Global sensitivity analysis for stochastic models based on continuous time Markov chains: application to epidemic models

Henri Mermoz KOUYE Supervisors: Gildas MAZO, Clémentine PRIEUR, Elisabeta VERGU.

4 🗆 K 4 🗇 K 4 🖻 K 4

Laboratoire MaIAGE, Jouy-en-Josas INRAE, Université Paris Saclay

March 11, 2021

Introduction: context, state of art and objective

Stochastic model framework and sensitivity analysis

Application: SARS-CoV-2 model

Conclusion and Perspectives

イロト イヨト イヨト イヨ

SA for stochastic models is challenging!

This kind of models is intrinsically random!

How can global sensitivity analysis be performed on such model?

Mascot	Num	Worl	kshop	i, IHE
--------	-----	------	-------	--------

- 1. Methods for scalar output stochastic models (Mazo 2021; Hart, Alexanderian, and Gremaud 2017)
- Meta-modelling based methods (Zhu and Sudret 2021; Etore et al. 2020; Jimenez, Le Maitre, and O. M. Knio 2017; Le Maitre and O. Knio 2015; Marrel et al. 2012)
- 3. Methods based on global sensitivity analysis for probability measures (Da Veiga 2021; Fort, Klein, and Lagnoux 2020)

イロト イボト イヨト イヨ

- 1. The computational cost of repetitions
- 2. Approximation errors issues that can arise from meta-modelling
- 3. Parameter estimations: contribution of intrinsic randomness and its interaction with parameters are useful.

• • • • • • • • • • • •

Assume we have a stochastic model with entry X and output Y.

- A. Objective: to perform sensitivity analysis using existing methods without making repetitions or using meta-models.
- B. Approach: our approach aims to write Y as a deterministic function f of X and a random variable Z such as :
 - $Y \stackrel{\mathcal{L}}{=} f(X, Z)$
 - X and Z are independent
 - f and Z distribution are explicit.

イロト イボト イヨト イヨ

Stochastic model framework and sensitivity analysis

メロト メロト メヨト メヨト

Consider $(\mathcal{X}, \mathfrak{B})$ and $(\mathcal{Y}, \mathfrak{F})$ two measurable spaces.

Definition

A stochastic model *M* with input space *X* and output space *Y* is a family of distributions (*P_x*, *x* ∈ *X*) defined on (*Y*, *𝔅*). Each input ∈ *X* is associated with a distribution *P_x* such as for this input, the outputs of the model are distributed by *P_x*.

▶ Let $(\mathcal{Z}, \mathfrak{G})$ be a measurable space, $f : \mathcal{X} \times \mathcal{Z} \longrightarrow \mathcal{Y}$ a measurable application and Z a random variable.

(f, Z) is said to be a representation of \mathcal{M} if Z is independent of inputs such as :

$$\forall x \in \mathcal{X}, f(x, Z) \stackrel{\mathcal{L}}{=} \mathcal{P}_{x}$$
(1)

イロト イヨト イヨト イヨト

From now on, we assume the existence of representations of a stochastic model $\ensuremath{\mathcal{M}}.$

Representations and sensitivity analysis (1)

- Assume there is an uncertainty on parameters
- Suppose parameter space X = (X₁, · · · , X_d) is sampled with a random vector X = (X₁, · · · X_d) with a distribution P.

Let $X' = (X'_1, \cdots, X'_d)$ be an independent copy of X.

Lemma

If (f, Z) and (f', Z') are two representations of the same stochastic model then :

$$(X, f(X, Z)) \stackrel{\mathcal{L}}{=} (X', f'(X', Z'))$$
(2)

Suppose $\mathbb{E}\left(|f(X,Z)|^2\right) < +\infty$.

Let $u \subset \{1, \dots, d\}$ and denote by X_u the vector $(X_i, i \in u)$. From the previous lemma, the following equality holds :

$$\mathbb{E}\left(f\left(X,Z\right)\mid X_{u}\right)\stackrel{\mathcal{L}}{=}\mathbb{E}\left(f'\left(X',Z'\right)\mid X'_{u}\right)$$
(3)

But $\mathbb{E}[f(X, Z) | (X_u, Z)]$ and $\mathbb{E}[f'(X', Z') | (X'_u, Z')]$ are not necessarily equal.

Let
$$X_{d+1} = Z$$
.

Theorem (Sobol-Hoeffding decomposition)

Under the following conditions:

• $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \cdots \times \mathcal{X}_d$ where $\mathcal{X}_1, \mathcal{X}_2 \cdots, \mathcal{X}_d$ are Polish spaces,

Z and Y are Polish spaces,

 \blacktriangleright X_i , $i = 1, \dots, d + 1$, are independent random variables. Then:

$$Var(f(X,Z)) = Var(f(X,X_{d+1})) = \sum_{u \in \{1,\cdots,d+1\}} V_u,$$
 (4)

where

$$V_{u} = \sum_{v \subset u} (-1)^{|u| - |v|} \operatorname{Var}(\mathbb{E}[f(X, X_{d+1}) \mid X_{v}])$$
(5)

(日) (四) (日) (日) (日)

Application

MascotNum Workshop, IHP

▲□▶ ▲圖▶ ▲国▶ ▲国▶

SARS-CoV-2 model: Presentation (1)

Consider the following compartmental model for the spread of SARS-CoV-2 among a population with constant size N.

Figure 2: SARS-CoV-2 epidemic model

200

The process $W = \left\{ (S(t), E(t), IA(t), IS(t), H(t), R(t), D(t)); t \ge 0 \right\}$ is described by a continuous time Markov chain whose generator is given by the transition rates mentioned on the figure above.

• The process *W* depends on unknown parameters
$$X = (\beta, \delta, \mu_A, \mu_C, p_E, p = (p_1, p_2), \gamma_H, p_H).$$

But

- \blacktriangleright W is a stochastic process, so there is an intrinsic randomness
- Repetitions to be avoided because of the cost of calculation
- There is a need to know the contribution of the intrinsic randomness and its interactions with parameters

イロト イヨト イヨト イヨト

Sellke construction (1)

Sellke 1983 introduced this construction detailed on the simple SIR model : $S \xrightarrow{\frac{ij}{N}S \approx I} I \xrightarrow{\gamma I} R$

Figure 3: Example of evolution of infection pressure

Infection transition depends on the infection pressure defined by $P(t) = \frac{\beta}{M} \int_0^t (I(u)) du$ \triangleright Q_1, Q_2, \cdots define susceptible individual resistance thresholds. As long as $Q_i > P(t)$, the corresponding susceptible individual remains susceptible. Otherwise, this individual get infected at the time $T_i = \inf\{t \ge 0 : P(t) \ge Q_i\}.$ Recovery transition is based on the duration of stay in compartment 1.

イロト イボト イラト イ

Sellke construction (2)

Extension of Sellke construction to the SARS-CoV-2 model

- Infection mechanism depends on the evolution of infection pressure: $P(t) = \frac{\beta}{N} \int_0^t (IA(u) + IS(u)) \, du.$
- Other transition mechanism: the other transitions are based on the duration of stay in the corresponding compartments.

With the mechanism transition above, we define a new process $\widetilde{W} = \left\{ \left(\tilde{S}(t), \tilde{E}(t), \tilde{IA}(t), \tilde{IS}(t), \tilde{H}(t), \tilde{R}(t), \tilde{D}(t) \right); t \ge 0 \right\}$

Theorem (1)

Under distribution assumptions, there exist a random vector Z independent of X and a deterministic function F_S such as :

$$W \stackrel{f.d.d}{=} \widetilde{W} = F_{\mathcal{S}}(\cdot, X, Z).$$
(6)

Moreover, F_S and Z are totally explicit.

MascotNum Workshop, IHP

イロト イポト イヨト イヨト

Kurtz representation (1)

 Random Time change or Kurtz representation is studied by Ethier and Kurtz 1986 and applied to chemical reaction network models (Anderson and Kurtz 2011)

Consider $G = \{G(t), t \ge 0\}$ a continuous time Markov chain with M different transitions. Denote $\zeta_m, \lambda_m, m = 1, \dots, M$ respectively the transition vectors and the intensity functions.

Theorem (Kurtz 1982)

There exist Y_1, \dots, Y_M Poisson independent processes with intensity 1 such as almost surely :

$$\forall t \ge 0, \quad G(t) = G(0) + \sum_{m=1}^{M} Y_i\left(\int_0^t \lambda_m(X, G(s)) \,\mathrm{d}s\right) \cdot \zeta_m.$$
(7)

Use of this representation to perform global sensitivity analysis for chemical reaction network models (Le Maitre, O. M. Knio, and Moraes 2015; Navarro Jimenez, Le Maitre, and O. M. Knio 2016)

イロト イヨト イヨト イヨト

Kurtz representation (2)

Theorem (Navarro Jimenez, Le Maitre, and O. M. Knio 2016) There exist Y_1, \dots, Y_M Poisson independent processes with intensity 1 and a deterministic function F_K such as almost surely :

$$G = F_{K}\left(\cdot, X, \underbrace{Y_{1}, \cdots, Y_{M}}_{Z'}\right)$$
(8)

Let adapt this technique to the SARS-CoV-2 model. There are M = 9 different types of transitions.

- Each type of transition is under the form $x \longrightarrow x + \zeta_m$
- ► To each type of transition corresponds an intensity function λ_m such as the transition $x \longrightarrow w + \zeta_m$ rate is $\lambda_m(X, w)$.

Transitions	Transition vector		l	Intensity function	
$S \rightarrow E$	$\zeta_1 = ($	$(-1, 1, 0, 0, 0, 0, 0)^t$	$\lambda_1(X,$	$(w) = \frac{\beta}{N}S \cdot (IA + IS)$	
$E \rightarrow IA$	$\zeta_2 = (0)$	$(0, -1, +1, 0, 0, 0, 0)^t$	λ_2	$(X,w) = \delta \cdot p_E \cdot E$	1
:		:	•		na
MascotNum Workshop, II	HP			March 11, 2021	

Remind the process:

 $W = \left\{ \left(S(t), E(t), IA(t), IS(t), H(t), R(t), D(t) \right); t \ge 0 \right\} \text{ dependent on unknown parameters } X = (\beta, \delta, \mu_A, \mu_C, p_E, p = (p_1, p_2), \gamma_H, p_H).$

- Model output: $E = \{E(t); t \in [0, T]\}$ with T = 50
- Computed indices: dynamic Sobol indices, aggregated indices
- Method: pick-freeze
- Number of explorations: n = 5000
- Initial conditions: S(0) = 100, E(0) = 1, IA(0) = 0, IS(0) = 0, H(0) = 0, R(0) = 0, D(0) = 0
- Uncertain parameter variation intervals are set according to Knock et al. 2021

イロト 不得 トイヨト イヨト

Sensitivity analysis for the SARS-CoV-2 model (2)

MascotNum Workshop, IHP

March 11, 2021 19 / 2

Sensitivity analysis for the SARS-CoV-2 model (3)

MascotNum Workshop, IHP

Global sensitivity analysis

March 11, 2021 20 / 25

イロト イヨト イヨト イヨ

Sensitivity analysis for the SARS-CoV-2 model (4)

Zoom on the parameter p_E total effects

- Estimation of indices with n = 5000 explorations at instant t = 20
- 95% confidence intervals are computed by bootstrap using 100 replications.

Figure 8: Indices for Sellke representation at instant t = 20

Figure 9: Indices for Kurtz representation at instant t = 20

Difference between p_E total effects for the two representations is due to difference in the distribution of the intrinsic randomness.

MascotNum Workshop, IHP

Global sensitivity analysis

March 11, 2021 21 / 25

Our approach provides:

- Additional information: intrinsic randomness contribution and its interactions with model parameters
- Invariance of parameter main contributions with respect to representation
- A way to select a representation (or a computer code) based on the intrinsic randomness impact

(日) (四) (日) (日) (日)

- Study of the impact of the intrinsic randomness distribution on the conditional expectations of the form: E (f (X, Z) | (X_u, Z))
- Extension of Sellke construction to a larger class of compartmental models.
- Extension of our approach to non-markovian epidemic models using Sellke construction.
- Coupling this approach with other sensitivity analysis methods.
- Comparison with representation-free methods based on sensitivity analysis of probability measures of the outputs.

イロト イヨト イヨト

Thank you !

MascotNum Workshop, IHP

Global sensitivity analysis

▶ ◀ 볼 ▶ 볼 ∽ ९ (~ March 11, 2021 24 / 25

・ロト ・四ト ・ヨト ・ヨト

Bibliography

- [AK11] David F. Anderson and Thomas G. Kurtz. "Continuous Time Markov Chain Models for Chemical Reaction Networks". In: Design and Analysis of Biomolecular Greuits: Engineering Approaches to Systems and Synthetic Biology. Ed. by Heinz Neoppl et al. New York, NY: Springer New York, 2011, pp. 3–42. ISBN: 978-1-4419-6766-4. DOI: 10.1007/978-1-4419-6766-4_1. URL: https://doi.org/10.1007/978-1-4419-6766-4.
- [Da 21] Sébastien Da Veiga. Kernel-based ANOVA decomposition and Shapley effects Application to global sensitivity analysis. 2021. arXiv: 2101.05487 [math.ST].
- [EK86] Stewart N. Ethier and Thomas G. Kurtz. Markov processes characterization and convergence. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics. New York: John Wiley & Sons Inc., 1986, pp. x+534. ISBN: 0.471-08186-8.
- [Eto+20] Pierce Etore et al. "Global Sensitivity Analysis for Models Described by Stochastic Differential Equations". en. In: Methodology and Computing in Applied Probability 22.2 (June 2020), pp. 803–831. ISSN: 1387-5841, 1573-7713. DOI: 10.1007/e11009-019-09732-6. URL: http://link.springer.com/lo07/e11009-019-09732-6 (visited on 02/23/2021).
- [FKL20] Jean-Claude Fort, Thierry Klein, and Agnès Lagnoux. Global sensitivity analysis and Wasserstein spaces. 2020. arXiv: 2007.12378 [math.ST].
- [HAGI7] J. L. Hart, A. Alexanderian, and P. A. Gremaud. "Efficient Computation of Sobol" Indices for Stochastic Models". In: SIAM Journal on Scientific Computing 39.4 (2017), A1514–A1530. DOI: 10.1137/161106193X. eprint: https://doi.org/10.1137/161106193X. URL: https://doi.org/10.1137/161106193X.
- [JLK17] M. Navarro Jimenez, O. P. Le Maitre, and O. M. Knio. "Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations". In: SIAM/ASA Journal on Interestainty Quantification 5.1 (2017), pp. 378–402. DOI: 10.1137/16811061989. epinith: https://doi.org/10.1137/16811061989. URL: https://doi.org/10.1137/16811061989.
- [Kno+2] Edward S. Knock et al. "The 2020 SARS-CoV-2 epidemic in England: key epidemiological drivers and impact of interventions". In: medRovia (2021). DOI: 10.1101/2021.01.11.21249864.epint: https://www.medriv.org/content/early/2021/01/13/2021.01.11.21249864.foll.pdf.URL. https://www.medriv.org/content/early/2021/01/13/2021.01.11.21249864.foll.pdf.URL
- [Kur82] Thomas G. Kurtz. "Representation and approximation of counting processes". In: Advances in Filtering and Optimal Stochastic Control. Ed. by Wendell H. Fleming and Luis G. Gorostiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 177–191. ISBN: 978-3-540-39517-1.
- [LK15] O.P. Le Maitre and O.M. Knio. "PC analysis of stochastic differential equations driven by Wiener noise". In: Reliability Engineering & System Safety 135 (2015), pp. 107–124. ISSN: 0951-8320. DOI: https://doi.org/10.1016/j.ress.2014.11.002. URL: https://www.sciencedirect.com/science/article/pii/S0051832014002749.
- [LKM15] O. P. Le Maitre, O. M. Knio, and A. Moraes. "Variance decomposition in stochastic simulators". In: The Journal of Chemical Physics 142.24 (2015), p. 244115. DOI: 10.1063/1.492292. eprint: https://doi.org/10.1063/1.4922922. URL: https://doi.org/10.1063/1.4922922.
- [Mar+12] Amandine Marrel et al. "Global sensitivity analysis of stochastic computer models with joint metamodels". In: Statistics and Computing 22.3 (May 2012), pp. 833–847. ISSN: 1573-1575. DOI: 10.1007/s11222-011-9274-8. URL: https://doi.org/10.1007/s11222-011-9274-8.
- [Maz21] Gildas Mazo. "Global sensitivity indices, estimators and tradeoff between explorations and repetitions for some stochastic models". working paper or preprint. Jan. 2021. URL: https://hal.archives-ouvertes.fr/hal-02113448.
- [NLK16] M. Navarro Jimenez, O. P. Le Maitre, and O. M. Knio. "Global sensitivity analysis in stochastic simulators of uncertain reaction networks". In: The Journal of Chemical Physics 145.24 (2016), p. 244106. DOI: 10.1063/1.4971797. eprint: https://doi.org/10.1063/1.4971797. URL: https://doi.org/10.1063/1.4971797.
- [Sel83] Thomas Sellke. "On the asymptotic distribution of the size of a stochastic epidemic". In: Journal of Applied Probability 20.2 (1983), pp. 390–394. DOI: 10.2307/3213811.
- [Z521] X. Zhu and B. Sudret. Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models. 2021. arXiv: 2005.01309 [stat.CO].

MascotNum Workshop, IHP

Global sensitivity analysis