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LEARNING AND SPACE-FILLING OBJECTIVES

Accelerate: learning of the hidden
constraint and generation of a space-
filling design of experiments in the 
hidden constrained space

Sequential strategy: propose 
point dedicated alternatively to 
learning and space-filling

Coupled strategy: propose point 
dedicated simultaneously to 
learning and space-filling
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SPACE-FILLING IN CONSTRAINED SPACE

Candidate Generation: generate a large set of 
uniformly distributed candidates in X.

Design Construction: choose points from the set 
of candidates by a desired criterion.

CoMinED [Huang et al.. 2021] : Sequential construction technique of space-filling designs 
with continuous constraints 
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GRAPHICAL MOTIVATION

Rejection/AcceptationRed left: 
265 Sobol’ points
Green left:
Adaptive Sequentially Constrained Monte Carlo
Golchi and Loeppky, 2015
Red Right: 
feasible points

Red left: 
lattice grid of points
Green left:
CoMinED population: Q-NN, middle and reflection
Red Right: 
feasible points

[Huang et al.. 2021] 
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Augmentation of the set of candidate samples ௧

Q-NN, middle point and reflection

CONSTRAINED MINIMUM ENERGY DESIGNS ALGORITHM 

3-NN
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CONSTRAINED MINIMUM ENERGY DESIGNS ALGORITHM 

Inputs: 
• sequence of rigidity parameters (𝜏௧)௧ୀଵ.….் . 
• continuous constraints 𝑔(𝑥) -> g(x)<0
• parameters for candidate set augmentation : 𝑄

Initialisation of the initial candidate set ଵ

For t=
Construction of a constrained DoE 𝒟 : one-point-at-a-time Greedy-algorithm with 𝜏௧ on candidate 
samples 𝒞௧

Augmentation of the set of candidate samples 𝒞௧

𝒟 = 𝑥 ୀଵ
 Φ: Gaussian cumulative prob. function𝑢 ௦ =  

1

𝑝
 𝑢

௦



ୀଵ

ଵ
௦

max
௫

𝟙 ௫ ஸ𝟙 ௫ ஸmin
୧

𝑥 − 𝑥 ୱ 

𝟙 ௫ ஸ ∼ Φ −𝜏𝑔 𝑥

𝑔 𝑥0 𝑔 𝑥0

ାଵ
௧

௫∈େ\ ௫ సభ


௧
ୀଵ,…,

௧   ௦
ଶ

Constrained greedy maximin
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COMINED CRITERION FROM WITHIN

𝑔 𝑥0

𝑔 𝑥 ≤ 0

𝑔 𝑥 ≥ 0

𝑔 𝑥 = 0 𝜏
ଶ

2

𝑔 𝑥0

𝜏ଵ
ଶ

2

0 < 𝜏 < ⋯ < 𝜏்

ାଵ
௧

௫∈େ\ ௫ సభ


௧
ୀଵ,…,

௧   ௦
ଶ

𝑔 𝑥

𝜏
ଶ

2

0

𝟙 ௫ ஸ ∼ Φ −𝜏𝑔 𝑥
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COMINED CRITERION FROM WITHIN

𝟙 ௫ ஸ ∼ Φ −𝜏𝑔 𝑥

𝑔 𝑥0

𝑔 𝑥 ≤ 0

𝑔 𝑥 ≥ 0

𝑔 𝑥 = 0 𝜏
ଶ

2

𝑔 𝑥0

𝜏ଵ
ଶ

2

ାଵ
௧

௫∈େ\ ௫ సభ


௧
ୀଵ,…,

௧   ௦
ଶ

0 < 𝜏 < ⋯ < 𝜏்
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APPLICATION WITH HIDDEN CONSTRAINTS  

In hidden constraints context: one binary constraint 
• ( ) result of expensive simulations

• ( ) non-continuous constraint: untractable with usual constrained space-filling 
construction techniques

Consider a conditioned Gaussian Process Classifier [Bachoc et al. 2020] model 

   of the hidden constraint . It predicts:  

CoMinED can be applied with :
∗



𝑥ାଵ
௧ = 𝑎rgmax

௫∈େ\ ௫ సభ


Φ −𝜏௧𝑔(𝑥) min
ୀଵ,…,

Φ −𝜏௧𝑔(𝑥) 𝑥 − 𝑥 ௦
ଶ

𝛼∗ estimated within the 
Vorob'ev expectation of 
Γ = 𝑥 ∈ Ω 𝑌 𝑥 = 1}
estimation

𝚪𝒏 = 𝒙 ∈ 𝛀, 𝒑𝒏 𝒙 ≥ 𝜶∗
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PROPOSED ADAPTIVE SPACE-FILLING STRATEGY

Constrained DoE 𝒟 generation 
with the GPC + CoMinED

algorithm

GPC model construction 

1 - Two best points of 𝒟 in the 
sense of ARCHISSUR criterion

2 - One point obtained by a run 
of  ARCHISSUR (with 

optimisation) 

3 - Two constrained space-filling 
points 

Stopping 
criterion ?

New points evaluation 

DoE initialisation

Conditioned on points from 1 and 2
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STOPPING CRITERION OF THE ADAPTIVE ALGORITHM 

1st scenario: reaching a total number of simulations or “convergence”

At iteration stop if:

௦


௦
ௗ௧ |ೕ Γ)ିೕషభ()|

𝔼ೕ[ఓ  ]

With the remaining simulation budget: Constrained space-filling with current GPC model 

2nd scenario: reaching a number of successful simulations 

𝑛௦
ௗ௧

= C𝑛௦
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ILLUSTRATION ON BRANIN EXAMPLE Inputs:
௧

௦
௫

௦
ௗ௧

ିଶ
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COMPARAISON OF RESULTS

Comparison with optimal constrained DoE
 In practice : obtained with simulated annealing [Auffray. 
2012] adapted to non-connex domains [internal IFPEN 
report] on the final DoE of the adaptive procedure  

Comparison with a crude rejection method
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DAMAGE PREDICTION OF A WIND TURBINE

…

…

…

Wind loads are described by 13 parameters:



15 |   ©  2 0 1 6  I F P E N

COMPARAISON OF RESULTS – WIND TURBINE

EFFICIENCY MAXMINMINMAX

0.421.252.12LHS MAXIMIN + REJECTION

0.930.851.68Initial GPC + COMINED

0.750.981.66ASUR SF

0.790.941.63ASUR SF + COMINED
(Greedy)

(80% + 20%)

Initial doe size: 100
total simulation points: 1000
dimension: 13

Efficiency = ೞೠೞೞ

ೞ

∗

Robustesse ?
More 
conservative 
?
Points on 
frontier more 
Spread on 
the feasable
area
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COMPARAISON OF RESULTS – WIND TURBINE

Proba0.95Proba 0.8Proba 0.6Proba 0.5Proba 0.4Proba 0.2Q2 ->

NANANANANANAREJECTION (0.067)

0.760.640.630.610.610.57Initial GPC + COMINED

0.970.920.860.770.450.08ASUR SF

0.980.910.850.810.61-0.002ASUR SF + COMINED
(80% + 20%)

Initial doe size: 100
total simulation points: 1000
dimension: 13

Efficiency = ೞೠೞೞ

ೞ
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Work in progress
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A PROCESS OF SUR-IFICATION

Stepwise Uncertainty Reduction (SUR) and assimilated one-step-lookahead strategies

criteria
- Variance
- Expected Improvement
- Integrated Bernouilli Variance
- Vorob’ev deviation
- Bichon
- Ranjan
…
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A PROCESS OF SUR-IFICATION

Stepwise Uncertainty Reduction (SUR) and assimilated one-step-lookahead strategies

SUR-ification of criteriaProofs of convergence
of the SUR based estimator

criteria
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A SAMPLE FROM THE PROCESS OF SUR-IFICATION

Stepwise Uncertainty Reduction (SUR) and assimilated one-step-lookahead strategies

SUR-ification of criteriaProofs of convergence
of the SUR based estimator

criteria
SUR-Bichon
Duhamel et al. 2024

ARCHISSUR
Menz et al. 2022

SUR-Integrated Bernouilli
Bect et al. 2012

SUR-Vorob’ev
Chevalier et al. 2014

Bect Vazquez 2010
Bull 11
Srinivas et al 2012

Bect, Bachoc, Ginsbourger 2019 SUR-integrated variance 
Sacks et al. 1989, Cohn et al. 1996

SUR-EER
Roy et al. 2001
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PROCESS OF SUR-IFICATION

Stepwise Uncertainty Reduction - SUR

Proofs of convergence
of the SUR based estimator

SUR-ification of criteria
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PROCESS OF SUR-IFICATION

Stepwise Uncertainty Reduction - SUR

SUR-ification of criteriaProofs of convergence
of the SUR based estimator
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PROCESS OF SUR-IFICATION

Stepwise Uncertainty Reduction - SUR

SUR-ification of criteriaProofs of convergence
of the SUR based estimator
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௫శభ
శభ ௧ ௧,ାଵ ାଵ

ୀଵ,…,
௧ ௧,   ାଵ ௦

ଶ

1. VANILLA ONE-STEP-LOOKAHEAD

௧,ାଵ
ୀଵ,…,

௧ ௧,ାଵ ାଵ ௧ ௧,   ାଵ ௦

௫శభ∈େ\ ௫ సభ


శభ ௧,ାଵ

𝑔௧,ାଵ(𝑥) = 𝛼
∗ − 𝑝௧,ାଵ(𝑥)

శభ ௧ ௧,ାଵ ାଵ ௧, ାଵ ௧ 
∗

௧, ାଵ ௧ 
∗

𝛼
∗ ∼ 1/2
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𝑎𝑟𝑔m𝑎𝑥
௫శభ

ෑ Φ 𝜏௧ 𝜇௧,
 𝑥ାଵ + 𝑘 𝜎௧,(𝑥ାଵ)  

ே

ୀଵ

 min
ୀଵ,…,

 Φ −𝜏௧𝑔௧,(𝑥) 𝑥 − 𝑥ାଵ ௦
ଶ 

ෑ Φ 𝜏௧ 𝜇௧,
 𝑥ାଵ + 𝑘 𝜎௧,(𝑥ାଵ)  

ே

ୀଵ

ෑ Φ 𝜏௧ 𝜇௧,
 𝑥ାଵ − 𝜎௧,(𝑥ାଵ)Φିଵ 𝛼

∗  
ே

ୀଵ

2. A STEP BACK

𝑎𝑟𝑔m𝑎𝑥
௫శభ

Φ −𝜏௧𝑔௧,(𝑥ାଵ) min
ୀଵ,…,

 Φ −𝜏௧𝑔௧,(𝑥) 𝑥 − 𝑥ାଵ ௦ 

𝑔௧,(𝑥) = 𝛼
∗ − 𝑝௧,(𝑥)

𝑔௧,(𝑥) = −𝜇௧, 𝑥 + 𝜎௧,(𝑥)Φିଵ 𝛼
∗

𝛼
∗ ∼ 1/2

𝑎𝑟𝑔m𝑎𝑥
௫శభ

𝔼శభ
ෑ Φ 𝜏௧𝜇௧,ାଵ

 (𝑥ାଵ)
ே

ୀଵ
min

ୀଵ,…,
 Φ −𝜏௧𝑔௧,(𝑥) 𝑥 − 𝑥ାଵ ௦

ଶOne-step-lookahead
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௫శభ
శభ ௧ ௧,ାଵ ାଵ

ୀଵ,…,
௧ ௧,   ାଵ ௦

ଶ

3. ONE-STEP-LOOKAHEAD MIXED

௫శభ
శభ ୲,୫ାଵ


௧ ௧,ାଵ ାଵ

ୀଵ,…,
௧ ௧,   ାଵ ௦

ଶ

Good order of magnitude ?
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PUBLICATIONS

Estimation of simulation failure set with active learning based on 
Gaussian process classifiers and random set theory.
Submitted to Structural Safety, Oct. 2024.
Menz, M., Munoz Zuniga, M., Sinoquet, D.

Learning and space-filling the hidden design space associated to failure of 
computer experiments
To be submitted beginning 2024.
Menz, M., Munoz Zuniga, M., Sinoquet, D.
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