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Chair of Risk, Safety and Uncertainty quantification

The Chair carries out research projects in the field of uncertainty quantification for

engineering problems with applications in structural reliability, sensitivity analysis, model

calibration and reliability-based design optimization

Research topics

• Uncertainty modelling for engineering systems

• Structural reliability analysis

• Surrogate models (polynomial chaos expansions, Kriging, support vector

machines)

• Bayesian model calibration and stochastic inverse problems

• Global sensitivity analysis

• Reliability-based design optimization
http://www.rsuq.ethz.ch
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The SAMOS project

• The SAMOS project (“SurrogAte Modelling for stOchastic Simulators”) is funded by the Swiss National

Science Foundation under Grant # 175524 (May 2018 - April 2022).

• It is devoted to the development of innovative methods to ... build surrogate models for stochastic

simulators!

Xujia Zhu

Today’s talk on “Stochastic polynomial chaos expansions for emulating

stochastic simulators”

Nora Lüthen

Today’s talk on “Surrogating stochastic simulators using spectral methods

and advanced statistical modeling”
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Example: mathematical finance

Geometrical Brownian motion

dSt = µSt dt+ σ St dWt

• St: stock price, Wt: Wiener process

• µ: drift, σ: volatility

Asian option

• The payoff (of a call option) is contingent on the average price of the underlying asset

C = max {AT −K, 0} , with At =
1

t

∫ t

0

Sudu.
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Formal definition

• A (scalar) stochastic simulator Ms is a mapping:

Ms : DX × Ω → R

(x, ω) 7→ Ms(x, ω)

where DX is the input parameters space and {Ω,F ,P} is a probability space

• When fixing x = x0, the output is a random variable Y |X = x0 ≡ Ms(x0, ω)

• When fixing the seed ω = ω0 we get a deterministic simulator x 7→ Ms(x, ω0) (a.k.a. trajectory)

Latent variables

Ms can be seen as a deterministic function M of input parameters x and latent variables Z:

Ms(x, ω) = M (x, Z(ω))
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Computational costs induced by stochastic simulators

• Replications are needed to estimate the PDF of Y |X = x

• Many runs must be carried out by varying X for uncertainty propagation, sensitivity analysis,

optimization, etc.

• Realistic simulators (e.g. for wind turbine design) are costly

Need for surrogate models
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Requirements

Our goal is to develop a methodology that is:

• Non-intrusive (i.e. that considers the stochastic simulator as a black box)

• General-purpose: no restrictive assumption (e.g. Gaussian) on the family of the output distribution is

made

• Able to tackle the full distribution of Y |X = x, but also quantities of interest (e.g. mean, variance,

quantiles)

• Providing a representation of Y |X = x easy to sample from
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Existing approaches

The literature on stochastic simulators is both old and new:

• Replication-based approaches

• Gaussian models

• Estimation of the conditional distribution

• Latent variable models

• Random field representations

• Quantile regression
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Assuming normality: Kriging models

Main idea

• Response distributions are normal

• Mean function µ(x) and log-variance function log(V (x)) are modeled by Gaussian processes

Literature

• Full Bayesian setup: Goldberg et al. (1997) Regression with input-dependent noise: a Gaussian process treatment, NIPS10

• Iterative fitting: Marrel et al. (2012) Global sensitivity analysis of stochastic computer models with joint metamodels, Stat. Comput.

• Maximum likelihood: Binois et al. (2018) Practical heteroscedastic Gaussian process modeling for large simulation experiments, J.

Comput. Graph. Stat.
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Conditional distribution estimation

Main approaches

• Estimate the joint distribution of (X, Y ) by kernel smoothing, then compute the conditional PDF by:

f(y | x) =
f(x, y)

f(x)

• Use parametric models to represent the conditional distribution directly

Literature

• Kernel smoothing: Hall et al. (2004) Cross-validation and the estimation of conditional probability densities, J. Amer. Stat. Assoc.

• Vine copula: Kraus & Czado (2017) D-vine copula based quantile regression, Comput. Stat. Data Anal.

• Generalized lambda model: Zhu & Sudret (2021) Emulation of stochastic simulators using generalized lambda models, Submitted to

SIAM/ASA J. Unc. Quant.
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Latent variable models

Main idea

• Introduce explicitly latent variables Z̃ into a deterministic model to emulate the random nature of

stochastic simulators

Y (x)
d
= M̃(x, Z̃)

Literature

• Yan & Perdikaris (2019) Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems, Comput.

Mech.

• Stochastic polynomial chaos expansions for emulating stochastic simulators (Talk X. Zhu)
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Random field approaches

Main idea

• Consider the stochastic simulator as a random field indexed by the input variables:

Yx(ω) = M (x,Z(ω))

• Fixing the internal stochasticity (ω = ω0) gives access to trajectories x 7→ M(x,Z(ω0))

Literature

• Azzi et al. (2019) Surrogate modeling of stochastic functions-application to computational electromagnetic dosimetry, Int. J.

Uncertainty Quantification

• Azzi et al. (2020) Sensitivity analysis for stochastic simulators using differential entropy, Int. J. Uncertainty Quantification

• Surrogating stochastic simulators using spectral methods and advanced statistical modeling (Talk N. Lüthen)
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Definition

• The Freimer-Mudholkar-Kollia-Lin (FMKL) lambda distribution is defined through its quantile function

Q(u; λ) by 4 parameters

Q(u; λ) = λ1 +
1

λ2

(

uλ3 − 1

λ3
−

(1 − u)λ4 − 1

λ4

)

where:

– λ1 is the location parameter

– λ2 > 0 is the scale parameter

– λ3, λ4 are shape parameters

• The PDF is obtained by:

fY (y; λ) =
1

Q′(u; λ)
=

λ2

uλ3−1 + (1 − u)λ4−1
with u = Q−1(y; λ)
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Properties

• GLDs approximate well unimodal PDFs (bell-, U-shaped, bounded and unbounded)

• λ3 and λ4 control the shape and boundedness

Bl (λ) =

{

−∞, λ3 ≤ 0

λ1 − 1
λ2λ3

, λ3 > 0
, Bu (λ) =

{

+∞, λ4 ≤ 0

λ1 + 1
λ2λ4

, λ4 > 0
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Moments

• The mean value and variance read:

µ = λ1 −
1

λ2

(

1

λ3 + 1
−

1

λ4 + 1

)

V
def
= σ2 =

(d2 − d2
1)

λ2
2

where (B is the Beta function):

d1 =
1

λ3
B(λ3 + 1, 1) −

1

λ4
B(1, λ4 + 1)

d2 =
1

λ2
3

B(2λ3 + 1, 1) −
2

λ3λ4
B(λ3 + 1, λ4 + 1) +

1

λ2
4

B(1, 2λ4 + 1)
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Problem statement

Let us consider a stochastic simulator MS and the following experimental design with replications

• Experimental design of size N in the X-space: X =
{

x
(1),x(2), . . . ,x(N)

}

• R replications for each x
(i) ∈ X : Y(i) =

{

y(i,1), y(i,2), . . . , y(i,R)
}

Two approaches

Zhu & Sudret (2020) Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions, Int. J. Uncertainty Quantification

• Infer-and-fit: infer a lambda distribution for each point x
(i) of the experimental design, then fit a sparse

polynomial chaos expansion to the parameters λ

• Joint inference: improve the previous results by maximum likelihood optimization
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Local inference of lambda distributions (“Infer”)

Estimate λ
(i) based on Y(i) =

{

y(i,1), . . . , y(i,R)
}

• Maximum likelihood estimation

λ̂
(i)

= arg max
λ

R
∑

r=1

log

(

λ2

uλ3−1
i,r + (1 − ui,r)λ4−1

)

where

ui,r = Q−1
(

y(i,r); λ
)

, y(i,r) = Q(ui,r; λ) = λ1 +
1

λ2

(

uλ3

i,r − 1

λ3
−

(1 − ui,r)λ4 − 1

λ4

)

• Nonlinear equation that can be solved numerically (Q is a monotonically increasing function)

Polynomial chaos expansions

• Fit 4 PCEs from the lambda data points Λ =
{

λ̂
(1)
, . . . , λ̂

(N)
}
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Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991; 2003); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

• We assume here for simplicity that the input parameters are independent with

Xi ∼ fXi
, i = 1, . . . , d

• PCE is also applicable in the general case using an isoprobabilistic transform X 7→ Ξ

The polynomial chaos expansion for a deterministic simulator X 7→ Md(X) reads:

Md(X) =
∑

α∈Nd

aα Ψα(X)

where:

• Ψα(X) are basis functions (multivariate orthonormal polynomials)

• aα are coefficients to be computed (coordinates)
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Polynomial chaos expansions

Truncation schemes

• “Full basis” of degree p:

α ∈ Ap,M =

{

α ∈ N
M ;

M
∑

i=1

αi ≤ p

}

• q-norm truncation:

α ∈ Ap,q,M =







α ∈ N
M ; ‖α‖q

def
=

(

M
∑

i=1

αq

i

) 1

q

≤ p







, 0 < q < 1

• Sparse expansion: A only contains relevant basis functions taken out of a

candidate basis
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Fitting polynomial chaos expansions (“Fit”)

• Gather the data from the “Fit”-step:
{(

x
(1),λ(1)

)

,
(

x
(2),λ(2)

)

, . . . ,
(

x
(N),λ(N)

)}

• Represent the distribution parameters λ by polynomial chaos expansions

λk(x) ≈ λPC
k (x; a) =

∑

α∈Ak

ak,αψα(x) for k = 1, 3, 4

λ2 (x) ≈ λPC
2 (x; a) = exp

(

∑

α∈A2

a2,αψα(x)

)

• PCE coefficients are calibrated by the sparse regression method Hybrid-LARS

Blatman & Sudret (2011) Adaptive sparse polynomial chaos expansion based on Least Angle Regression, J. Comput. Phys.
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Improvement: joint fitting

Rationale

• The results of the Infer-and-fit algorithm depends on the accuracy of the local inference

• Idea: build a global model for the joint distribution of inputs and outputs:

fX,Y (x, y) = fY |X (y | x) · fX(x)

where the conditional PDF is represented by a lambda model:

fGLD
X,Y (x, y; a) = fGLD

Y |X

(

y; λ
PC(x; a)

)

· fX(x)

Procedure

Find the optimal PCE coefficients a that minimize the Kullback-Leibler divergence between fX,Y and

fGLD
X,Y :

â = arg min
a

DKL

(

fX,Y || fGLD
X,Y ( . ; a)

)
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Corresponding loss function

Solution

After some basic algebra, the minimization problem reduces to:

â = arg min
a

EX,Y

[

log f̂Y |X

(

Y ; λ
PC(X; a)

)]

Estimator

• The PCE bases for λ
PC(x) are taken from the “Infer-and-Fit” approach

• The expectation w.r.t. X and Y is computed from the experimental design X =
{

x
(1), . . . ,x(N)

}

,

with R replications in each point (outputs y(i,r)):

â = arg min
a

1

N R

N
∑

i=1

R
∑

r=1

log f̂Y |X

(

y(i,r); λ
PC(x(i); a)

)
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Procedure

Ingredients

• An experimental design X =
{

x
(1), . . . ,x(N)

}

and model evaluations y(i) def
= M(x(i), ωi)

• Pre-selected PC bases for the four polynomial chaos expansions of λi(x), i = 1, . . . , 4

Selection of PCE bases

• PCE models for the mean and variance of the model output built using the feasible generalized

least-square method

• Use the PCE basis of µ(x) (resp. log σ2(x)) for λ1 (resp. λ2)

• PCE of degree 1 for λ3 and λ4 (it is assumed that the shape of the response distribution does not vary

nonlinearly with x)
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Algorithm 1: Feasible generalized least-squares (FGLS)

1: Input: Computational budget N

2: Initialization

3: Experimental design X = {x(1), . . . , x(N)}

4: Model evaluations Y = {y(i) def
= M(x(i), ωi), i = 1, . . . , N}

5: Set k = 0. Estimate the mean function µ̂0(x) by ordinary least-squares % Fix the basis after (p, q) search

6:

7: FGLS

8: while NotConverged do

9: Subtract the estimated mean from the data, i.e. r(i) = y(i) − µ̂k

(

x(i)
)

10: Estimate the variance function σ̂2
k

(x) based on
{(

x(i), 2 log
∣

∣r(i)
∣

∣

)

, i = 1, . . . , N
}

11: k ← k + 1

12: Use σ̂2
k

(x) as weight to estimate µ̂k(x) by weighted least-squares

13: end

14: Return PCE expansions of µ(x) and log σ2(x)

An overview of stochastic emulators MascotNum Workshop – March 11, 2021 B. Sudret 32 / 45





Outline

Introduction and literature

Generalized lambda distributions

Generalized lambda/PCE models

Application examples

Analytical example

Stochastic SIR model

Wind turbine application

Conclusions & outlook

An overview of stochastic emulators MascotNum Workshop – March 11, 2021 B. Sudret 33 / 45



Error metrics for stochastic emulators

Wasserstein distance

• It is the L2 distance between the quantile functions:

d2
WS(Y, Ŷ )

def
= ‖QY − Q̂Y ‖2

L2 =

∫ 1

0

(

QY (u) − Q̂Y (u)
)2
du

Normalized Wasserstein distance

ε =
EX

[

d2
WS

(

Y (X), Y GLaM(X)
)]

Var [Y ]
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Geometric Brownian motion

dSt = x1 St dt+ x2 St dWt

• St: stock price, Wt: Wiener process

• x1: drift, x2: volatility

• The analytical distribution of St exists (Itô’s calculus)

St(x)/S0 ∼ LN
((

x1 − x2
2/2
)

t, x2 t
)

Setup

• X1 ∼ U(0, 0.1), X2 ∼ U(0.1, 0.4)

• Y = S1 for t = 1 is of interest, i.e. Y (x) ∼ LN
(

x1 − x2
2/2, x2

)

• Experimental design: X are generated using the Latin hypercube sampling

• No replications
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Conclusions

• Stochastic simulators are used in many fields of applied sciences and engineering

• Building general-purpose emulators is necessary for optimization, sensitivity analysis, etc.

• We propose a framework based on generalized lambda distributions and polynomial chaos expansions

• Replications are not mandatory ... but can be used !

• Extensions with other surrogates (e.g. Gaussian processes) and sparse techniques are under

investigation

Thank you very much for your attention!
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

The Uncertainty Quantification

Software

www.uqlab.com

The Uncertainty Quantification

Community

www.uqworld.org
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