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Context

Let us consider an expensive-to-evaluate black-box simulator:

f : X ⊂ R
d → G ⊂ R

m

Typically :

1 ≤ d ≤ 50

1 ≤ m ≤ 5

one evaluation may take minutes up to days

evaluations may be noisy, with variance depending on x

Aim: finding best compromise solutions between objectives with limited
evaluations
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Motivating problem: Detailed Agent-based modeling

ChiSIM is an agent-based simulation model of the urban area of Chicago.

It includes a virtual population of 2.7 million residents in terms of people
(behaviors and social interations), places (1.2 million unique geolocations)
and hourly activity schedules.

C. M. Macal, N. T. Collier and J. Ozik, E. R. Tatara, and J. T. Murphy.
chiSIM: An agent-based simulation model of social interactions in a large urban area.
Winter Simulation Conference, 2018
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CityCovid: COVID-19 Modeling and Learning

Amid the COVID-19 crisis, chiSIM is used to study the epidemic outbreak
and support Public Health departments.

J. Ozik, J. Wozniak, N. Collier, C. Macal and M. Binois.
A Population Data-Driven Workflow for COVID-19 Modeling and Learning.
International Journal of High Performance Computing Applications (accepted), 2020+
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Calibrating the CityCOVID model

Empirical data from hospital systems and public health departments are
used to parameterize CityCOVID and provide targets for calibration (in
particular, cumulative deaths and point prevalence hospitalization).

Remaining parameters (9) to calibrate include: out-of-household activity
levels, person-to-person transmission reduction, ...

Sequential incremental mixture approximate Bayesian computation is
used [Rutter et al., 2019]:

Still, a best set of calibration results is important for scenarii assessment.
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CityCOVID: computational details

CityCOVID is run based on the REPAST agent-based modeling suite
https://repast.github.io

EMEWS is used to handle the whole model exploration workflow
http://emews.org

J. Ozik, N. Collier, J. M. Wozniak and C. Spagnuolo.
From Desktop to Large-Scale Model Exploration with Swift/T.
Winter Simulation Conference, 2016.

It runs on Argonne’s ALCF Theta supercomputer (4932 nodes of 64
cores, 11.7 petaflops total).
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Towards noisy multi-objective optimization

Outputs of 1000 replicates of the same parameters: (observed)

(weighted) aggregated errors with respect to real data:
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CityCOVID challenges for multi-objective optimization

1) Signal-to-noise ratio is very low, larger evaluation budgets are
necessary – but the total budget is still limited.

2) Noise is heteroscedastic (and non-Gaussian).

3) Hundreds of runs can (must) be conducted in parallel.

4) The simulation model is moderately fast, approximately 10 minutes.

5) So must be the model exploration part, with focus on cluster usage.

We show methods to cope with these features with Bayesian optimization
in the following.
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Problem definition

The deterministic MOO problem is:

find x
∗ ∈ arg min

x∈X
(f1(x), . . . , fm(x))

The noisy MOO problem is often formulated as (see e.g.,
[Hunter et al., 2019]):

find x
∗ ∈ arg min

x∈X
(E[f1(x)], . . . ,E[fm(x)])

Other definitions are possible:

to take into account reliability, such as the Pareto optimal
probability, see, e.g., [Rivier and Congedo, 2018];

set-based (or joint) approach, e.g., considering the Pareto front of a
Gaussian process, see, e.g., [Binois et al., 2015].
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Heteroskedastic Gaussian process modeling

The noise variance may be input-dependent.

Observation model: y(xi) = f̄ (xi) + ǫi , ǫi ∼ N (0, r(xi)).

We may be interested in P(f̂ |An) but also in P(y |An); An = (xi , f (xi)).
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Several methods for GPs, with a second GP on the log-noise variance,
e.g., [Goldberg et al., 1997, Kersting et al., 2007, Ankenman et al., 2008,
Lázaro-Gredilla and Titsias, 2011, Binois et al., 2018]
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Handling large data

Standard GP struggles when n reaches a few thousands, due to the cubic
computational cost of matrix inversion.

Recent implementations (e.g., GPyTorch [Gardner et al., 2018], GPflow
[Matthews et al., 2017]) leverage GPU implementation, advanced linear
algebra or inducing points to scale to large n.

Other ideas include the use of covariance functions with compact support
leading to sparse covariance matrices.

A simple yet powerful alternative is to rely on local GPs, defined on a
subset of the large DoE:

handle non-stationarity,

tunable cost (via the size of the subset),

adapted to the prediction location(s), via nearest neighbors (or GP
design criteria),

highly parallel.
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Other MOO acquisition function

Hypervolume-based methods are popular, see e.g.,
[Feliot et al., 2017, Zhang and Golovin, 2020].

But other multi-objective performance indicators (e.g.,
[Audet et al., 2020] can be used to define an improvement (e.g.,
[Svenson and Santner, 2016]).

Other criteria include:

entropy based criteria, e.g., [Hernández-Lobato et al., 2016];

step-wise uncertainty reduction criteria, e.g.,
[Picheny, 2015, Binois, 2015];

scalarization/aggregation functions, see e.g.,
[Knowles, 2006, Rojas-Gonzalez and Van Nieuwenhuyse, 2020,
Emmerich et al., 2020]...

Here we choose the hypervolume metric.
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Batching

A simple and efficient way of handling parallel evalutation is by selecting
q different reference points [Parr, 2012, Gaudrie et al., 2020].

The use of kriging believer/constant liar heuristics
[Ginsbourger et al., 2010] is also possible (a.k.a. hallucination).

[Daulton et al., 2020] proposed a batch (differentiable) expected
hypervolume improvement for deterministic problems, relying on the
reparameterization trick [Wilson et al., 2017] (writing the acquisition
function in integral form). Then Monte Carlo estimation is used, relying
on the Sample Average Approximation (fixed random seed).

None is really adapted to massively parallel systems.
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Choice of GP modeling

Given the low signal-to-noise ratio, we enforce a minimal degree of
replication of 10.

For speed and parallelization, we use local GPs:

laGP is used to select local designs [Gramacy, 2016];
hetGP is used for heteroskedastic GP modeling at these selected
designs [Binois and Gramacy, 2020];
GPareto is used for EHI computation [Binois and Picheny, 2019].
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Expected Hypervolume improvement optimization

Ultimately, only evaluated designs are considered for outputs (i.e., not a
prediction).

Still, for hypervolume improvement computations, we use the predicted
means on the evaluated designs to obtain a current Pareto front (and
filter out noise).

For optimization, we start by evaluation of EHI on a large random
discrete set.

Then, we perform local optimizations.

In the end, we have a set of p designs with large EHI values.
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Handling large batches and favoring replication

We have to allocate up to q = 4000 evaluations per iteration.

Optimizing a batch-EHI is out of reach (q × d = 4000 × 9 variables).

Instead:

we allocate part of the budget to refine the currently identified
non-dominated points.

the rest is allocated based on a portfolio allocation scheme.

it enforces replication, which is beneficial for both estimating the
variance and fast GP inference.
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Portfolio allocation for batch selection (1)

We follow the idea by [Guerreiro et al.,2016] of using the Sharpe ratio to
select a population in multi-objective evolutionary algorithms.

A. P. Guerreiro & C. M. Fonseca.
Hypervolume Sharpe-Ratio indicator: Formalization and first theoretical results
International Conference on Parallel Problem Solving from Nature, 814-823, 2016.

Sharpe-Ratio Maximization (as in [Guerreiro et al.,2016])

Let A =
{

a(1)
, . . . , a(p)

}

be a non-empty set of assets, let vector r ∈ R
p

denote the expected return of these assets and matrix Q ∈ R
p×p denote

the return covariance between pairs of assets. Let z ∈ [0, 1]p be the
investment vector where zi denotes the investment in asset a(i). The
Sharpe-Ratio maximization problem is defined as

max
z∈[0,1]p

h(z) =
r
⊤

z − rf
√

z⊤Qz
s.t.

n
∑

i=1

zi = 1

and rf the return of riskless asset and h the Sharpe ratio.
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Portfolio allocation for batch selection (2)

Solving the Sharpe-Ratio maximization can be solved with quadratic
programming.

The possible assets here are the designs with large EHI values
x

(1)
, . . . , x

(p) that were found by sampling and multi-start optimization.

rf = 0: riskless assets have zero hypervolume improvement.

To obtain the corresponding return and covariance:

1 draw L conditional GP simulations at x
(1)

, . . . , x
(p) to get

(y1(xi)
(j)

, y2(xi)
(j))1≤i≤p;1≤j≤L

2 compute the hypervolume improvement of
(y1(xi)

(j)
, y2(xi)

(j))1≤i≤p;1≤j≤L

3 compute the corresponding return and covariance of x
(1)

, . . . , x
(p)
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Results on CityCOVID

Initial state: 50585 observations (5075 unique designs) from IMABC
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Results on CityCOVID

Final state: 86996 observations (5875 unique designs)
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Results on CityCOVID

Active subspace analysis, e.g., [Constantine, 2015, Wycoff et al., 2021]:
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Summary and perspectives

Simulation models are challenging, here for MOO, but with many
opportunities [Baker et al., 2020].

Individual evaluations may contain very little information, it implies:

a necessity of batching and replicating;

with an adaptive allocation;

and fast to compute criteria.

Here we tried to have a decentralized approach to benefit from the
massively parallel architecture.

Perspectives include: more accurate noise modeling, decoupled setting,
increasing the number of objectives and less myopic approaches.
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Thank you for your attention!

Questions?
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