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Methods in the literature

1. Methods for scalar output stochastic models (Mazo 2021; Hart,
Alexanderian, and Gremaud 2017)

2. Meta-modelling based methods (Zhu and Sudret 2021; Etore et al.
2020; Jimenez, Le Maitre, and O. M. Knio 2017; Le Maitre and
O. Knio 2015; Marrel et al. 2012)

3. Methods based on global sensitivity analysis for probability measures
(Da Veiga 2021; Fort, Klein, and Lagnoux 2020)
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Limitations

1. The computational cost of repetitions

2. Approximation errors issues that can arise from meta-modelling

3. Parameter estimations: contribution of intrinsic randomness and its
interaction with parameters are useful.
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Our approach: positioning and objective

Assume we have a stochastic model with entry X and output Y .

A. Objective: to perform sensitivity analysis using existing methods
without making repetitions or using meta-models.

B. Approach: our approach aims to write Y as a deterministic function
f of X and a random variable Z such as :

• Y
L
= f (X ,Z)

• X and Z are independent

• f and Z distribution are explicit.
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Stochastic model framework and sensitivity analysis
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Stochastic models (1)

Consider (X ,B) and (Y,F) two measurable spaces.

Definition
◮ A stochastic model M with input space X and output space Y is a

family of distributions (Px , x ∈ X ) defined on (Y,F).
Each input ∈ X is associated with a distribution Px such as for this
input, the outputs of the model are distributed by Px .

◮ Let (Z,G) be a measurable space, f : X × Z −→ Y a measurable
application and Z a random variable.
(f ,Z ) is said to be a representation of M if Z is independent of
inputs such as :

∀ x ∈ X , f (x ,Z )
L
= Px (1)

From now on, we assume the existence of representations of a stochastic
model M.
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Representations and sensitivity analysis (1)

◮ Assume there is an uncertainty on parameters

◮ Suppose parameter space X = (X1, · · · ,Xd) is sampled with a
random vector X = (X1, · · ·Xd) with a distribution P.

Let X ′ = (X ′
1, · · ·X

′
d
) be an independent copy of X .

Lemma
If (f ,Z ) and (f ′,Z ′) are two representations of the same stochastic
model then :

(X , f (X ,Z ))
L
= (X ′, f ′ (X ′,Z ′)) (2)

Suppose E
(
|f (X ,Z ) |2

)
< +∞.

Let u ⊂ {1, · · · , d} and denote by Xu the vector (Xi , i ∈ u).
From the previous lemma, the following equality holds :

E (f (X ,Z ) | Xu)
L
= E (f ′ (X ′,Z ′) | X ′

u) (3)

But E [f (X ,Z ) | (Xu,Z )] and E [f ′ (X ′,Z ′) | (X ′
u,Z

′)] are not necessarily
equal.
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Variance decomposition

Let Xd+1 = Z .

Theorem (Sobol-Hoeffding decomposition)

Under the following conditions:
◮ X = X1 ×X2 · · · × Xd where X1,X2 · · · ,Xd are Polish spaces,
◮ Z and Y are Polish spaces,
◮ Xi , i = 1, · · · , d + 1, are independent random variables.

Then:

Var (f (X ,Z )) = Var (f (X ,Xd+1)) =
∑

u⊂{1,··· ,d+1}

Vu, (4)

where
Vu =

∑

v⊂u

(−1)
|u|−|v |

Var (E [f (X ,Xd+1) | Xv ]) (5)
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Application
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SARS-CoV-2 model: Presentation (2)

The process W =

{
(S(t),E (t), IA(t), IS(t),H(t),R(t),D(t)) ; t ≥ 0

}
is

described by a continuous time Markov chain whose generator is given by
the transition rates mentioned on the figure above.

◮ The process W depends on unknown parameters
X = (β, δ, µA, µC , pE , p = (p1, p2), γH , pH).

But

◮ W is a stochastic process, so there is an intrinsic randomness

◮ Repetitions to be avoided because of the cost of calculation

◮ There is a need to know the contribution of the intrinsic randomness
and its interactions with parameters
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Sellke construction (2)

Extension of Sellke construction to the SARS-CoV-2 model

◮ Infection mechanism depends on the evolution of infection pressure:
P(t) = β

N

∫ t

0
(IA(u) + IS(u)) du.

◮ Other transition mechanism: the other transitions are based on the
duration of stay in the corresponding compartments.

With the mechanism transition above, we define a new process

W̃ =

{(
S̃(t), Ẽ (t), ĨA(t), ĨS(t), H̃(t), R̃(t), D̃(t)

)
; t ≥ 0

}

Theorem (1)

Under distribution assumptions, there exist a random vector Z
independent of X and a deterministic function FS such as :

W
f .d.d
= W̃ = FS (·,X ,Z ) . (6)

Moreover, FS and Z are totally explicit.
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Kurtz representation (1)

◮ Random Time change or Kurtz representation is studied by Ethier
and Kurtz 1986 and applied to chemical reaction network models
(Anderson and Kurtz 2011)

Consider G = {G (t), t ≥ 0} a continuous time Markov chain with M
different transitions. Denote ζm, λm,m = 1, · · · ,M respectively the
transition vectors and the intensity functions.

Theorem (Kurtz 1982)

There exist Y1, · · · ,YM Poisson independent processes with intensity 1
such as almost surely :

∀ t ≥ 0, G (t) = G (0) +

M∑

m=1

Yi

(∫ t

0

λm (X ,G (s)) ds

)
· ζm. (7)

◮ Use of this representation to perform global sensitivity analysis for
chemical reaction network models (Le Maitre, O. M. Knio, and
Moraes 2015; Navarro Jimenez, Le Maitre, and O. M. Knio 2016)
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Kurtz representation (2)

Theorem (Navarro Jimenez, Le Maitre, and O. M. Knio 2016)

There exist Y1, · · · ,YM Poisson independent processes with intensity 1
and a deterministic function FK such as almost surely :

G = FK


·,X ,Y1, · · · ,YM︸ ︷︷ ︸

Z ′


 (8)

Let adapt this technique to the SARS-CoV-2 model.
There are M = 9 different types of transitions.

◮ Each type of transition is under the form x −→ x + ζm

◮ To each type of transition corresponds an intensity function λm such
as the transition x −→ w + ζm rate is λm(X ,w).

Transitions Transition vector Intensity function

S → E ζ1 = (−1, 1, 0, 0, 0, 0, 0)
t

λ1 (X ,w) =
β

N
S · (IA+ IS)

E → IA ζ2 = (0,−1,+1, 0, 0, 0, 0)
t

λ2 (X ,w) = δ · pE · E
...

...
...
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Sensitivity analysis for the SARS-CoV-2 model (1)

Remind the process:

W =

{
(S(t),E (t), IA(t), IS(t),H(t),R(t),D(t)) ; t ≥ 0

}
dependent on

unknown parameters X = (β, δ, µA, µC , pE , p = (p1, p2), γH , pH).

◮ Model output: E = {E (t); t ∈ [0,T ]} with T = 50

◮ Computed indices: dynamic Sobol indices, aggregated indices

◮ Method: pick-freeze

◮ Number of explorations: n = 5000

◮ Initial conditions: S(0) = 100,E (0) = 1, IA(0) = 0, IS(0) =
0,H(0) = 0,R(0) = 0,D(0) = 0

◮ Uncertain parameter variation intervals are set according to Knock
et al. 2021
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Sensitivity analysis for the SARS-CoV-2 model (2)
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Figure 4: Dynamic of Sobol indices for Sellke representation
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Figure 5: Dynamic of Sobol indices for Kurtz representation
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Sensitivity analysis for the SARS-CoV-2 model (3)
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Figure 6: Aggregated indices for Sellke representation
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Figure 7: Aggregated indices for Kurtz representation
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Sensitivity analysis for the SARS-CoV-2 model (4)

Zoom on the parameter pE total effects

◮ Estimation of indices with n = 5000 explorations at instant t = 20

◮ 95% confidence intervals are computed by bootstrap using 100
replications.
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Figure 8: Indices for Sellke representation at instant t = 20
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Figure 9: Indices for Kurtz representation at instant t = 20

Difference between pE total effects for the two representations is due to
difference in the distribution of the intrinsic randomness.
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Conclusion

Our approach provides:

◮ Additional information: intrinsic randomness contribution and its
interactions with model parameters

◮ Invariance of parameter main contributions with respect to
representation

◮ A way to select a representation (or a computer code) based on the
intrinsic randomness impact
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Perspectives

◮ Study of the impact of the intrinsic randomness distribution on the
conditional expectations of the form: E (f (X ,Z ) | (Xu,Z ))

◮ Extension of Sellke construction to a larger class of compartmental
models.

◮ Extension of our approach to non-markovian epidemic models using
Sellke construction.

◮ Coupling this approach with other sensitivity analysis methods.

◮ Comparison with representation-free methods based on sensitivity
analysis of probability measures of the outputs.
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End

Thank you !
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