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Inverse problems as statistical problems

Inverse problems as optimization problems

Inverse problem

Let y∗ ∈ Y and H : X → Y†, find x∗ ∈ X such that

y∗ = H(x∗)

That is: find x∗ ∈ H−1({y∗}), where H−1({y∗}) = {x ∈ X / y∗ = H(x∗)}.

†In practice, H is a numerical code Hcode.

Optimization problem

Let ‖.‖ be a norm on Y†, find

x∗ = arg min
x∈X

‖y∗ − H(x)‖.

This formulation is more general and allows the use of optimization methods (e.g.

a simulated annealing algorithm, which is a Metropolis-Hastings one).

†especially if Y is a metric space without norm, another way to generalize the inverse
problem is minimizing d(y∗

, H(x)) where d(., .) is a distance on Y.
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Inverse problems as statistical problems

Inverse problems as optimization problems

Three possible situations

(S0) #H−1(y) = 1: you are lucky!†

(S1) #H−1(y) > 1: need to reformulate the problem

(S2) ∀x ∈ X ‖y∗ − H(x)‖ > 0: no solution?!

†In theory... In practice, your problem has to be not ill-conditioned for a "accurate solution"
to be computed...

Consequences of (S2)

You have to consider the possibilities that the data y∗ could be affected by
(measurement) error/noise† or that H could be not a perfect model of the reality
behaviour. The solution of the optimization problem is then an estimate x̂ of x∗.
In fact, even in the situations (S0) or (S1), you often should consider both of
these possibilities, which leads to consider probabilistic and statistical tools.
Moreover, x̂ depends generally on the chosen norm ‖.‖: what to choose?

†In the following, we will often regard y∗ as some data from measurements.
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Inverse problems as statistical problems

Inverse problems as optimization problems

The euclidean case: GLS (non-linear Generalized Least Squares)

Let y∗ ∈ R
P and H: R

Q → R
P , considering the inverse problem y∗ = H(x∗) and

a euclidean-norm ‖.‖S induced by S ∈ S++
P (R), that is ‖y‖S

2
= yT S y , find

x̂ = arg min
x∈RQ

‖y∗ − H(x)‖S ⇔ x̂ = arg min
x∈Rq

(y∗ − H(x))
T

S (y∗ − H(x))

By default, engineers often consider the problem of OLS (non-linear Ordinary Least
Squares) and choose the 2-norm, that is S = Ip.
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Inverse problems as statistical problems

Inverse problems as optimization problems

The euclidean case: GLS (non-linear Generalized Least Squares)

Let y∗ ∈ R
P and H: R

Q → R
P , considering the inverse problem y∗ = H(x∗) and

a euclidean-norm ‖.‖S induced by S ∈ S++
P (R), that is ‖y‖S

2
= yT S y , find

x̂ = arg min
x∈RQ

‖y∗ − H(x)‖S ⇔ x̂ = arg min
x∈Rq

(y∗ − H(x))
T

S (y∗ − H(x))

Note that:

Let S1 be in S++
P (R); the GLS problems with S = S1 and S = Sα (same y

and H) are equivalent if ∃α > 0 Sα = α S1, which is a necessary† and
sufficient condition for

∃φ:R → R strictly increasing ∀y ∈ Y ‖y‖Sα

= φ(‖y‖S1
).

Conversely, the fact that two GLS problems with S = S1 and S = Sα are
equivalent does not generally imply this (most strong) condition: e.g. x̂

does not depend on S in the situation (S0).

†Think of the positive homogeneity of norms: ‖α y‖ = |α| ‖y‖.
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Inverse problems as statistical problems

GLS as MLE (Maximum Likelihood Estimate)

PDF of any P-dimensionnal Y ∼ N (µ, Σ)

fN (y ;µ,Σ) = (2 π)
−P/2

det(Σ)
−1/2

exp

(

−
1

2
[y − µ]

T
Σ−1 [y − µ]

︸ ︷︷ ︸

= ‖y − µ‖Σ−1
2

)

Statistical interpretation of the GLS solutions

Therefore, any GLS solution can be interpreted as a MLE:

∀σ > 0

[

x̂ = arg min
x∈RQ

‖y∗ − H(x)‖S ⇔ x̂ = arg max
x∈RQ

LN (x , σ2 Σ; y∗) with Σ = S−1

]

where LN (x , σ2 Σ; y) is the likelihood of parameter (x , σ) associated to the
realization y of a random gaussian vector Y ∼ N (H(x), σ2 Σ), that is

∀i ∈ {1, · · · , P} Yi = Hi(x) + Ui

where the distribution of the "errors" U = (U1 · · · Un)
T

is N (0, σ2 Σ).
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Inverse problems as statistical problems

GLS as MLE (Maximum Likelihood Estimate)

Statistical interpretation of the GLS solutions

In the particular case of OLS (S = Ip):

x̂ = arg max
x∈RQ

LN (x , σ2 Ip; y∗)

with corresponds to U ∼ N (0, σ2 Ip), that is the hypothesis of independence and
homoscedasticity (same variance) of the "errors".

Except for particular cases (depending on y and H), the use of GLS can be seen
as a MLE subject to (implicit) constraints on the covariance matrix of the
gaussian vector of the "errors".

The statistical point of view allows to go further, for example:

assuming or testing non-gaussian errors;

assuming a gaussian vector U, but estimating all the coefficients of the
covariance matrix without any constraint: the appropriate norm to estimate
x∗ is then not chosen but deduced (many measurements y∗,j are needed).
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Inverse problems as statistical problems

Different practical situations, different statistical models

Now, the door is opened to statistics: what kind of model to chose?
It is useful to distinguish between the different situations:

(1) The data y∗ ∈ R
P corresponds to P independent 1-dimensional measurements of the

response of a physical system caracterized by (or depending on) x∗, possibly in different
experimental conditions di (then Hi (x) = h(x , di ) for all i ∈ {1, · · · , P}): it is reasonable
to assume i.i.d. "errors" Ui .

(2) The data y∗ corresponds to only one p-dimensional measurement (p = P), e.g.

y∗
i = y∗(ti ) where data are acquired at p different times ti (or at different points in

space).

(2.1) Nevertheless, it is still reasonnable to suppose i.i.d. "errors", e.g. the durations
between data acquisition (or distances between probes) are "important enough".

(2.2) The possibility that "errors" do depend from each other cannot be excluded, but it
appears reasonnable to assume ergodicity, e.g. by using a stationary Gaussian
Process indexed by time t.

(2.3) Otherwise, you should perform other n − 1 independent measurements y∗,j , unless
you have a very informative prior! Then, you would be in a similar situation than
(1) with n i.i.d. p-dimensional "errors" instead of p i.i.d. scalar "errors".

In situation (2), it is always better to perform as many p-dimensional measurements as
possible, which enables to compare different statistical models, thus to justify ergodicity
or the hypothesis of i.i.d. "errors".

(3) y∗ ∈ R
P corresponds to n p-dimensional measurements (P = p×n): similar to (2.3).
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Inverse problems as statistical problems

Statistics as a general framework to deal with inverse problems

Statistics allows to deal with conditions d suffering from measurement errors [Ba-
yarri, Paulo et al., 2007] (R. Paulo, Lecture 4), or other practical situations such as:

Response of the physical system: y = Hreal(x , d)

Controlled/known

experimental

conditions: d

: measurement with

confidence bounds

For a given d , the variability of the measurements is significant: the uncertain
parameter x cannot be reasonably be thought as steady. x has to be consider as
an irreductible hazard X : its characterization is naturally a statistical problem and
not a "classical" inverse problem.
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Inverse problems as statistical problems

Statistics as a general framework to deal with inverse problems

Missing data inference problem (in the sense of [Dempster et al., 77])

L(y ; θ)
| {z }

incomplete likelihood
to maximize by tuning θ

=

Z

{z∈Z:M(z)=y}

L(z; θ)
| {z }

complete likelihood

dz

where z ∈ Z corresponds to the missing data (e.g. inputs x or measurements "errors"
u). The previous problem can be seen as a such a missing (or incomplete) data problem.

Alternatives to infer X

Non-stochastic EM (Expectation Maximization) algorithms† as Circé [de Crécy,
2001], which are convenient and effective if the complete likelihood corresponds to
a distribution of the exponential family (e.g. linear H, gaussian X and U), but, in
general, not applicable if H is non-linear where the density of X is concentrated.

Stochatic EM† [Kuhn, 2003][Celeux, 2007] or MCMC methods from a bayesian
approach: in general (non-linear H), need for a metamodel of H, since a lot of
evaluations of H are then required.

†In the EM approach, the purpose is the computation of a MLE ; see the tutorial of A.
Roche, CEA, for an overview.
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Bayesian inference as a regularization tool

GLS as MAP (Maximum A Posteriori)

From a (almost-)bayesian† point of view, a GLS solution can interpreted as a
MAP (like any MLE):

x̂ = arg min
x∈RQ

‖y∗ − H(x)‖S ⇔ x̂ = arg
θx

max
θ∈R

Q+1

θ=(θx ,θσ)

π(θ)
︸ ︷︷ ︸

prior

LN (θx , θσ
2 S−1; y∗)

︸ ︷︷ ︸

likelihood
︸ ︷︷ ︸

MAP

for example if π(θ) = π(θσ) π(θx ) (independent marginal priors) and π(θx ) ∝ 1
(improper uniform prior for θx ).

What opportunities come from the bayesian point of view?

In the following, on the basis of linear euclidean examples, we will illustrate the
relevance of the bayesian approach and methods to deal with "not well-posed
problems".

†Viewed from the bayesian decision theory angle, a MAP is only a limit of Bayes
estimators.
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Bayesian inference as a regularization tool

The linear euclidean case

Assumption: ∃H ∈ MP,Q(R) H(x) = H x .

Then:

x̂ can be defined as a solution to a linear system:

x̂ = arg min
x∈RQ

‖y∗ − H(x)‖S ⇔ HT S y∗ = HT S H x̂ .

x̂ is unique whatever y∗ is iif the rank of H is maximal, which implies P ≥ Q

("as many pieces of data as many unknowns is needed") and
HT S H ∈ S++

P (R).

If the previous condition holds, the Gauss-Markov theorem states that the
maximum likelihood estimator X̂ corresponding to x̂ is a BLUE (Best Linear
Unbiased Estimator) of x∗ (case of a linear model with "error" covariance
matrix σ2 S−1 known up to a scale factor σ2).

In practice, to compute x̂ , prefer a QR factorization of LT H, where L is a
square root or Cholesky factor of S, to a Cholesky factorization of HT S H

for a better numerical stability.
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Bayesian inference as a regularization tool

Well-conditioned problems

Well-posed problem in the sense of Hadamard

1 A solution x∗ exists: H−1(y∗) 6= ∅.

2 The solution is unique: H−1(y∗) = {x∗}.

3 The solution depends continuously on the data, in some reasonnable
topology: H−1 is continuous around y∗.

Well-conditioned problem: a practical necessity

In practice, it is necessary to go beyond that latter condition and to ensure that
"a small error on y∗ may not cause a large error on x∗": the condition number of
H−1 around y∗ must be small †.
If not, you cannot expect to compute an "accurate" solution: the problem need to
be regularized.

†Condition number of f at x : lim
ǫ→0+

sup
‖δx‖<ǫ

»
‖f (x + δx) − f (x)‖

‖f (x)‖

–

/

»
‖δx‖

‖x‖

–

.
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Bayesian inference as a regularization tool

Well-conditioned problems

The linear euclidean case
Considering the 2-norm, the condition number κ(A) = |λmax(A)/λmin(A)| of the
symmetric matrix A = HT S H must be small. What to do if κ(A) is too great?!

Tikhonov regularization

This is the most commonly used method of regularization. The linear euclidean
Tikhonov-regularized problem is: find

x̂x0,Λ = arg min
x∈RQ

‖y
∗ − H x‖S

2
+‖Λ (x − x0)‖2

2 ⇔
h

H
T

SH + ΛT Λ
i

| {z }

Ax0,Λ

x̂x0,Λ = H
T

Sy
∗+ΛT Λx0

with Λ ∈ MK ,Q(R)† and x0 ∈ R
Q .

For example, choosing by default Λ = λ IQ , one can try to find the smallest λ ∈ R such
that κ(Ax0,Λ) is "reasonably small".
x0 appears as some kind of guess of what x∗ could be, that is as a prior piece of
information! What if one associates a prior distribution π(x) on x?

†If the rank of Λ is maximal, then ‖Λ (x − x0)‖2 = ‖x − x0‖ΛT Λ.
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Bayesian inference as a regularization tool

Bayesian inference as regularization

We assume the following model:

Likelihood coming from

Y ∗ = H x∗ + U where U ∼ N (0, σU
2 S)

with S = IP (OLS) and known σU
†:

Y ∗ ∼ N (Hx∗, σU
2 IP);

Prior: x∗ ∼ N (x0, σx
2 IQ).

†Variability of the measurement "errors" already estimated.

Mathieu Couplet (EDF R&D - MRI) 30/06/11 13 / 20



Bayesian inference as a regularization tool

Bayesian inference as regularization
Model: Y ∗ ∼ N (Hx∗, σU

2 IP) and x∗ ∼ N (x0, σx
2 IQ).

Therefore,

π(x |y∗) ∝
x

L(x ; y∗) π(x)

∝
x

exp
(

− 1
2

[
1

σx
2 (y

∗ − Hx)
T
(y∗ − Hx) + 1

σU
2 (x − x0)

T
(x − x0)

])

∝
x

exp
(
− 1

2

[
xT Σ−1x − 2µT Σ1x

])
∝
x

exp
(

− 1
2 (x − µ)

T
Σ−1(x − µ)

)

with Σ−1 = 1
σx

2 (H
T H + σx

2

σU
2 IQ) and µT Σ−1 = 1

σx
2 y∗T H + 1

σU
2 x0

T .

Thus µ = (HT H + σx
2

σU
2 IQ)

−1
(y∗T H + σx

2

σU
2 x0

T ) and

x |y∗ ∼ N (x̂x0,Λ,Σ) with Λ =
σx

σU

IQ .

Hence, bayesian inference appears as a way to regularize ill-conditioned problem.
Moreover, here, the bayesian approach gives rationale for the choice of Λ and x0.
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Bayesian inference as a regularization tool

Identifiability of statistical models

Statistical model

A statistical model is a triplet (Y, TY ,P) where TY is a σ-algebra on Y and P a
set of probability distributions on TY .

Identifiability of a statistical model

Let P = {Pθ : θ ∈ Θ} be a parametrization of P†, (Y, TY , {Pθ : θ ∈ Θ}) is said

identifiable iif the mapping Ω: Θ −→ P
θ 7−→ Pθ

is injective, that is θ1 6=θ2 ⇒ Pθ1
6=Pθ2

.

†In practice, defining a statistical model comes to defining a likelihood L(θ; y).

Knowing what the "true" distribution P∗ ∈ P† is, that is having an infinite amount
of data, the identifiability ensures that the inference problem of finding θ ∈ Θ such
that P∗ = Ω(θ∗) satisfies the second condition of Hadamard (uniqueness).

†"All models are wrong but some are useful", G.E.P. Box.
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Bayesian inference as a regularization tool

Identifiability of statistical models

Consequences of non-identifiability

If the model is not identifiable, it may happen for example that

∀θ1 ∈ Θ ∃θ2 ∈ Θ \ {θ1} ∀y ∈ Y L(θ1; y) = L(θ2; y)

⇒ finding θ̂ = arg max
θ∈Θ

L(θ; y∗) is not a well-posed problem.

Practically, you then cannot decide what is a good estimate of θ∗ in general† in
the non-bayesian (frequentist) framework, where all the decisions relying on θ∗

are only based on the likelihood.

†It is a possibility: you may be able to decide in some cases.
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Bayesian inference as a regularization tool

Bayesian inference as regularization against
non-identifiability

Bayesian statistical model

Roughly speaking, a bayesian statistical model is defined by the "combination" of
a parametrized statistical model (Y, TY , {Pθ : θ ∈ Θ}) with a prior π(θ) which is
a probability distribution on (Θ, TΘ).

Remark
From my point of view,

(Y, TY , {Pθ : θ ∈ Θ}) is chosen so as to only model the "true"
variability/dispersion/randomness which is postulated by the observer;

whereas the prior π(θ), chosen in coherence with the available knowledge,
represents the epistemic uncertainty (lack of knowledge) on θ∗.

Thus, the use of gaussian processes for deterministic numerical code
meta-modelling is intrinsically a bayesian modelling.
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Bayesian inference as a regularization tool

Bayesian inference as regularization against
non-identifiability

About the well-poseness of the bayesian inference problem

The bayesian inference approach is completely based on the determination of the
posterior π(θ|y∗) whose existence and uniqueness are always garanteed (unless
the data are incoherent with your model or in some cases of improper prior).
Moreover, most of the Bayes rule (minimizing the posterior expected loss) lead to
a unique Bayes estimator†: the existence and uniqueness of a Bayes estimate θ̂ of
θ∗ is generally ensured in practice.

†Posterior expectation or quantile, typically.
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Bayesian inference as a regularization tool

A euclidean linear example, once again

The inference problem (calibration of the simplest code ever)

Data y∗: P independent 1-dimensional measurements.

Model: Y = H̃ x̃ + Ũ with

Ũ ∼ N (0, σ2IP), x̃ =

0

@

x

µH

µU

1

A and H̃ =

0

B
@

h(d1) 1 1
...

...
...

h(dP) 1 1

1

C
A

where

x is the scalar parameter of a linear code H = Hcode to be calibrated
(H(x , d) = h(d) x);
Ui = µU + Ũi ∼ N (µU , σ2IP) is the ith measurement error (systematic
measurement bias µU);

µH is a systematic† bias/difference between the real response Hreal(x , d) of
the physical system in conditions d and the code prediction H(x , d);
di is the known/controlled conditions of the observation y∗

i .

Unknows (3 cases): θ = (x , µH , µU), θ = (x , µ) with µ = µH + µU or θ = x .

†Assumed independent from x and d .
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Bayesian inference as a regularization tool

A euclidean linear example, once again

Identifiability: different cases

Yi ∼ N (h(di) x + µH + µU , σ2IP) (independent, not identically distributed)

(C1) θ = (x , µH , µU): non-identifiability (ill-posed OLS problem);
You should entirely calibrate your measurement system before using measurements
to calibrate your code.

(C2) θ = (x , µ) with µ = µH + µU
†:

(C2.1) ∀(i , j) ∈ {1, · · · , P}2
h(di) = h(dj): non-identifiability.

(C2.2) ∃(i , j) ∈ {1, · · · , P}2
h(di) 6= h(dj): identifiability.

You should carry out the experiments in different conditions di .

(C3) θ = x : identifiability.

In practice, it could be very difficult to carry out experiments in different conditions or
to analyse mathematically the identifiability (non-linear code): "potential confonding"
(R. Paulo, Lecture 3). Moreover, even in case of non-identifiability, is it impossible to
learn from data?

†E.g. your measurement system was calibrated from a reference (µU = 0) or you
assume your numerical model H is perfect (µH = 0).
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Bayesian inference as a regularization tool

A euclidean linear example, once again

Identifiability: a practical (toy) example

P generated data according to Yi ∼ N (di x∗ + µ∗, σ2IP) (h(di) = di), with
x∗ = 9.5, µ∗ = 0.5, di ∈ {1, 2} and σ = 0.1.

Uniform proper prior: x , µ ∼ U([9, 10]×[0, 1]).

Three data sets†:

P = 2 measurements with d1 = d2 = 1 (same conditions (C2.1));

P = 30, d1 = · · · = d30 = 1 (same conditions (C2.1));

P = 30,


d1 = · · · = d15 = 1
d16 = · · · = d30 = 2

(different conditions (C2.2)).

Lazy choice: Metropolis-Hastings sampling with isotropic random walk (next
slides: 1, 000 draws from 100, 000).

†They share as many data as possible (2 or 15).
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Bayesian inference as a regularization tool

A euclidean linear example, once again

Identifiability: a practical (toy) example

x∗ = 9.5, µ∗ = 0.5; uniform prior over [9, 10]×[0, 1].
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µ = 10 − x

posterior sample of (x, µ)
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µ = 10 − x

posterior sample of (x, µ)

Even in case of non-identifiability, you can learn from data with bayesian statistics and
carry out computations.

Mathieu Couplet (EDF R&D - MRI) 30/06/11 16 / 20



Bayesian inference as a regularization tool

A euclidean linear example, once again

Identifiability: a practical (toy) example

x∗ = 9.5, µ∗ = 0.5; uniform prior over [9, 10]×[0, 1].

With same conditions di = 1, we can learn from data that x∗ + µ∗ = 10: if we
want to use H to predict, the result is interesting if we assume µU = 0 (calibrated
measurement system), but not if we assume µ∗

H = 0.
In the former case (x∗ + µ∗

H = 10), you can predict correctly, but only for d = 1.

Generally, you should use a "calibrated" code for prediction only in similar
conditions than the ones of the data taken into account.

It appears very important to validate your code after calibration from
experiments in new conditions. A calibration & validation process should
involve three successive steps: calibration (first data set), validation
(second data set), then re-calibration (to take benefit of all data sets).†

†The situation is similar when meta-modelling; you can also perform k-fold cross
validation.
Mathieu Couplet (EDF R&D - MRI) 30/06/11 16 / 20



Bayesian inference as a regularization tool

A euclidean linear example, once again

Identifiability: a practical (toy) example

x∗ = 9.5, µ∗ = 0.5; uniform prior over [9, 10]×[0, 1].
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● x = 9.5, µ = 0.5

posterior sample of (x, µ)+

x = 9.5, µ = 0.5

posterior sample of (x, µ)

Although bayesian statistics has a strong power of regularization, you should not neglect
the identifiability: it is useful to improve the learning process.
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Conclusions

Conclusions

Except in ideal situations (perfect data, perfect code H, well-posed problem), you should
consider statistics to deal with your inverse problems, since it enables:

to choose other hypothesis for the "errors" (non-gaussian ones) and ways to test
and compare them;

the possibility to estimate confidence intervals or credibility intervals for x∗;

to deal with various situations of uncertainty (random inputs, not well-known
experimental conditions).

In particular, the bayesian statistics methodology is a convenient one:

to regularize ill-conditioned problem, to deal with non-identifiability;

to assimilate data sequentially;

to adjust the decision making (e.g. extracting an estimate x̂ from the posterior) by
the choice of a loss function as relevant as possible;

to produce interesting results from little data by combining it with expertise.

It is an idealized picture... practice may be something else. In particular, the price to pay
may be a great need in computing resources.
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Appendix

Random inputs: an example (ANR project OPUS)

Description

Physical system: 50 km of river (Garonne) ;

Saint-Venant 1D steady eq., composed bed (EDF code Mascaret):

z(s) = M(Ksminor(s), Ksmajor(s), Q)

où z = height of water, Ks = Strickler coefficient and Q = rate of flow.

constant Ks all along three river parts, only uncertain along the third:

y =

(
zMas d’Agenais

zMarmande

)

= H(Ks, Q) where Ks ∈ R
2

n = 100 measurements
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Appendix

Random inputs: an example (ANR project OPUS)

Find θ̂ = arg max
θ∈Θ

L(y ; θ) with L(y ; θ) =

∫

M−1(z)

L(z ; θ)dz ;

E.g. θ corresponds to the unknown parameters of the probability distribution of
some random inputs Z = X of a perfect code H and the measurement system was
calibrated.

SEM (Stochastic EM) [Celeux & Diebolt, 86]

1 Simulation:

1 Simulation of Z |Y = y and θ = θk : zk ∼ L(z ; θk)
−→ Use of a MCMC method (non-linear H): meta-modelling could be

needed

2 θk+1 = arg max
θ

L(zk ; θk)

−→ Homogeneous Markov chain which concentrates around the stationnary
points of L(y ; . ): no ponctual convergence

2 Estimate, generally: θ̂ = 1
J−j+1

∑J
k=j θk
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Appendix

Random inputs: an example (ANR project OPUS)

Application

Z = X = Ks ∈ R
2 (Strickler coefficients) with unknown randomness N (µ, Σ)

We used SAEM-MCMC (Stochastic Approximation EM)
[Delyon, Lavielle & Moulines, 99][Kuhn & Lavielle, 03] [Allassonnière & Kuhn, 10]
to force the Markov chain to converge ponctually.

100 first raws: SEM (chain not forced yet)

Some results for µ:
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