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The problem of the day

The general mixed integer nonlinear problem is

MINLP















minimize
x,y

f (x , y)

subject to g(x , y) ≤ 0
x ∈ X

y ∈ Y ∩ Z
p

• f (x , y) : Rn × R
p → R, g(x , y) : Rn × R

p → R
m are smooth functions.

• X ⊂ R
n, Y ⊂ R

p are polytopes including bounds on the variables.

Extremely difficult: Combines challenges of handling nonlinearities with
combinatorial explosion of integer variables [Belotti et al., 2013].

Extremely powerful: “The mother of all deterministic optimization
problems” [Lee, 2008].



Real-world applications [Bonami, 2014]

Application nonlinear discrete
Portfolio optimization Risk, utility, robust-

ness
number of assets, min
investment

[Bienstock, 1996, Bonami and Lejeune, 2009, Vielma et al., 2008]
Chemical plant design Chemical reactions what to install
[Duran and Grossmann, 1986, Flores-Tlacuahuac and Biegler, 2007]
Block Layout Design Spatial constraints what to layout
[Castillo et al., 2005]
Networks with delays Delay as function of

traffic
Path, flows

[Boorstyn and Frank, 1977, Ameur and Ouorou, 2006]
Location with
stochastic services

Demands location model

[Elhedhli, 2006]
TSP with neighbor-
hoods (Robotics)

Definition of ngbh. TSP

[Gentilini et al., 2013]



Real-world applications [Bonami, 2014]

Application nonlinear discrete
Petrochemical Blending, pooling Which process
[Haverly, 1978]
Gaz/Water networks Pressure loss Network topology
[Bragalli et al., 2011]
Nuclear Reactor
reloading

reactions What to reload

[Quist et al., 1999]
Airplane trajectory
optimization

aerodynamics waypoints, colision
avoidance,. . .

[Cafieri and Durand, 2013, Soler et al., 2013]
Mixed Integer Opti-
mal control

DE discrete controls

[Sager, 2005, 2012]
Countless more . . . . . .
see for example [Belotti et al., 2013]



Convexity of Nonlinear Functions

MINLP















minimize
x,y

f (x , y)

subject to g(x , y) ≤ 0
x ∈ X

y ∈ Y ∩ Z
p

MINLP

Convex Non-convex

Definition. A smooth function f : Rn → R is convex, iff for all couples
of points x0, x1 ∈ R

n, we have

f (x1) ≥ f (x0) +∇f (x0)T (x1 − x0)

(In a slight abuse of notation) MINLP is convex iff f (x , y) and g(x , y)
are convex functions, otherwise MINLP is nonconvex.



Nonlinear Programming

NLP







minimize
x

f (x)

subject to g(x) ≤ 0
x ∈ X

MINLP

Convex Non-convex

NLP

• no integer variables, but challenge of handling nonlinearities.

• Convex NLP: all the minima all global minima (if strictly convex: only
one minimum) and polynomial-time interior-point methods [Nesterov and
Nemirovskii, 1994].

• Nonconvex NLP: find global solution is NP-hard (global quadratic
optimization is already NP-hard [Sahni, 1974]).



MINLP 6= NLP

• Convex NLP: all the minima all global minima and polynomial-time
interior-point methods [Nesterov and Nemirovskii, 1994].

• A strictly convex NLP has at most one global solution, the same does
not hold for MINLP.

minimizer

continuous

Figure: Optima for strictly convex MINLP [Leyffer, 1994].



Linear Programming

LP







minimize
x

aT x

subject to Ax ≤ c

x ∈ X

MINLP

Convex Non-convex

NLP
LP

• no integer variables, no challenge of handling nonlinearities.

• polynomial-time methods: ellipsoid algorithm [Khachiyan, 1979] and
Karmarkar’s algorithm [Karmarkar, 1984].

• Simplex algorithm for LP, proposed by George Dantzig in 1947, is one
of the Top Ten Algorithms of the 20th Century [Dongarra and Sullivan,
2000].



Mixed Integer Linear Programming

MILP















minimize
x,y

aT x + bT y

subject to Ax + By ≤ c

x ∈ X

y ∈ Y ∩ Z
p

MINLP

Convex Non-convex

MILP

• linear objective function and linear constraints, but combinatorial
explosion of integer variables.

• NP-hard problem: no known polynomial-time algorithm (0-1 integer
linear programming is NP-complete problems [Karp, 1972]).

• well-studied in literature since [Gomory, 1958] and very powerful
algorithms (many commercial softwares).



Convex MINLP 6= MILP

The solution of MILP is an extreme point, however the same does not
hold for convex MINLP:

minimize
y

p
∑

i=1

(

yi −
1

2

)2

, subject to yi ∈ {0, 1}, i = 1, . . . , p

Trick: Introduce a new objective function (a dummy variable η) and a
new constraint f (x , y) ≤ η.

MINLPη























minimize
x,y ,η

η

subject to f (x , y) ≤ η

g(x , y) ≤ 0
x ∈ X

y ∈ Y ∩ Z
p

y1

y2

η

1

1

0
0

(y∗
1 , y

∗
2 )



Complexity Issues

MINLPη























minimize
x,y ,η

η

subject to f (x , y) ≤ η

g(x , y) ≤ 0
x ∈ X

y ∈ Y ∩ Z
p

MINLP

Convex Non-convex

MILP

• MINLP is NP-hard (MILP as special case).

• In general undecidable [Jeroslow, 1973], even in “easy” case with “few”
variables [De Loera et al., 2006].

• MINLP is a hot topic in optimization community: from [Leyffer, 1994]
(first PhD thesis on convex MINLP) to IMA Hot Topics in 2012.



Assumptions and Hypotheses

Assumption 1. All the problem function are “perfectly” known, in terms
of their mathematical expression and values.

Assumption 2. X and Y are nonempty compact convex sets defined by
systems of linear inequality constraints.

Assumption 3. Functions f and g are twice continuously differentiable
and convex.

Assumption 4. MINLPη satisfies a constraint qualification condition.

• Assumptions 1: see next talk about Black Box MINLP.

• Assumptions 2 avoid undecidability problems.

• Assumptions 2 and 3 =⇒ we consider only convex MINLPη.

• Assumptions 4: technical requirement for NLP machinery.

Moral: “the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity” [Rockafellar, 1993].



Auxiliary Problems

Relaxation in theory:

• optimize over a larger feasible region (ignore several constraints).

• compute a Lower Bound on the “real” minimum value.

Definition. An optimization problem min{f̃ (z) : z ∈ F̃} is a relaxation of
min{f (z) : z ∈ F}, iff F̃ ⊃ F and f̃ (z) ≤ f (z) for all z ∈ F .

Relaxation in practice:

• relax integrality requirements: obtain an NLP.

• relax nonlinear constraints: obtain an MILP.

Upper bound:

• any feasible point provides an objective value greater
(or equal) that the minimum one.

f̃ (x̃ , ỹ)

f (x∗, y∗)

f (x̂ , ŷ)



Relax Integrality: NLPrelax

NLPrelax























minimize
x,y ,η

η

subject to f (x , y) ≤ η

g(x , y) ≤ 0
x ∈ X

y ∈ Y f (x̃ , ỹ)

f (x∗, y∗)

f (x̂ , ŷ)

• Relax integrality: from y ∈ Y ∩ Z
p to y ∈ Y ⊂ R

p.

• If MINLPη is convex then NLPrelax is convex too (globally solvable).

• If (x̃ , ỹ) is optimal for NLPrelax and feasible for MINLPη, then it is also
a minimum for MINLPη.

• If (x̂ , ŷ) is feasible for MINLPη and f (x̂ , ŷ) = f (x̃ , ỹ), then it is also a
minimum for MINLPη.



Relax Convex Nonlinearities: MILPrelax

MILPrelax











































minimize
x,y ,η

η

subject to f (xk , yk) +
(

∇f (xk , yk)
)T

(

x − xk

y − yk

)

≤ η, ∀k ∈ K

g(xk , yk) +
(

∇g(xk , yk)
)T

(

x − xk

y − yk

)

≤ 0, ∀k ∈ K

x ∈ X

y ∈ Y ∩ Z
p

• Relax convex nonlinearities: supporting hyperplanes at points (xk , yk)
for k ∈ K (apply the definition of nonlinear convex function).

• Polyhedral (linear) relaxation of nonlinear convex constraints.

• Same relationships between solutions of MILPrelax and MINLPη.





Constraint Enforcement

MINLPη























minimize
x,y ,η

η

subject to f (x , y) ≤ η

g(x , y) ≤ 0
x ∈ X

y ∈ Y ∩ Z
p

f (x̃ , ỹ)

f (x∗, y∗)

f (x̂ , ŷ)

Goal: Exclude a solution (x̃ , ỹ) of a relaxation, infeasible for of MINLPη.

• Relaxation refinement: tighten the MILPrelax relaxation.

• Branching: exclude set of non-integer points from NLPrelax .

• Combinations of these two constraint enforcement approaches.



Constraint Enforcement: Refinement

Definition. A valid inequality is an inequality that is satisfied by all
feasible solutions of MINLPη. A cut is valid inequality that “cuts off” the
current point (x̃ , ỹ) infeasible for MINLPη.

Example. If g(x , y) ≤ 0 convex and there is an index j such that
gj(x̃ , ỹ) > 0, then (x̃ , ỹ) is “cut off” by

gj(x̃ , ỹ) +∇gj(x̃ , ỹ)
T

(

x − x̃

y − ỹ

)

≤ 0

Figure: (x̃ , ỹ) infeasible for MINLPη

[Belotti et al., 2013].
Figure: Valid inequality “cuts off” (x̃ , ỹ)
[Belotti et al., 2013].



Constraint Enforcement: Branching

Goal: Exclude a fractional solution (x̃ , ỹ) of NLPrelax .

• Select fractional ỹi for some i = 1, . . . , p.

• Create two new sub-problems by respectively adding:

yi ≤ ⌊ỹi⌋ and yi ≤ ⌈ỹi⌉

• Solution to MINLPη lies in one of the new subproblems.

Figure: NLP subproblem with yi ≤ ⌊ỹi⌋
[Belotti et al., 2013].

Figure: NLP subproblem with yi ≥ ⌊ỹi⌋
[Belotti et al., 2013].



Nonlinear Branch-and-Bound

NLPrelax























minimize
x,y ,η

η

subject to f (x , y) ≤ η

g(x , y) ≤ 0
x ∈ X , y ∈ Y

l ≤ y ≤ u

l− := l

u− := ⌊ỹi⌋

l+ := ⌈ỹi⌉

u+ := u

NLP−
relax

NLP+
relax

• solve NLPrelax and find a fractional solution (x̃ , ỹ).

• introduce two new sub-problems NLP+
relax and NLP−

relax respectively
with bounds (l+, u+) := (l , u) and (l−, u−) := (l , u):

u−i := ⌊ỹi⌋ and l+i := ⌈ỹi⌉

• nodes NLP+
relax and NLP−

relax correspond to the branching sub-problems.



Nonlinear Branch-and-Bound

• Iterate branching and create a tree.

• Let (x̂ , ŷ) be an upper bound of MINLPη.

• Pruning rules:

Infeasibility: if a sub-problem is infeasible

⇒ any NLP in its subtree is also infeasible.

Integrality: if (x̃ , ỹ) is an integral solution

(a) f (x̂ , ŷ) < f (x̃ , ỹ), then (x̂ , ŷ) := (x̃ , ỹ).
(b) no better feasible solution in sub-tree.

Dominance: if f (x̃ , ỹ) ≥ f (x̂ , ŷ)

⇒ no better integer solution in sub-tree.

NLPrelax

NLP+
relax

NLP++
relax

· · ·

NLP−
relax

NLP−−
relax

· · · · · ·



Nonlinear Branch-and-Bound: Pseudocode

initialization: set U := ∞, and add NLPrelax to heap H.

while H 6= ∅ do

Remove a sub-problem from the heap H.
Find a solution (x̃ , ỹ) to the current sub-problem.

if current sub-problem is infeasible then

Prune node by infeasibility.

else if f (x̃ , ỹ) ≥ U then

Prune node by dominance.

else if (x̃ , ỹ) is integral then

Update: U := f (x̃ , ỹ) and (x∗, y∗) := (x̃ , ỹ).

else

Branch on fractional variable.
Create two sub-problems. Add them to H.

end if

end while



Nonlinear Branch-and-Bound

Theorem. All previous assumptions hold. Then Nonlinear Branch-and-
Bound terminates at optimal solution (or indication of infeasibility) of
MINLPη after a finite number of iterations.

Open questions:

• How to select the branching variable (maximum fractional as bad as
randomly selection [Achterberg et al., 2005]).

• How to select the next sub-problem to be solved.

• Warm-starting of NLP solver.

Goal: Minimize size of Branch-and-Bound tree (dimension of heap H).

Strategy: Find good upper bound and increase lower bound quickly.





Outer Approximation: NLP sub-problem

NLPfix















minimize
x

f (x)

subject to g(x , y) ≤ 0
x ∈ X

y = ŷ

NLPfeas

{

minimize
x

∑m

j=1 g
+
j (x , ŷ)

subject to x ∈ X

• NLPfix is feasible =⇒ upper bound to MINLPη.

• NLPfix is infeasible ⇐⇒ strictly positive optimal value of NLPfeas .

• NLPfix is infeasible =⇒ nonlinear solvers provide a solution to NLPfeas .

Lemma. Supporting hyperplanes at (x̂ , ŷ) are valid inequalities for
MINLPη. If NLPfix is infeasible, then supporting hyperplanes are valid cut
w.r.t. (x̂ , ŷ).



Outer Approximation Algorithm

MILPrelax



















































minimize
x,y ,η

η

subject to η ≤ Uk − ε

f (xk , yk) +
(

∇f (xk , yk)
)T

(

x − xk

y − yk

)

≤ η, ∀xk ∈ X k

g(xk , yk) +
(

∇g(xk , yk)
)T

(

x − xk

y − yk

)

≤ 0, ∀xk ∈ X k

x ∈ X

y ∈ Y ∩ Z
p

• X k ⊂ X := {(x̂k , ŷk) ∈ X × Y ∩ Z
p : (x̂k , ŷk) solutions to NLPfix or

NLPfeas for integer assignment ŷ = yk}.

• boundedness of Y ∩ Z
p =⇒ boundedness of X (and of X k).

• upper bound Uk := minj≤k{f (x̂
k , ŷk) : NLPfix is feasible}.



Outer Approximation: Pseudocode

data: starting integer point (x0, y0) and tolerance ε > 0.

initialization: set U−1 := ∞, X−1 = ∅ and k = 0.

repeat

Solve NLPfix or NLPfeas with ŷ = yk : solution (x̂k , ŷk).

if NLPfix is feasible and f (x̂k , ŷk) < Uk−1 then

Update best point (x∗, y∗) = (x̂k , ŷk) and Uk = f (x̂k , ŷk).

else

Set Uk = Uk−1.

end if

Add supporting hyperplanes about (x̂k , ŷk) to MILPrelax :
X k = X k−1 ∪ {k}.

Solve MILPrelax : solution (xk+1, yk+1) and set k = k + 1.

until MILPrelax is infeasible.



Worst case of OA [Hijazi et al., 2014]

Theorem. All previous assumptions hold. Then Outer Approximation
terminates at optimal solution (or indication of infeasibility) of MINLPη

after a finite number of iterations.

P



















minimize
y

0

subject to

p
∑

i=1

(

yi −
1

2

)2

≤
p − 1

4

y ∈ {0, 1}p

Lemma. Outer Approximation cannot cut more than one vertex of the
hypercube: MILPrelax feasible for any k < 2n.

Corollary. Outer Approximation Algorithm takes 2n iterations (each of
them requires solving a MILPrelax) to check infeasibility of nonlinear
integer problem P.





Convex MINLP Softwares [Bonami, 2014]

Solver Reference Algorithm(s)

Dicopt OA
MINLP_BB [Leyffer, 1998] NLP BB
SBB [Bussieck and Drud, 2001] NLP BB
α-ECP [Westerlund and Lundqvist, 2005] ECP (variant of OA)
Bonmin [Bonami et al., 2008] NLP BB, OA, LP/NLP
FilMINT [Abhishek et al., 2010] LP/NLP
KNITRO [Byrd et al., 2006] NLP BB, LP/NLP
SCIP [Vigerske, 2013] LP/NLP



Convex MINLP Softwares [Bonami, 2014]
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Black Box MINLP: Derivative-free approaches

• objective function values are too expensive to compute.

• objective function values are determined via simulation.

Derivative-free methods:

• Direct search: locally sampling objective function along a grid.

• Evolutionary methods: random mutations and survival of the fittest.

Software:

• NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search)
[Audet et al., 2009], [Le Digabel, 2011].

d2

d1y z

d3

z

d2

d1

d3

Figure: Local direct search [Liuzzi et al., 2014].



Conclusions: Convex MINLP

• Extremely powerful and difficult: very challenging problem and many
real-world applications.

• Convexity and completely knowledge of functions are critical
assumptions.

• Key building blocks: NLP and MILP relaxations with constraint
enforcement (branching and refinement).

• Basic algorithms for convex MINLP: Nonlinear Branch-and-Bound and
Outer Approximation.

• One step beyond: LP/NLP-based Branch-and-Bound (Outer
Approximation embedded in a single tree).

• MINLP softwares in a nutshell with a comparison picture: Outer
Approximation performs relatively better.

• Reformulation is a very important ingredient in every optimization
recipe: exploit structure of your problem.
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