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SA for stochastic models is challenging!

Stochastic
maodel

» This kind of models is intrinsically random!

P How can global sensitivity analysis be performed on such model?
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Methods in the literature

1. Methods for scalar output stochastic models (Mazo 2021; Hart,
Alexanderian, and Gremaud 2017)

2. Meta-modelling based methods (Zhu and Sudret 2021; Etore et al.
2020; Jimenez, Le Maitre, and O. M. Knio 2017; Le Maitre and
0. Knio 2015; Marrel et al. 2012)

3. Methods based on global sensitivity analysis for probability measures
(Da Veiga 2021; Fort, Klein, and Lagnoux 2020)
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Limitations

1. The computational cost of repetitions
2. Approximation errors issues that can arise from meta-modelling

3. Parameter estimations: contribution of intrinsic randomness and its
interaction with parameters are useful.
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Our approach: positioning and objective

Assume we have a stochastic model with entry X and output Y.

A. Objective: to perform sensitivity analysis using existing methods
without making repetitions or using meta-models.

B. Approach: our approach aims to write Y as a deterministic function
f of X and a random variable Z such as :

° Y££(X,2)
® X and Z are independent

® f and Z distribution are explicit.
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Stochastic model framework and sensitivity analysis
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Stochastic models (1)

Consider (X,B) and (Y, F) two measurable spaces.

Definition

> A stochastic model M with input space X' and output space ) is a
family of distributions (Py, x € X') defined on (), F).
Each input € X is associated with a distribution P, such as for this
input, the outputs of the model are distributed by P,.

> Let (Z,®) be a measurable space, f : X x Z — ) a measurable
application and Z a random variable.
(f,Z) is said to be a representation of M if Z is independent of
inputs such as :

Vx e X, f(x,2) £ P, (1)

From now on, we assume the existence of representations of a stochastic
model M.
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Representations and sensitivity analysis (1)

» Assume there is an uncertainty on parameters

» Suppose parameter space X = (Xy, -, Xy) is sampled with a
random vector X = (Xi, -+ Xy) with a distribution P.

Let X’ = (X{,---X}) be an independent copy of X.

Lemma
If (f,Z) and (f', Z’') are two representations of the same stochastic

model then :
(X.f(X,2)) £ (X, f (X', Z")) (2)

Suppose E (| (X, Z) [?) < +o0.
Let v C {1,---,d} and denote by X, the vector (X;,i € u).
From the previous lemma, the following equality holds :

E(f(X,2) | X,) £E(f (X',Z') | X)) (3)

But E[f (X,2) | (Xu,Z)] and E[f' (X', Z") | (X, Z")] are not necessarily
equal.
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Variance decomposition

Let Xd+1 - Z

Theorem (Sobol-Hoeffding decomposition)

Under the following conditions:
> X =X XX x Xy where X1, X, --- , Xy are Polish spaces,
» Z and ) are Polish spaces,

» X;,i=1,---,d+ 1, are independent random variables.
Then:
Var(f(X,2)) = Var(F(X, Xa1)) = > Vi, (4)
ucq{l, - ,d+1}
where
Ve = > (=) var B [(X, Xaa1) | X]) (5)
vCu
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Application
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SARS-CoV-2 model: Presentation (1)

Consider the following compartmental model for the spread of
SARS-CoV-2 among a population with constant size M.
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Figure 2: SARS-CoV-2 epidemic model
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SARS-CoV-2 model: Presentation (2)

The process W = { (5(¢), E(¢), IA(t), IS(t), H(t), R(t), D(t)); t > 0} is

described by a continuous time Markov chain whose generator is given by
the transition rates mentioned on the figure above.

» The process W depends on unknown parameters
X = (ﬁ767 HA, UCy PE, P = (PhPZ)a’YH»PH)-

But
» W is a stochastic process, so there is an intrinsic randomness
» Repetitions to be avoided because of the cost of calculation

» There is a need to know the contribution of the intrinsic randomness
and its interactions with parameters
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Sellke construction (1)

Sellke 1982 introduced this construction detailed on the simple SIR

Gy -
model - § 2 1 2L R

» Infection transition depends on
the infection pressure defined

X0 A A by :P(t) = & fo (I{(e))du

B (. G, - define susceptible
individual resistance thresholds.
As long as @Q; = P(t), the
corresponding susceptible
individual remains susceptible.
Otherwise, this individual get
infected at the time
Ti=inf{t=0: P(t) = Q}.

I P Recovery transition is based on

the duration of stay in
Figure 3: Example of evolution of compartment /.
infection pressure

March L1, 2021

tascotMun Warkenop, IHP



Sellke construction (2)

Extension of Sellke construction to the SARS-CoV-2 model

» Infection mechanism depends on the evolution of infection pressure:
P(t) =2 [ (IA(u) + IS(u)) du.

» Other transition mechanism: the other transitions are based on the
duration of stay in the corresponding compartments.

With the mechanism transition above, we define a new process
W= { (ﬁ(t), E(t), IA(t), I5(¢), A(t), R(¢), D(t)) t> o}

Theorem (1)

Under distribution assumptions, there exist a random vector Z
independent of X and a deterministic function Fs such as :

W W = Fs (X, 2). (6)

Moreover, Fs and Z are totally explicit.
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Kurtz representation (1)

» Random Time change or Kurtz representation is studied by Ethier
and Kurtz 1986 and applied to chemical reaction network models
(Anderson and Kurtz 2011)

Consider G = {G(t),t > 0} a continuous time Markov chain with M
different transitions. Denote (pm, Ay, m =1, --- | M respectively the
transition vectors and the intensity functions.

Theorem (Kurtz 1982)

There exist Y1, -, Yy Poisson independent processes with intensity 1
such as almost surely :

M t
VE>0, G(t)=GO0)+ > Y </0 Am (X, G(s))ds) Al (7)
m=1

» Use of this representation to perform global sensitivity analysis for
chemical reaction network models (Le Maitre, O. M. Knio, and
Moraes 2015; Navarro Jimenez, Le Maitre, and O. M. Knio 2016)
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Kurtz representation (2)

Theorem (Navarro Jimenez, Le Maitre, and O. M. Knio 2016)

There exist Y1,--- , Yu Poisson independent processes with intensity 1
and a deterministic function Fx such as almost surely :

G:FK '7X7Y15"'7YM (8)
—————
ZI

Let adapt this technique to the SARS-CoV-2 model.
There are M = 9 different types of transitions.

» Each type of transition is under the form x — x 4+ (,

» To each type of transition corresponds an intensity function \,, such
as the transition x — w + (,, rate is Ay (X, w).

Transitions Transition vector Intensity function

S=E | ¢=(-1,1,0,0,0,0,0)" | Ai(X,w)= %5.(,A+,5)

E—IA C2:(07_17+1707070ﬂ0)t )‘2(X7W):6PEE
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Sensitivity analysis for the SARS-CoV-2 model (1)

Remind the process:
W= { (S(t), E(t), IA(t), IS(t), H(t), R(t), D(t)); t > 0} dependent on
unknown parameters X = (8, 6, ua, tic, pe, P = (P1, P2), YHs PH)-

» Model output: E = {E(t);t € [0, T]} with T =50

» Computed indices: dynamic Sobol indices, aggregated indices

v

Method: pick-freeze

v

Number of explorations: n = 5000

Initial conditions: S(0) = 100, £(0) = 1, /A(0) = 0, IS(0) =
0, H(0) = 0, R(0) = 0, D(0) = 0

v

» Uncertain parameter variation intervals are set according to Knock
et al. 2021
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Sensitivity analysis for the SARS-CoV-2 model (2)
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Flgu re 4: Dynamic of Sobol indices for Sellke representation Flgu re 5: Dynamic of Sobol indices for Kurtz representation
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Sensitivity analysis for the SARS-CoV-2 model (3)
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Flgu re 6: Aggregated indices for Sellke representation Flgu re 7: Aggregated indices for Kurtz representation
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Sensitivity analysis for the SARS-CoV-2 model (4)

Zoom on the parameter pe total effects
» Estimation of indices with n = 5000 explorations at instant t = 20

» 95% confidence intervals are computed by bootstrap using 100

replications.
t b é 4
4
¢ 4
% s £ s % % 2 i %
. LR S S TS TS % LIS T S S
Flgu re 8: Indices for Sellke representation at instant t = 20 Flgu re 9: Indices for Kurtz representation at instant t = 20

Difference between pg total effects for the two representations is due to
difference in the distribution of the intrinsic randomness.
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Conclusion

Our approach provides:

» Additional information: intrinsic randomness contribution and its
interactions with model parameters

» Invariance of parameter main contributions with respect to
representation

> A way to select a representation (or a computer code) based on the
intrinsic randomness impact
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» Study of the impact of the intrinsic randomness distribution on the
conditional expectations of the form: E(f (X, Z) | (Xu, Z))

> Extension of Sellke construction to a larger class of compartmental
models.

» Extension of our approach to non-markovian epidemic models using
Sellke construction.

» Coupling this approach with other sensitivity analysis methods.

» Comparison with representation-free methods based on sensitivity
analysis of probability measures of the outputs.
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Thank you !
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