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Problem description

Let us consider an expensive-to-evaluate black box simulator:
f:XCRY =R

Suppose we want to minimize f: find x* € argmin f(x).
xeX

Here, X = [~1,1]9, corresponding to box constraints.
In addition d is possibly /arge!, especially with respect to the evaluation budget.

Common occurrence in Physics, Operations Research, Epidemiology, Machine Learning, ...

1What large means is very much application dependent. In general, d > 10 is considered as large in BO.
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Outline

@ Background on Bayesian optimization
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General solving procedure in Bayesian Optimization (BO)?3

Bayesian optimization

Sequential design strategy based on a distribution over functions to define an acquisition

function.

<

,‘ 0) Design of experiments l

l

1) Metamodel training ’-—

<

,|2) Infill criterion optimizationl

Result

2. Mockus. Bayesian approach to global optimization. Springer, 1989.
3R. Garnett. Bayesian Optimization. Cambridge University Press, 2022,

For instance:
Q@ Maximin Latin Hypercubes Samples
@ Gaussian process model
@ Expected Improvement
© Budget
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Gaussian process regression

We use a zero mean GP prior on y, with covariance k: Y ~ GP(0, k).
MVN conditional identities give directly the result on (x;, yi)i<i<n:
Y]y ~ GP(u, 0?) with
ma(x) = E(Y(x)ly) = k(x) 'Ky,
s2(x) = Var(Y(x)]y) = k(x,x) — k(x) 'Ky k(x), where
k(x) = (k(x,x1), ..., k(x,x,))T, Ky = (k(xi,xj))1<ij<n-
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Noisy observations

GPs readily handle Gaussian noise, e.g., through the estimation of a constant noise term.
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For the reminder of the talk, we do not dvelve more on this additional challenge.
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GP training

GPs have their own hyperparameters, mostly for the kernel function.

The most popular kernels are stationary, e.g., the Gaussian kernel:
k(x,x'|72,0) = 2 exp(—(x — x")?/0) = 1?c(abs(x — x')|72,6).
Hyperparameter estimation can be based on:

@ model error (i.e., cross validation, training/testing sets)

@ variogram analysis

o (log)-likelihood, possibly regularized (maximum a posteriori)

Likelihood, i.e., multivariate normal density:

1 1 Tt

Alternatives include maximume-likelihood estimation and more Bayesian versions with various

degrees of approximation.
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Infill criterion - Expected Improvement*

Improvement: /:x € X — max{f* — Y(x),0} e R, f* = 121_i2 f(x;)

Expected Improvement

E[I(x)[y] = (f* — ma(x)) ® (%’;@) + 5,(%) (%@)

— balance between exploration and exploitation

fx) 7
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4J. Mockus, V. Tiesis, and A. Zilinskas. “The application of Bayesian methods for seeking the extremum”. In: Towards Global Optimization 2.117-129
(1978), p. 2.
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Infill criterion - Expected Improvement*
Improvement: [:x € X — max{f* — Y(x),0} € R, f* = 1r<n_i2 f(x;)

Expected Improvement

E[IG0)ly] = (£ = ma(x)) & (E750)) + sn(x)o (C5pa)

— balance between exploration and exploitation
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4Mockus, Tiesis, and Zilinskas, “The application of Bayesian methods for seeking the extremum”.
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Infill criterion - Expected Improvement*
Improvement: [:x € X — max{f* — Y(x),0} € R, f* = 1r<n_i2 f(x;)
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4Mockus, Tiesis, and Zilinskas, “The application of Bayesian methods for seeking the extremum”.
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Outline

© High-dimensional GPs
@ Overview
@ Additive models
@ Active subspace estimation
@ Other methods
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Effects of the curse of dimensionality

A regular grid of 10 points in dimension d requires 109 points.

Most of the volume concentrates on the boundary of the domain:

@ volume(unit d-sphere)/volume(unit d-cube) — 0 as d — oo

o volume(d-ball of radius (1 — §)R)/volume(d-ball of radius R) = o((1 — 6)9)
Uniformly sampled points are far away from each other:

of point-wise distances (d = 2) Histogram of point-wise distances (d = 10) Histogram of point-wise distances (d = 100)

' d
Issue for most kernels, e.g. k(x,x") = c(||x — X'[|), k(x,x") = T ki(xi, x])
1

(0.91° = 0.35,0.95%0 ~ 0.21)

8/55



and consequences

These high dimensional effects impact all steps of BO:

@ distances for maximin LHS (unless .| Design of experiments |
projected?)
@ distances in the GP model (+ training) Black | Metamodels training <

L Box
@ optimizing Expected Improvement

>|InfiII criterion optimization‘

2V. R. Joseph, E. Gul, and S. Ba. “Maximum projection designs for
computer experiments”. In: Biometrika 102.2 (2015), pp. 371-380.

Budget

Result
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What to do?

The main option is to assume additional structural information:
@ some variables have no influence (screening);
@ the problem is intrinsically of lower dimension (linear/non-linear embeddings);

@ or via additivity and functional ANOVA decompositions.

More exotic structures are also possible.

A review is available in®.

5M. Binois and N. Wycoff. “A survey on high-dimensional Gaussian process modeling with application to Bayesian optimization". In: ACM Transactions on

Evolutionary Learning and Optimization 2.2 (2022), pp. 1-26.
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Standard GP Training adaptations

Defaults for GP packages are often thought for low numbers of variables, and with the flat
limit®. Recent discussions include:

@ Appropriate priors for the MAP or MLE (in particular the upper bounds)7,8,9.
o Use of Matérn kernel (not squared distance), diffuse priors, UCB0.
o Robust multi-objective fit beyond MLE (LOO, coverage, ...)!,12.
o Not trying to learn the hyperparameters!3

These may also hint that more complex structure is even harder to learn.

65, Barthelmé et al. “Gaussian process regression in the flat limit”. In: The Annals of Statistics 51.6 (2023), pp. 2471-2505.

7D. Eriksson and M. Jankowiak. “High-dimensional Bayesian optimization with sparse axis-aligned subspaces”. In: Uncertainty in Artificial Intelligence.
PMLR. 2021, pp. 493-503.

8C. Hvarfner, E. O. Hellsten, and L. Nardi. “Vanilla Bayesian Optimization Performs Great in High Dimension”. In: arXiv preprint arXiv:2402.02229 (2024).
9M. Gu, X. Wang, and J. O. Berger. “Robust Gaussian stochastic process emulation”. In: The Annals of Statistics 46.6A (2018), pp. 3038-3066.
107 Xu and S. Zhe. “Standard Gaussian Process is All You Need for High-Dimensional Bayesian Optimization”. In: arXiv preprint arXiv:2402.02746 (2024).

1A, Marrel and B. looss. “Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation”. In: Reliability
Engineering & System Safety (2024), p. 110094.
12A. Marrel and B. looss. “Probabilistic surrogate modeling by Gaussian process: A new estimation algorithm for more robust prediction”. In: Reliability
Engineering & System Safety 247 (2024), p. 110120.
BT, Appriou, D. Rulliere, and D. Gaudrie. “Combination of optimization-free kriging models for high-dimensional problems”. In: Computational Statistics
(2023), pp. 1-23.
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Scaling up to many variables: inactive variables / single index

One simple attempt to tackle high-dimension is to assume that most of the variables have no
effect (or are handled as noise):

model: f(x) = g(x/) with I C {1,...,d},|l| < d

14 15 16 17)_

and then identify them sequentially, (see e.g.,
Another popular dimension reduction technique is the single index model:
f(x) = g(a'x) with a € R

See e.g.,'® for the GP treatment.

14A. Marrel et al. “An efficient methodology for modeling complex computer codes with Gaussian processes”. In: Computational Statistics & Data Analysis
52.10 (2008), pp. 47314744,

15B. Chen, R. Castro, and A. Krause. “Joint optimization and variable selection of high-dimensional Gaussian processes”. In: Proc. International Conference
on Machine Learning (ICML). 2012.

16\, B. Salem et al. “Sequential dimension reduction for learning features of expensive black-box functions”. In: (2018).

17A. Spagnol, R. L. Riche, and S. D. Veiga. “Global sensitivity analysis for optimization with variable selection”. In: SIAM/ASA Journal on uncertainty
quantification 7.2 (2019), pp. 417-443.

18R B. Gramacy and H. Lian. “Gaussian process single-index models as emulators for computer experiments”. In: Technometrics 54.1-(2012)=pp. 30=41.
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Scaling-up to many variables: additive models

Model: f(x) = _Zdjlg,-(x,-), see, e.g., 19,20,
i=
For GPs, amounts to summing univariate kernels: k(x,x’) = _Zd: ki(xi, x!)
Pros: =
@ scale linearly with d
@ predictive mean is the sum of univariate predictive means
@ optimization of the acquisition function is simplified
@ interpretability
Cons:
@ zero predictive variance at unobserved points
@ training is harder (2 x d + 1 hyperparameters)

@ very strong structural assumption

19N, Durrande, D. Ginsbourger, and O. Roustant. “Additive Kernels for Gaussian Process Modeling”. In: Annales de la Facultée de Sciences de Toulouse
(2012), p. 17.
20D, K. Duvenaud, H. Nickisch, and C. E. Rasmussen. “Additive Gaussian processes”. In: NeurlPS. 2011, pp. 226-234.
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Scaling-up to many variables: additive models

Branin function

Example: 2D Branin function with 40 design points

13/55



Scaling-up to many variables: additive models

Example: 2D Branin function with 40 design points

Branin function (standard GP predictive mean) Branin function (standard GP predictive variance)
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Scaling-up to many variables: additive models

Example: First order additive is still flexible

1(x)

) 405
TN

KN
G NS

0.8

1(x)

N
13/55



Scaling-up to many variables: additive models

Example: Additive function with main effects

Main effect # 1 Main effect # 2 Main effect # 3

Leave-one-out predictions
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Scaling up to many variables: additive by-part models

M .
Additivity can be extended to groups of variables, see e.g.,1%,2%: f(x) = 3. g()(x()) with A;
i=1
disjoint subsets of {1,...,d}.

The non-overlapping case is addressed, e.g., by?!, but inference is difficult (especially with
BO).

Subsequent works try learning a tree decomposition of the variables??, that can be local,
random and data independent?3.

The underlying dependence graphs between variables are more or less rich depending on the
assumptions.

19k Kandasamy, J. Schneider, and B. Péczos. “High dimensional Bayesian optimisation and bandits via additive models”. In: (2015), pp. 295-304.
207 Wang et al. “Batched Large-scale Bayesian Optimization in High-dimensional Spaces”. In: AISTATS. 2018.

21p_Rolland et al. “High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups”. In: Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics. Vol. 84. Proceedings of Machine Learning Research. PMLR, 2018, pp. 298-307.

22E Han, I. Arora, and J. Scarlett. “High-dimensional Bayesian optimization via tree-structured additive models”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 35. 9. 2021, pp. 7630-7638.

23) K. Ziomek and H. B. Ammar. “Are random decompositions all we need in high dimensional Bayesian optimisation?” In: International Conference on
Machine Learning. PMLR. 2023, pp. 43347-43368.
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Scaling up to many variables: additive by-part models (2)

Higher order structure illustrations:

O OOOO
© © (O]
HKL kernel GP-GAM kernel Squared-exp GP Additive GP kernel
kernel

Figure 3: A comparison of different models. Nodes represent different interaction terms, ranging (a) Star-25 (b) Partition-12 () Grid-3x3
from first-order to fourth-order interactions. Far left: HKL can select a hull of interaction terms, but

must use a pre-determined weighting over those terms. Far right; the additive GP model can weight

each order of interaction seperately. Neither the HKL nor the additive model dominate one another 24
in terms of flexibility, however the GP-GAM and the SE-GP are special cases of additive GPs f rom<”;

Figure 4: Synthetic Dependency Graphs Structures.

from?®

A useful tool: Newton-Girard formula®®: O(d?) computation of the full interaction kernel,
rather than O(29) (given that high order kernels are product of low order ones:
k((a,x2), (X1, x2)) = ki(xa, x1) k2 (02, x3))-

24Duvenaud, Nickisch, and Rasmussen, “Additive Gaussian processes”.
25Han, Arora, and Scarlett, “High-dimensional Bayesian optimization via tree-structured additive models”.

26Duvenaud, Nickisch, and Rasmussen, “Additive Gaussian processes”.
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Scaling up to many variables: ANOVA

An alternative formulation is the Functional ANOVA decomposition?’:

d
f(x)=c+ > gi(xi)+ X gi(xj, xk) + -+ + fi2._da(x1, X2, . . ., Xg) with orthogonal terms g. .
i=1 j<k

d .
Kernel kanova(x,x') = [T (1 + ki(x;, x/))?8,2%, also revisited by3°

i=1
More flexible framework but estimation is harder (up to 29 — 1 terms).
Nice link with sensitivity analysis.

Going further: separating the additive and non-additive parts3!, 32

27T Muehlenstaedt et al. “Data-driven Kriging models based on FANOVA-decomposition”. In: Statistics and Computing 22.3 (2012), pp. 723-738.

28\, Stitson et al. “Support vector regression with ANOVA decomposition kernels”. In: Advances in kernel methods—Support vector learning (1999),
pp. 285-292.

29p. Ginsbourger et al. “On ANOVA decompositions of kernels and Gaussian random field paths”. In: Monte Carlo and Quasi-Monte Carlo Methods. Springer,
2016, pp. 315-330.

30x. Lu, A. Boukouvalas, and J. Hensman. “Additive Gaussian Processes Revisited”. In: International Conference on Machine Learning. PMLR. 2022,
pp. 14358-14383.

3IN. Lenz. Additivity and Ortho-Additivity in Gaussian Random Fields. Tech. rep. Aug. 2013. URL: https://hal.science/hal-01063741.

32Ginsbourger et al., “On ANOVA decompositions of kernels and Gaussian random field paths”.
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A promising framework

Lu et al. (2024)33 revisits the key ingredients to identify high-order interactions:
o the Newton-Girard formulation (see e.g.,3*) of high order terms, for speed and inference
(with limitations)
@ one variance term per interaction level

o orthogonality conditions: [p, fi(x/)pi(x;)dx; = 0 to correct identifiability issues.

It comes with a Python implementation. In R, there are the fanovaGraph3® and kergp3°

packages.

33Lu, Boukouvalas, and Hensman, “Additive Gaussian Processes Revisited”.
34Duvenaud, Nickisch, and Rasmussen, “Additive Gaussian processes”.
35} Fruth et al. fanovaGraph: Building Kriging Models from FANOVA Graphs. R package version 1.5. 2020. URI
https://CRAN.R-project.org/package=fanovaGraph.
36y Deville, D. Ginsbourger, and O. R. C. N. Durrande. kergp: Gaussian Process Laboratory. R package version 0.5.7. 2024, URL:
https://CRAN.R-project.org/package=kergp.
17 /55
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Active learning?

Not much work is dedicated to learning the additive structure sequentially.

For the first order linear model, optimal DoEs are product of univariate ones®’.

For higher order models, perhaps using the vanishing variance property at unvisited designs is
useful? E.g., similar to the split and doubt strategy from32.

3TR. Schwabe. “Designing experiments for additive nonlinear models". In: MODA4—Advances in Model-Oriented Data Analysis: Proceedings of the 4th
International Workshop in Spetses, Greece June 5-9, 1995. Springer. 1995, pp. 77-85.

3835alem et al., “Sequential dimension reduction for learning features of expensive black-box functions”.
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Scaling up to many variables: active subspaces

1.0

Ridge function example

Observation: the variation is often concentrated around a few unknown directions r < d
0.5

Model: f(x) = g(A"x) with A € RY*" (ridge function)

0.0

-0.5 —

0.0

DA
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Scaling up to many variables: active subspaces

Observation: the variation is often concentrated around a few unknown directions r < d
Model: f(x) = g(ATx) with A € RY*" (ridge function)

Backed by empirical and theoretical evidence, e.g.,39
Options exist to estimate A, most rely either:

@ on the gradient of f, to estimate C = [ V(f(x)) " V(f(x))u(dx), see e.g.,40,4L.

@ on treating A as an hyperparameter, see e.g., 42 43 44.
e on using PCA* or PLS%.
39p. G. Constantine, Z. del Rosario, and G. laccarino. “Many physical laws are ridge functions”. In: arXiv:1605.07974 (2016).

40 Djolonga, A. Krause, and V. Cevher. “High-Dimensional Gaussian Process Bandits”. In: N/PS. 2013, pp. 1025-1033.
41p_G. Constantine. Active subspaces: Emerging ideas for dimension reduction in parameter studies. SIAM, 2015.

42R. Garnett, M. A. Osborne, and P. Hennig. “Active learning of linear embeddings for Gaussian processes”. In: Proceedings of the Thirtieth Conference on
Uncertainty in Artificial Intelligence. AUAI Press. 2014, pp. 230-239.

MR, Tripathy, |. Bilionis, and M. Gonzalez. “Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty
propagation”. In: Journal of Computational Physics 321 (2016), pp. 191 =223,

44p, Marcy. “Bayesian Gaussian Process Models for Dimension Reduction Uncertainties”. ASA Joint research conference. 2018.
45E, Raponi et al. "High dimensional Bayesian optimization assisted by principal component analysis”. In: PPSN. Springer. 2020, pp. 169-183.

46M. A. Bouhlel et al. “Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction”. In: Structural and

Multidisciplinary Optimization 53.5 (2016), pp. 935-952.
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Active subspace methodology*®

The key quantity for active subspaces is C = [, V(f(x))V(f(x)) " 1(dx) where 11 is a user
defined measure.

Active subspace framework
Require: d, M, r (optional)
1. Draw M iid samples x; ~ p.
2. Compute V£(x;).
s Compute C = & M (VF(x:))(VF(x;))" and its eigen value decomposition
C = W Diag(A1,...,\g) - WT.
4. (Optional) Define r based on eigen-value gaps.
5. Perform the task in the reduced rotated basis Wy ;.

When f is an expensive black-box, this can be done on a surrogate, with two bonuses:

@ it works on black-boxes with no derivatives*’;

@ it alleviates the iid restriction.

47p_S. Palar and K. Shimoyama. “On The Accuracy of Kriging Model in Active Subspaces”. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference. 2018, p. 0913.
48 Constantine, Active subspaces: Emerging ideas for dimension reduction in parameter studies.
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lllustration example 1

Consider the function f(xi,x2) = asin(bxy) + cx3 with a = 0.1, b = 20, c = —4 on the unit
square.
Large eigen-value gap:

¢ _ —0.00 —-0.99 1363 O —0.00 0.99
~ 1099 —0.00 0 1.30 —-0.99 -0.00

Projection ONTO Active Subspace Projection ALONG Active Subspace

Different from the Automatic Relevance Determination principle (see, e.g.,*?) of keeping
i i lengthscales.

49C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006. URL: http://www. gaussiafiprocess. org/gpml/.
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Closed form expression for C°°

Assuming that k is twice differentiable, the joint distribution of
(Y(X),0Y(x)/0x1,...,0Y(x)/0xq) is:

Yo 0, Kn ak(x) T /ox . ak(x) T /0xg
(8Y(x)/8x1> ( 0 ) Bk(x)/0x 0%k(x,x)/0x2 s 0%K(x,%)/8x10xg
. ~N . . . ) .
oY (x)/ 0% 0 ak(xja/xd 82 k(x, x)A/Bxdaxl . 8% k(x, ;)/axg

) Yn 0 Kn “(X)T
In shorthand: (VY(X)) ~N <<0d> , (n(x) Kd(x)>>
As a result, VY (x)|An ~ N (1n(x), £n(x, x)) with:
tn(x) = (X)K_IYn

k(% X) = Kg(x,x') = (x)K,  k(x) "
i = Ej — tr (K, 'W;) +y) K, 'W;K, by, where Wi = [ 5i(X)r;(X) T dpu and
92 K(X.X) 4
U - fX 0x;0X;

50N, Wycoff, M. Binois, and S. M. Wild. “Sequential Learning of Active Subspaces”. In: Journal of Computational and Graphical Statistics 30.4 (2021),
pp. 1224-1237.
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Closed form expression for C (cont'd)

Closed-form C expression for a GP

CI.J(.") = E; — tr (K;'Wj;) + y K, WK, by, where Wj; = [ 5;(X)r;(X) T dp and
PKXX)
U - fX 8><,8xj

Balance between Integrated Mean Squared Prediction Error (IMSPE) and covariance between
partial derivatives means.

The diagonal terms correspond to derivative-based global sensitivity measures, see, e.g. 5!
Given n observations, C(") only depends on the kernel hyperparameters.

This allows a one-shot learning procedure of a GP with dimension reduction®?

5TM. De Lozzo and A. Marrel. “Estimation of the derivative-based global sensitivity measures using a Gaussian process metamodel”. In: SIAM/ASA Journal
on Uncertainty Quantification 4.1 (2016), pp. 708-738.
52\, Binois and V. Picheny. “Combining additivity and active subspaces for high-dimensional Gaussian process modeling”. In: arXiv preprint arXiv:2402.03809
(2024).
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Sequential version

Updating C”
Given a new design point X but not the function value at this location, i.e., yp+1 ~ N (mp(X), kn(X, %)), the random

variable ¢{"1) _ C,J(.")

i , can be written as:

= — (wa(x) + wp(%)) T8(X) — 02(%) 7! [w(%, %) + kn(X) Ky WK, Tk (%)]
+ Zon(®) 7 [y) Ky ' WK, Mkn(R) + kn(X) KL TW,K Ly, — (Wa(X) + ws(%)) TK; by
+ Z%02(2) 71 [w(%, %) + kn(X) T K TW,K k(%) — (wa(%) + wp (%) TK, kn(%)]
= i j(%) + ZBij(%) + 2285 (%)

with Z ~ N(0,1), g(X) = —02(X) 1K, 'kn(%), wa(R) = Wj(%, X), and w;(X) = Wji(%, X)

It remains to define an appropriate criterion for sequential design: an uncertainty measure
J(X) on (e.g., Expected Improvement, entropy, - - - for optimization)

24/55



Sequential design criteria definitions

A natural way to proceed is to consider a variance of C("+1),

Criteria J(X)

Trace = Var (tr(C("H))
Var1 = |[E[(C("D — E[c("+D)]) @ (C("+D) — E[c(+D])]|12
Var2 = |[E[(C(™tD) — E[C(™ D)) (D) — E[c(+D])|12

Closed form expressions and derivatives are available.
Finding arggzcp min J(X) is irrelevant.

Inverted Step-wise Uncertainty Reduction strategy, see e.g.,53:
find the design % that perturbs C("t1) the most:

X" € arggep max J(X)

53T Labopin-Richard and V. Picheny. “Sequential design of experiments for estimating quantiles of black-box functions”. In: Statistica Sinica (2018),
pp. 853-877.
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Sequential design summary

Pseudo code for the sequential active subspace learning
Require: ng.

1. Construct an initial design of experiments in X, of size ng.

2. Build the GP model with kernel k.

s while time/evaluation budget not exhausted do

& Find X* € arg maxxep J(x)

5: Evaluate the objective function at y,11, f(X).

6: Update the GP model based on new data.

7. end while

The estimation of AS from a GP is available in the activegp®* R package.

54N, Wycoff and M. Binois. activegp: Gaussian Process Based Design and Analysis for the Active Subspace Method. R package version 1.1.1. 2024. URI
https://CRAN.R-project.org/package=activegp.
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[llustrative 2d example

10 initial design points + 20 sequential points

Ridge function example

-0.5

0.0
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lllustrative 2d example

10 initial design points + 20 sequential points

CTR lteration 1

Ridge function example
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27/55



lllustrative 2d example

CTR lteration 2

Ridge function example
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lllustrative 2d example

CTR lteration 3

Ridge function example
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lllustrative 2d example

Ridge function example
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lllustrative 2d example

Ridge function example
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lllustrative 2d example

Subspace distance: cosine of the first principle angle between the two subspaces
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Wing weight function

10 dimensional function, known to have a leading 1D active subspace.

Log Subspace Distance
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Non-linear embeddings

Linear dimension reduction may not be sufficient.

In this case, auto-encoders may become handy to learn a latent space: covariance kernel
k(W(x), W(x")) with W given by the encoder.

encoder decoder

w1 w2 w2" w1

A convincing example®® is with molecules, for which an efficient text representation exists
(SMILES). Another popular model is the GP-LVM model®®.

55R. Gémez-Bombarelli et al. “Automatic chemical design using a data-driven continuous representation of molecules”. In: ACS central science 4.2 (2018),
pp. 268-276.

56N Lawrence. “Probabilistic non-linear principal component analysis with Gaussian process latent variable models”. In: The Journal of Machine Learning
Research 6 (2005), pp. 1783-1816.
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Summary

Most structural models are instances of the general one:

model: f(x) = ) _ gi(Aix)
i=1

For the last column, randomized directions are possible rather than needing full inference.

Variable 1st order single
selection additive index
FANOVA high Linear
order embedding
additive
v v v
Anisotropic Isotropic Sum of Projection Non-linear
with all with all linear < pursuit embedding
variables variables embeddings
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Summary (cont’d)

More recent overview (figure borrowed from the paper):57

s

BO+MCMC \
Ensemble BO

“'
Add-GP-UCB using trees

A

(0SS —Open Source Implementation

5T\, Gonzélez-Duque et al. “A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences”’. In: ﬁrx"V preprint arXiv;2406:04739 Qe
2024). = DA C
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Outline

© Reconciling linear embedding and additive models?
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Summary of pros and cons

Additive models:
@ interpretability
@ keep the original variables

@ simple orthogonality conditions

Additive models:
@ inference is harder with increasing
interaction order, or with complex
dependency graphs

o difficult to learn high-order interaction
terms

Pros

Cons

AS models:
efficient dimension reduction
often observed in practice

capture high-order interactions

AS models:

identifying the intrinsic dimension is
complex

for box-constraints, the resulting rotation
is complexifying subsequent tasks
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Linear embedding versus additive model

Original Add function Additive part AS part

DA
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Linear embedding versus additive model (2)

Original AS+Add function Additive part F - Additive part
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A multi-fidelity approach

Directly combining AS and additive models is difficult: there is an intersection between the
features they capture.

Plus it is not clear how to enforce orthogonality a 1a%8
Still, to benefit from both types of models, we propose®® a less strict condition via an
auto-regressive multi-fidelity approach®:

© a first order additive model as the coarse model

@ an AS GP model as the fine level

This approach shows better results than a regular GP, with improved performance whenever
additive and/or linear embedding structure is present.

58| enz, Additivity and Ortho-Additivity in Gaussian Random Fields.
59Binois and Picheny, “Combining additivity and active subspaces for high-dimensional Gaussian process modeling”.

60M. C. Kennedy and A. O'Hagan. “Predicting the output from a complex computer code when fast approximations are available”. In: Biometrika 87.1
(2000), pp. 1-13.
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Multi-fidelity approach summary

Input: Xg = Xc¢, y, p (e.g., 0.8)
Train an additive model Y¢ on (Xc,y)

d
if 72 < 0.01 x 3 «; then
1

Sample ng = p X n data points from x;.,, y and remove the rest from X and y(C).

Train an additive model Y¢ on (Xc,y(9).
end if
Predict the response of Y¢ at Xg: mf,c)(XE).
Train a multi-fidelity GP from the residual data: d =y — pmg,c)(XE).
Estimate the corresponding AS matrix C(").
Train an AS multi-fidelity GP, varying the number of dimensions kept r.

. Output: Trained multi-fidelity model.
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MF approach example result

Test case: additive GP (d = 15) + rotated Hartmann3 function (r = 3) with varying budget
(100, 250, 500 in orange, cyan, green)
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Outline

@ Application to optimization
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BO is versatile ...

Active research directions on extensions include:

@ batched versions of BO, e.g., with multi-point El or local models

@ noise on inputs/outputs, heteroskedasticity, non-Gaussian noise
e complex inputs/outputs (images, graphs, functions, ...)
@ modeling non-stationarity
@ multi-fidelity and variable cost
e multi/many objective, multi-task, constrained optimization
Review papers:6?,92
Books:93 64
6B Shahriari et al. “Taking the human out of the loop: A review of Bayesian optimization”. In: Proceedings of the IEEE 104.1 (2016), pp. 148-175.

62p_ Frazier. “Bayesian Optimization”. INFORMS Tutorials. 2018.
63R. B. Gramacy. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences. CRC Press, 2020.

64 Garnett, Bayesian Optimization.
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. with some practical limitations

1) GP training is expensive: the vanilla version is O(n%) in time complexity (but can be
reduced to O(n) with approximations).

2) Optimizing El (or other) is increasingly hard as n grows.

El surface with 50 designs

— 0.015

— 0.010

0.005

0.000
0.0 0.2 0.4 0.6 0.8 1.0

3) High dimension exacerbates these effects. 0555
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General notes

BO failures not only come from a bad surrogate, but also from difficult acquisition function
optimization.

Some recent ideas:

o use log El rather than El (plus some more stable expressions)®®
@ use of more powerful optimizers

e compositional (nested expectation, e.g., E,r(o,)) [max;(a; + B;z)]) ones®,
o composite (max g o f)°%,

e even just gradient-based ones with auto-differentiation.

655 Ament et al. “Unexpected improvements to expected improvement for Bayesian optimization”. In: NeurlPS 36 (2024).

66 Grosnit et al. “Are we forgetting about compositional optimisers in Bayesian optimisation?” In: The Journal of Machine Learning Research 22.1 (2021),
pp. 7183-7260

7). Larson and M. Menickelly. “Structure-aware methods for expensive derivative-free nonsmooth composite optimization”. In: Mathematical Programming
Computation 16.1 (2024), pp. 1-36.
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Random or not random?

Compared to a given sample analysis, where getting the best possible model is important, the
sequential aspect of BO enables more strategies:

@ balancing learning the structure and optimization (more on this later for AS);

@ randomize the model structure parameters:

o with random embedding decompositions®®

o with random 1d projection®;
o with random additive decomposition™,"!:

687 Wang et al. “Bayesian Optimization in a Billion Dimensions via Random Embeddings”. In: Proceedings of IJCAI (2013); Z. Wang et al. “Bayesian
Optimization in a Billion Dimensions via Random Embeddings”. In: Journal of Artificial Intelligence Research (JAIR) 55 (2016), pp. 361-387.

69 Kirschner et al. “Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces”. In: International Conference on Machine
Learning. 2019, pp. 3429-3438.

70Wang et al., “Batched Large-scale Bayesian Optimization in High-dimensional Spaces”.

71 Ziomek and Ammar, “Are random decompositions all we need in high dimensional Bayesian optimisation?”
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Benchmarking high-dimensional BO

There are not so many exhaustive benchmark results available, except, e.g.,?, plus results in

publications are sometimes contradictory.

Reasons may include:
@ Publication pressure;
@ Package defaults may not be suited to high-dimensional BO;

Complex models are more prone to instability;

Codes may not be available or not with a simple interface;
Spread between several research communities and package tools;
Computational cost is even larger than usual;

Tests in the literature are with different budgets and dimensions.

What are good benchmark functions? Are there realistic high dim examples?

72M. L. Santoni et al. “Comparison of high-dimensional Bayesian optimization algorithms on bbob". In: ACM Transactions on Evolutionary Learning 4.3
(2024), pp. 1-33.
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73 74

Trust region based BO, e.g.,

The main idea is to focus on a ball centered on the best design, whose radius is:
@ decreased if the search is unsuccessful:

@ increased otherwise.
It helps reducing the over-exploration issue of most infill criteria when d is large.
Furthermore, the acquisition function optimization is restricted to a few directions at once.

Local GPs may be used, to help with non-stationarity.

73V Diouane et al. “TREGO: a trust-region framework for efficient global optimization”. In: Journal of Global Optimization 86.1 (2023), pp. 1-23.

74D. Eriksson and M. Poloczek. “Scalable constrained Bayesian optimization". In: International Conference on Artificial Intelligence and Statistics. PMLR.
2021, pp. 730-738.
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Optimizing with additive structure

Typically, the acquisition function follows the same decomposition as the additive GP:
gi(x1) = N(mpi(x), s,%’i(x/)) where si,(x,) = ki(xs,x;) — ki(x;) TK~k/(x/) for a general
index |.

— this simplifies its optimization and allows message passing optimization, e.g.,”.

The main drawback is that the variance may be zero at unobserved locations (but noise is
usually added).

Branin function (additive GP predictive mean) Branin function (additive GP predictive variance)
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">Rolland et al., “High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups”. 48/55



Screening: domain issues with dimension reduction

Whenever optimizing in a reduced search space, one question is how to choose the remaining
values.

Possible strategies include:
@ using an arbitrary value;
@ using some prior knowledge;
@ using the values from the best design so far;

@ using random values.

These effects are exacerbated with more complex dimension reduction.
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Optimizing with an active subspace®

Let W = [A W] be a basis of RY.

Splitting between active and inactive variables:
Vx € R = WW'x = AATx + WoW, x = Ay + Woz, y € RY, z ¢ RI"
If f has a true active subspace: find y* € argmin f(Ay)

y€ERd

Else, the problem is: find y* € argmin min f(Ay + W,z)
ye]Rd zERI—r

Both are more complex for a compact domain X.

Ridge function example

Approximately ridge function example

76Constantine, Active subspaces: Emerging ideas for dimension reduction in parameter studies. 50 /55



Random embeddings / Active subspace domain issue

Domain issues have been studied mostly from the random embedding point of view, starting
with REMBO?, and further works’8,79 80

Yi

Convergence results depend on both A and the low-dimensional search space. Recent

. .. . 81

theoretical results come from global optimization®-.

77Wang et al., “Bayesian Optimization in a Billion Dimensions via Random Embeddings”.

78M. Binois, D. Ginsbourger, and O. Roustant. “On the choice of the low-dimensional domain for global optimization via random embeddings”. In: Journal of
global optimization 76.1 (2020), pp. 69-90.

A, Nayebi, A. Munteanu, and M. Poloczek. “A Framework for Bayesian Optimization in Embedded Subspaces”. In: /CML. 2019, pp. 4752-4761.

808 Letham et al. “Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization”. In: Neur/PS. ed. by H. Larochelle et al. Vol. 33. Curran
Associates, Inc., 2020, pp. 1546-1558.

81C. Cartis, E. Massart, and A. Otemissov. “Bound-constrained global optimization of functions with low effective dimensionality using multiple random

embeddings”. In: Mathematical Programming 198.1 (2023), pp. 997-1058.
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Tradeoff between optimization and dimension reduction

These two tasks are possibly conflicting, hence benefiting from a multi-objective point of view.

Let's thus estimate the Pareto front between Expected Improvement and active subspace
variance.

Pseudo code for BO with active subspace learning

Require: ng, r.
1. Construct an initial design of experiments in X, of size ng.
2 Build the (high-dimensional) GP model with kernel k.
3. while time/evaluation budget not exhausted do

& Compute the active subspace matrix C(") and A(") (rank r)
5: Construct a low dimensional GP based on A("
6 Find z* € argmin(—El(z), —J(2))
Z=A"X
7. Evaluate the objective function

8: Update the high-dimensional GP model based on new data.
o. end while
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lllustration on the wing weight function

10 dimensional function, known to have a leading 1D active subspace.
5 points are selected from the Pareto front at each iteration.
Total budget: 50, r = 2, np = 10
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lllustration on the wing weight function

10 dimensional function, known to have a leading 1D active subspace.
5 points are selected from the Pareto front at each iteration.
Total budget: 50, r = 2, np = 10
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lllustration on the wing weight function

10 dimensional function, known to have a leading 1D active subspace.
5 points are selected from the Pareto front at each iteration.
Total budget: 50, r = 2, np = 10
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lllustration on the wing weight function

10 dimensional function, known to have a leading 1D active subspace.
5 points are selected from the Pareto front at each iteration.
Total budget: 50, r = 2, np = 10
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lllustration on the wing weight function

10 dimensional function, known to have a leading 1D active subspace.
5 points are selected from the Pareto front at each iteration.

Total budget: 50, r = 2, np = 10
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lllustration on the wing weight function

10 dimensional function, known to have a leading 1D active subspace.
5 points are selected from the Pareto front at each iteration.
Total budget: 50, r = 2, np = 10
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Outline

© Conclusion
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Conclusion and perspectives

High-dimensional GP modeling is a compromise between:
@ prior knowledge;
@ accuracy (related to the budget n);
@ inference complexity, randomization, orthogonality;
@ interpretability;
@ the task at end.
For optimization, additional challenges are
@ to learn what is important for low values;
@ the low-dimensional search space (if applicable);
@ the ability to recover from a wrong structure;

@ the interplay between global and local aspects.
Many opportunities in hybridizing
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Thank you for your attention
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