marsh 11, 2021

x10%

0 05 1 15 2

s x10*
B2 = 0,088

B. Sane

4440



Conclusions

_____________________________________________________________________________________________________|]
® Stochastic simulators are used in many fields of applied sciences and engineering

® Building general-purpose emulators is necessary for optimization, sensitivity analysis, etc.
® We propose a framework based on generalized lambda distributions and polynomial chaos expansions
® Replications are not mandatory ... but can be used !

® Extensions with other surrogates (e.g. Gaussian processes) and sparse techniques are under
investigation

Thank you very much for your attention!
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Questions ?

The Uncertainty Quantification
Software

www.uqlab.com

UQLah

The Uncertainty Quantification

Community
www.uqworld.org
Chair of Risk, Safety & Uncertainty Quantification
UQWorld
www.rsuq.ethz.ch
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