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Problem setting

Problem setting – forward uncertainty propagation

Random input parameters: y ∈ Γ with given distribution
Assumption 1: we can sample y exactly and independently.
Complex differential model (e.g. Euler, Navier-Stokes, elastodynamics, ...):

Lyu = Fy (1)

Assumption 2: for any y ∈ Γ, (1) has a unique solution u = u(y) ∈ V

(V : solution space, typically a Banach space)
(random) Output quantity of interest (e.g. lift, drag, etc.):

Q(y) = Q̃(y , u(y)) ∈ R, ∀y ∈ Γ

Goal: compute µ = E[Q] = Ey [Q̃(y , u(y))] or other statistical quantities

In practice, u is not accessible and can only be computed approximately.

Computational model

Lh,yuh = Fy ,h, Computational output Qh(y) = Q̃(y , uh(y))

h: discretization parameter (e.g. mesh size); Qh(y)
h→0−−−→ Q(y), ∀y ∈ Γ
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Problem setting

Monte Carlo method

Generate M iid copies y (1), . . . , y (M) ∼ y

Compute the corresponding outputs Qh(y
(i)), i = 1, . . . ,M

Approximate expectation by sample average ÊM [·]

µ̂MC := ÊM [Qh] =
1

M

M∑

i=1

Q
(i)
h

Bias (discretization error):

B := E[µ̂MC ]− µ =
1

M

M∑

i=1

E[Qh(y
(i))]− E[Q]= E[Qh]− E[Q]

The estimator is biased, in general, because of the discretization error

Variance (statistical error):

VMC := E[(µ̂MC − E[µ̂MC ])
2] =

1

M

M∑

i=1

E[(Qh(y
(i))− E[Qh])

2]=
Var[Qh]

M

Typical Monte Carlo variance decay O( 1
M
)
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µ̂MC := ÊM [Qh] =
1

M

M∑

i=1

Q
(i)
h

Bias (discretization error):

B := E[µ̂MC ]− µ =
1

M

M∑

i=1

E[Qh(y
(i))]− E[Q]= E[Qh]− E[Q]

The estimator is biased, in general, because of the discretization error

Variance (statistical error):

VMC := E[(µ̂MC − E[µ̂MC ])
2] =

1

M

M∑

i=1

E[(Qh(y
(i))− E[Qh])

2]=
Var[Qh]

M

Typical Monte Carlo variance decay O( 1
M
)

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 5



Problem setting

Monte Carlo method

Generate M iid copies y (1), . . . , y (M) ∼ y

Compute the corresponding outputs Qh(y
(i)), i = 1, . . . ,M

Approximate expectation by sample average ÊM [·]
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Problem setting

Quantifying the error in Monte Carlo

Mean squared error

MSE(µ̂MC ) :=E[(µ̂MC − µ)2] = E[(µ̂MC − E[µ̂MC ] + E[µ̂MC ]− µ)2]

=VMC + B2

=
Var[Qh]

M
+ E[Qh − Q]2

Controlling the MSE
Bias estimation: needs an error estimator ηh(y) ≈ Qh(y)− Q(y), e.g.

goal oriented a posteriori error estimator (dual weighted residual based)
Qh(y)− Q∗(y) with Q∗(y) a Richardson extrapolation from Qh(y),Q2h(y)

Then, B ≈ B̂ := ÊM [ηh] =
1

M

M∑

i=1

ηh(y
(i))

Variance estimation: one can use the sample variance estimator
V̂h := V̂arM [Qh] =

1
M−1

∑M
i=1(Qh(y

(i))− µ̂MC )
2. Then

VMC ≈ V̂MC :=
V̂h

M
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Problem setting

Quantifying the error in Monte Carlo

Using the Central Limit Theorem (CLT)

√
M(µ̂MC − E[µ̂MC ])

d−→ N(0,Vh)

Asymprotic confidence interval: with probability at least 1− δ

|µ̂MC − µ| ≤ |µ̂MC − E[µ̂MC ]|+ |E[µ̂MC ]− µ|

∼ cδ

√
Vh√
M

+ |B |≈ cδ

√
V̂h√
M

+ |B̂ |

with cδ the (1− δ
2 )-quantile of the normal distribution (φ(cδ) = 1− δ

2 )
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Problem setting

A possible adaptive Monte Carlo algorithm

1 preliminary grid convergence study: find suitable h for which B̂ ≤ tol√
2

2 Pilot run: compute µ̂
(0)
MC = 1

M(0)

∑M(0)

i=1 Qh(y
(i)) and estimate

V̂
(1)
h = 1

M(0)−1

∑M(1)

i=1 (Qh(y
(i))− µ̂

(0)
MC )

2. Set k = 1

3 while
V̂

(k−1)
h

M(k−1) >
tol2

2 do

3.1 set M(k) = ceil

(

2V̂
(k−1)
MC

tol2

)

3.2 compute Qh(y
(i)), i = M(k−1) + 1, . . . ,M(k)

3.3 update estimates of µ̂
(k)
MC and V̂

(k)
h using the newly generated samples

4 output µ̂
(k)
MC and M̂SE (µ̂

(k)
MC ) = B̂2 +

V̂
(k)
h

M(k)
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(i)) and estimate

V̂
(1)
h = 1

M(0)−1

∑M(1)

i=1 (Qh(y
(i))− µ̂

(0)
MC )

2. Set k = 1

3 while
V̂

(k−1)
h

M(k−1) >
tol2

2 do

3.1 set M(k) = ceil

(

2V̂
(k−1)
MC

tol2

)

3.2 compute Qh(y
(i)), i = M(k−1) + 1, . . . ,M(k)

3.3 update estimates of µ̂
(k)
MC and V̂

(k)
h using the newly generated samples

4 output µ̂
(k)
MC and M̂SE (µ̂

(k)
MC ) = B̂2 +

V̂
(k)
h

M(k)
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Problem setting

A possible adaptive Monte Carlo algorithm

Variants:

The error may be split unevenly between bias and variance: B̂2 ≤ (1− θ)tol2,
V̂h

M
≤ θtol2.

Instead of the MSE one can control the asymptotic confidence interval:

—B̂ | ≤ tol
2 , cδ

√
V̂h√
M

≤ tol
2

The previous algorithm may suffer from early termination if the variance
estimate V̂h is inaccurate and too small (which may happen if M is small).

For a more robust version one could set at items 3.1-3.2 M(k) = γM(k−1)

(γ > 1) and resample from scratch (i = 1, . . .M(k)). This gives a more
robust algorithm with only little extra cost:

total sample size M(k) =

k∑

i=0

M(k) =

k∑

i=0

M(0)γk ≤ γ

γ − 1
M(k).
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Problem setting

Complexity of Monte Carlo algorithm

Assumptions: for a d-dimensional problem

|E[Q − Qh]| ≤ Cαh
α, (grid convergence with rate α on the mean)

Var[Qh] ≤ Cβ , (Var[Qh] ≈ Var[Q] 9 0 as h → 0)

cost to compute each Q
(i)
h : Ch ≤ Cγh

−dγ

(typically, #dofs ≃ h−d and the cost Ch depends algebraically on #dofs)

Balancing error contributions to have MSE ≤ tol2

B2 ≤ tol2

2
=⇒ h ≃ tol

1

α

VMC ≤ tol2

2
=⇒ M ≃ tol

−2

Complexity analysis (error versus cost)

Cost(µ̂MC , tol) = ChM ≃ tol
−2− dγ

α

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 10
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Problem setting

Example 1 – stochastic differential equation

dXt = a(t,Xt)dt + b(t,Xt)dWt(y), t ∈ (0,T ], X0 = x0

Quantity of interest: Q = Q̃(XT )

here Wt(y) is a standard Wiener process (y denotes a random elementary event)

Discretization by Euler-Maruyama with step size h = T/N and tn = nh

X n+1 = X n + a(tn,X
n)h + b(tn,X

n)∆Wn, n = 0, . . . ,N − 1, ∆Wn
iid∼ N(0, h)

approximate quantity of interest: Qh = Q̃(XN)

For smooth a(·) and b(·) one has

|E[Q − Qh]| . h (order 1 convergence for the mean – weak rate)

E[(Q − Qh)
2]

1
2 . h

1
2 (order 1/2 in mean square sense – strong rate)

Ch = N . h−1 (cost proportional to the numebr of iterations)

Hence: α = 1, d = 1, γ = 1 =⇒ Cost(µ̂MC , tol) ≃ tol−3

To reduce the error by a factor 10, the cost increses by a factor 103 !
F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 11
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Problem setting

Example 2 – PDE with random parameters

− div(a(y)∇u) = f , in D ⊂ Rd , u = 0, on ∂D

with a(y) uniformly bounded, positive and Lipschitz continuous random field.

Quantity of interest: Lipschitz functional Q = Q̃(u) (e.g. Q = 1
|Σ|

∫
Σ
‖∇u‖,

Σ ⊂ D)

Discretization by P1 finite elements on a regular triangulation with mesh size h.

Assumptions

0 < amin ≤ a(x , y) ≤ amax , ∀x ∈ D, y ∈ Γ

‖∇a(·, y)‖L∞(D) ≤ K , ∀y ∈ Γ

D Lipschitz convex, f smooth

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 12
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Problem setting

Example 2 – PDE with random parameters

Then

1 ‖u(y)− uh(y)‖H1 ≤ Ch, ∀y ∈ Γ (order 1 “pathwise” convergence rate)

2 |Q(y)− Qh(y)| . ‖u(y)− uh(y)‖H1 . h, ∀y ∈ Γ (order 1 “pathwise”
convergence on Lipschitz functionals; for smoother functionals the rate could
be up to 2)

3 Ch . (#dofs)γ . h−dγ

Here γ denotes the complexity to solve the linear system (γ = 3 for a direct
(full) solver; γ ≈ 1 for an iterative method with optimal preconditioner)

From 2. we deduce |E[Q − Qh]| ≤ E[|Q − Qh|] . h.

Hence α = 1 and γ = 1 (optimal solver). For a 3D problem d = 3

Cost(µ̂MC , tol) ≃ tol
−5

To reduce the error by a factor 10, the cost increses by a factor 105 !

Can we do better than that ?

Yes. Multilevel Monte Carlo can bring this cost down to tol−2 in favorable cases !
F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 13
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Multilevel Monte Carlo method

Outline
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2 Multilevel Monte Carlo method

3 MLMC for moments and distributions
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Multilevel Monte Carlo method

Multilevel Monte Carlo (MLMC) method

Iterated control variate idea [Heinrich 1998], [Giles 2008]

ℓ = 0 · · · ℓ = L

Sequence of refined discretizations (not
necessarily nested nor structured)

h0 > h1 > . . . > hL

Sequence of sample sizes

M0 > M1 > · · · > ML

We assume that the mesh size hL achieves the desired accuracy and aim at
computing E[QhL ].

Simple idea: write a telescopic sum (denoting Qℓ = Qhℓ)

E[QL] = E[Q0] + E[Q1 − Q0] + . . .+ E[QL − QL−1]

and estimate each term independently with different sample sizes

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 15
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Multilevel Monte Carlo method

MLMC estimator

µ̂MLMC = ÊM0 [Q0] + ÊM1 [Q1 − Q0] + . . .+ ÊML
[QL − QL−1]

=

L∑

ℓ=0

1

Mℓ

Mℓ∑

i=1

(Qℓ(y
(i,ℓ))− Qℓ−1(y

(i,ℓ))), Q−1 = 0

Notice that Qℓ(y
(i,ℓ)) and Qℓ−1(y

(i,ℓ)) are evaluated for the same realization of
the random varaibles y (i,ℓ). Hence, the difference is hopefully small for large ℓ as

Qℓ(y)
h→0−−−→ Q(y).

Bias (discretization error):

E[µ̂MLMC ]− µ =

L∑

ℓ=0

E
[
ÊMℓ

[Qℓ − Qℓ−1]
]
− µ =

L∑

ℓ=0

E[Qℓ − Qℓ−1]− µ

= E[QL]− µ

Notice that the bias depens only on the finest discretization level – controlled by
the choice of hL.

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 16
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Multilevel Monte Carlo method

MLMC estimator

Variance (statistical error):

VMLMC = Var

[ L∑

ℓ=0

ÊMℓ
[Qℓ − Qℓ−1]

]
=

L∑

ℓ=0

Var
[
ÊMℓ

[Qℓ − Qℓ−1]
]

=
Var[Q0]

M0
+

L∑

ℓ=1

Var[Qℓ − Qℓ−1]

Mℓ

Controlled by the choice of sample sizes {Mℓ}Lℓ=0.

Mean squared error

MSE(µ̂MLMC ) = B2 + VMLMC = E[Q − QL]
2 +

Var[Q0]

M0
+

L∑

ℓ=1

Var[Qℓ − Qℓ−1]

Mℓ

Key point: Since Var[Qℓ − Qℓ−1] gets smaller and smaller for large ℓ, one
can take Mℓ smaller and smaller. Only few samples on the fine grid hL.

The level 0 is usually determined by stability and accuracy requirements. In
particular, one needs Var[Q1 − Q0] ≪ Var[Q0] ≈ Var[Q].

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 17



Multilevel Monte Carlo method

MLMC estimator

Variance (statistical error):

VMLMC = Var

[ L∑

ℓ=0
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ÊMℓ
[Qℓ − Qℓ−1]

]
=

L∑

ℓ=0

Var
[
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Multilevel Monte Carlo method

Optimal choice of Mℓ (optimal allocation)

C0: cost of generating one realization of Q0

Cℓ: cost of generating one realization of Qℓ − Qℓ−1, ℓ > 0
V0 = Var[Q0]
Vℓ = Var[Qℓ − Qℓ−1], ℓ > 0

Then

Total cost: Cost(µ̂MLMC ) =

L∑

ℓ=0

MℓCℓ, Total variance: Var[µ̂MLMC ] =

L∑

ℓ=0

Vℓ

Mℓ
.

Problem: Find optimal {Mℓ}Lℓ=0 to minimize the cost at a fixed variance level

min
{Mℓ}

L∑

ℓ=0

MℓCℓ subject to
L∑

ℓ=0

M−1
ℓ Vℓ ≤ tol

2

Solution: if we replace Mℓ by continuous variables (relaxation), the optimal
solution is

Mℓ = tol
−2

√
Vℓ

Cℓ

L∑

j=0

√
VjCj
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Multilevel Monte Carlo method

Proof.
Define the Lagrangian function

L(M0, . . . ,ML, λ) =

L∑

ℓ=0

MℓCℓ − λ


tol

2 −
L∑

j=0

Vj

Mj




Then
∂L
∂Mℓ

= Cℓ − λ
Vℓ

M2
ℓ

= 0, =⇒ Mℓ =

√
λ
Vℓ

Cℓ

Substituting into the constraint gives

L∑

j=0

√
VjCj

λ
= tol

2, =⇒
√
λ = tol

−2

L∑

j=0

√
VjCj
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Multilevel Monte Carlo method

In practice, one should take the ceiling of the real value Mℓ (important if Mℓ < 1).
That is, we have for the MLMC estimator

Optimal sample sizes: Mℓ =



tol

−2

√
Vℓ

Cℓ

L∑

j=0

√
VjCj




Replacing in the cost extression Cost(µ̂MLMC , tol) =
∑L

ℓ=0 CℓMℓ and using that
⌈x⌉ ≤ x + 1, ∀x ∈ R

Optimal work: Cost(µ̂MLMC , tol) ≤ tol
−2




L∑

j=0

√
VjCj




2

+

L∑

ℓ=0

Cℓ
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Multilevel Monte Carlo method

Complexity analysis (error vs. cost)

To analyze the complexity of the MLMC estimator, we make the following
assumptions (see also [Giles 2008], [Cliffe et al. 2011])

Assumptions: for a problem in D ⊂ Rd (d-dimensional)

1 hℓ = h0δ
ℓ, 0 < δ < 1 (sequence of geometric meshes)

2 |E[Q − Qℓ]| ≤ Cαh
α
ℓ (weak rate of conv.)

3 E[(Q − Qℓ)
2] ≤ Ĉβh

β
ℓ (strong rate of conv.)

4 Cℓ = Cγh
−dγ
ℓ (γ = 3

Notice that from 3 it follows that

6 Vℓ ≤ Cβh
β
ℓ , with Cβ = 2Ĉβ(1 + δ−β).

Indeed:

Vℓ = Var[Qℓ − Qℓ−1] ≤ E[(Qℓ − Qℓ−1)
2]

≤ 2E[(Q − Qℓ)
2] + 2E[(Q − Qℓ−1)

2] ≤ 2Ĉβ(1 + δ−β)hβℓ
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β
ℓ (strong rate of conv.)

4 Cℓ = Cγh
−dγ
ℓ (γ = 3

Notice that from 3 it follows that

6 Vℓ ≤ Cβh
β
ℓ , with Cβ = 2Ĉβ(1 + δ−β).
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Multilevel Monte Carlo method

Complexity analysis (error vs. cost)

Moreover one always has β ≤ 2α (typically β = 2α for PDEs with random
coefficients). Indeed by Cauchy-Schwarz inequality

E[Q − Qℓ] ≤ E[(Q − Qℓ)
2]

1
2 ≤

√
C̃βh

β
2

ℓ , hence α ≥ β

2
.

Theorem (MLMC Complexity, [Cliffe et al. 2011])

Under the assumptions 1-4 above, if 2α ≥ min(β, dγ), the computational cost

required to approximate E[Q] with MLMC with accuracy 0 < tol < 1/e in mean

square sense, that is E[(µ̂MLMC − µ)2] ≤ tol2 is bounded as follows:

Cost(µ̂MLMC , tol) ≤ C





tol
−2, for β > dγ,

tol
−2 log2(tol), for β = dγ,

tol
−2−(dγ−β)/α, for β < dγ,

Recall: standard MC has corresponding complexity of

Cost(µ̂MC , tol) ∝ tol
−2−dγ/α .
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Multilevel Monte Carlo method

Proof.
We enforce the error constraint MSE(µ̂MLMC ) ≤ tol2 as

Bias constraint: |E[Q − QL]|2 ≤
1

2
tol

2, Var. constraint: Var[µ̂MLMC] ≤
1

2
tol

2

From the Bias constraint we get

L(tol) ≡ L =

⌈
log(

√
2Cαh

α
0 tol

−1)

α log δ−1

⌉
∼ logδ tol

1

α .

Setting C̃β = Cβh
β
0 and C̃γ = Cγh

−dγ
0 , the total cost is:

Cost(µ̂MLMC , tol) ≤ tol
−2




L∑

j=1

√
C̃βC̃γδ

j
β−dγ

2




2

+

L∑

j=0

Cj
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L(tol) ≡ L =

⌈
log(

√
2Cαh

α
0 tol

−1)

α log δ−1

⌉
∼ logδ tol

1

α .

Setting C̃β = Cβh
β
0 and C̃γ = Cγh

−dγ
0 , the total cost is:

Cost(µ̂MLMC , tol) ≤ tol
−2




L∑

j=1

√
C̃βC̃γδ

j
β−dγ

2




2

+

L∑

j=0

Cj
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Multilevel Monte Carlo method

Disregarding for the moment the term
∑

j Cj , we consider three cases:

Case β > dγ:

Cost(µ̂MLMC , tol) ≤ tol
−2




∞∑

j=1

√
C̃βC̃γδ

j
β−dγ

2




2

≤ C tol
−2

Case β = dγ:

Cost(µ̂MLMC , tol) ≤ C tol
−2

L ≤ C tol
−2(log tol−1)2

Case β < dγ:

Cost(µ̂MLMC , tol) ≤ Ctol
−2δL

β−dγ
2 ≤ C tol

−2− dγ−β
α

If, moreover, 2α ≥ min(β, dγ) then the term
∑L

j=0 Cj is of higher order that the
terms above in all three cases.

Exercise. Check that
∑L

j=0 Cj is indeed of higher order for 2α ≥ min(β, dγ) and
under the assumptions above.

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 24



Multilevel Monte Carlo method

Disregarding for the moment the term
∑

j Cj , we consider three cases:

Case β > dγ:

Cost(µ̂MLMC , tol) ≤ tol
−2




∞∑

j=1

√
C̃βC̃γδ

j
β−dγ

2




2

≤ C tol
−2

Case β = dγ:

Cost(µ̂MLMC , tol) ≤ C tol
−2

L ≤ C tol
−2(log tol−1)2

Case β < dγ:

Cost(µ̂MLMC , tol) ≤ Ctol
−2δL

β−dγ
2 ≤ C tol

−2− dγ−β
α

If, moreover, 2α ≥ min(β, dγ) then the term
∑L

j=0 Cj is of higher order that the
terms above in all three cases.

Exercise. Check that
∑L

j=0 Cj is indeed of higher order for 2α ≥ min(β, dγ) and
under the assumptions above.

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 24



Multilevel Monte Carlo method

Disregarding for the moment the term
∑

j Cj , we consider three cases:

Case β > dγ:

Cost(µ̂MLMC , tol) ≤ tol
−2




∞∑

j=1

√
C̃βC̃γδ

j
β−dγ

2




2

≤ C tol
−2

Case β = dγ:

Cost(µ̂MLMC , tol) ≤ C tol
−2

L ≤ C tol
−2(log tol−1)2

Case β < dγ:

Cost(µ̂MLMC , tol) ≤ Ctol
−2δL

β−dγ
2 ≤ C tol

−2− dγ−β
α

If, moreover, 2α ≥ min(β, dγ) then the term
∑L

j=0 Cj is of higher order that the
terms above in all three cases.

Exercise. Check that
∑L

j=0 Cj is indeed of higher order for 2α ≥ min(β, dγ) and
under the assumptions above.

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 24



Multilevel Monte Carlo method

Disregarding for the moment the term
∑

j Cj , we consider three cases:

Case β > dγ:

Cost(µ̂MLMC , tol) ≤ tol
−2




∞∑

j=1

√
C̃βC̃γδ

j
β−dγ

2




2

≤ C tol
−2

Case β = dγ:

Cost(µ̂MLMC , tol) ≤ C tol
−2

L ≤ C tol
−2(log tol−1)2

Case β < dγ:

Cost(µ̂MLMC , tol) ≤ Ctol
−2δL

β−dγ
2 ≤ C tol

−2− dγ−β
α

If, moreover, 2α ≥ min(β, dγ) then the term
∑L

j=0 Cj is of higher order that the
terms above in all three cases.

Exercise. Check that
∑L

j=0 Cj is indeed of higher order for 2α ≥ min(β, dγ) and
under the assumptions above.

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 24



Multilevel Monte Carlo method

Important (shocking ?) comments on the MLMC rates

Let us focus on two particular cases:

Fast convergence rate, β > dγ.
Here the complexity of MLMC is tol−2, which is the same of Monte Carlo
sampling when the cost to sample each realization is fixed. This means that
we do not see the effect of the fine hL discretization in the rates!

Smooth noise, β = 2α and β < dγ.
Here the resulting complexity is tol−dγ/α, which is the complexity of solving
just one realization in the deepest level!

Further remarks:

In all cases, MLMC has a better asymptotic complexity than MC. (in the
pre-asymptotic regime, this is not always the case).

The complexity analysis relies on the use of geometric meshes hℓ = h0δ
ℓ.

Indeed, it can be shown that geometric refinement is nearly optimal
[HajiAli-N.-vonSchwerin-Tempone 2016]
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Multilevel Monte Carlo method

Example 1 – stochastic differential equation

dXt = a(t,Xt)dt + b(t,Xt)dWt(y), t ∈ (0,T ], X0 = x0

Quantity of interest: Q = Q̃(XT )

discretized by Euler-Maruyama with step size hℓ = h02
−ℓ. We have already seen

that for smooth a(·) and b(·) one has

1 |E[Q − Qℓ]| . hℓ (order 1 convergence for the mean – weak rate)

2 E[(Q − Qℓ)
2]

1
2 . h

1
2

ℓ (order 1/2 in mean square sense – strong rate)

3 Cℓ .. h−1
ℓ (cost proportional to the numebr of iterations)

From 2 we deduce Vℓ = Var[Qℓ − Qℓ−1] . hℓ

Hence: α = 1, β = 1, d = 1, γ = 1 =⇒ Cost(µ̂MLMC , tol) ≃ tol−2 log2(tol)

To be compared with Cost(µ̂MC , tol) ≃ tol−3
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Multilevel Monte Carlo method

Example 2 – PDE with random parameters

− div(a(y)∇u) = f , in D ⊂ Rd , u = 0, on ∂D

and Q = Q̃(u) a Lipschitz functional. Discretization by P1 finite elements on a
regular triangulation with mesh size h. Under suitable assumptions

1 |Q(y)− Qℓ(y)| ≤ Chℓ, ∀y ∈ Γ (order 1 strong convergence)

2 Cℓ . h
−dγ
ℓ

From 1. we infer |E[Q − Qℓ]| . hℓ and Vℓ = Var[Qℓ − Qℓ−1] . h2ℓ .

2D case: α = 1, β = 2, d = 2, and γ = 1 (optimal solver) (β = dγ)

Cost(µ̂MLMC , tol) ≃ tol
−2 log2(tol) ‖ Cost(µ̂MC , tol) ≃ tol

−4

3D case: α = 1, β = 2, d = 3, and γ = 1 (optimal solver) (β < dγ)

Cost(µ̂MLMC , tol) ≃ tol
−3 ‖ Cost(µ̂MC , tol) ≃ tol

−5
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Multilevel Monte Carlo method

Controlling the error in MLMC

Recall: MSE(µ̂MLMC ) = B2 + VMLMC = E[Q − QL]
2 +

∑L
ℓ=0

Vℓ

Mℓ

Given a hierarchy {Mℓ}ℓ and samples {∆ℓQ(y (i,ℓ)), i = 1, . . . ,Mℓ}Lℓ=0, with
∆ℓQ = Qℓ − Qℓ−1

Bias estimation (as in MC): use a posteriori error estimators or extrapolation
strategies. E.g. Richardson extrapolation

B ≈ B̂L :=
ÊML

[QL − QL−1]

δ−α − 1

where the weak rate α is either known a priori or estimated from
ÊMℓ

[Qℓ − Qℓ−1], ℓ = 1, . . . , L.

Variance estimation: use sample variance estimator

V̂MLMC :=

L∑

ℓ=0

V̂ℓ

Mℓ
with V̂ℓ = V̂arMℓ

[Qℓ − Qℓ−1]

Cost estimation: Ĉℓ := ÊMℓ
[Cost(Qℓ − Qℓ−1)].
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Multilevel Monte Carlo method

Adaptive MLMC

Error splitting we aim at B2 ≤ tol2

2 and V ≤ tol2

2

Given a MLMC run and estimates B̂L and V̂MLMC

if |B̂L| > tol√
2

=⇒ set L = L+ 1 and run M̄ simulations to estimate V̂L

it V̂MLMC > tol2

2 =⇒ compute optimal {Mℓ}ℓ using the formula

Mℓ =




2

tol2

√
V̂ℓ

Ĉℓ

L∑

j=0

√
V̂ℓĈℓ




and run the extra simulations needed
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Multilevel Monte Carlo method

A simple adaptive MLMC algorithm

Algorithm (Adaptive MLMC, from [Giles Acta Num. 2015])
1 start with L = 2, and initial M0 = M1 = M2 = M̄ on levels ℓ = 0, 1, 2
2 while extra samples need to be evaluated do

2.1 evaluate extra samples on each level
2.2 compute/update estimates V̂ℓ, ℓ = 0, . . . , L
2.3 define optimal Mℓ, ℓ = 0, . . . , L
2.4 if B̂L > tol√

2
set L := L+ 1, and initialise ML = M̄

3 end while

Drawback of the simple algorithm

The initialization ML = M̄ on finest level L may be too costly (in the best
scenario only a couple of simulations are needed on level L)

The sample variance estimator V̂ℓ = V̂arMℓ
[Qℓ − Qℓ−1] may be unreliable for

Mℓ small, which typically happens in finest levels.

Estimation of Vℓ on finest levels need to be combined with suitable extrapolation
from previous levels.

E.g. [Giles 2015] proposes V̂ℓ = max{V̂arMℓ
[∆ℓQ], 1

2δ
βVℓ−1}.
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Multilevel Monte Carlo method

Continuation Multilevel Monte Carlo (CMLMC)
[Collier-HajiAli-N.-vonSchwerin-Tempone 2015, Pisaroni-N.-Leyland 2017]

Idea: Solve the problem with decreasing tolerances tol (0) > tol (1) > . . . ≥ tol .
Use collected samples on all levels to improve the estimate of Vℓ = Var[∆ℓQ] and
µℓ = E[Q − Qℓ].

MAP Bayesian estimator V̂ℓ at iteration j :

we make the ansatz ∆ℓQ ∼ N(µℓ,Vℓ)
based on acquired samples at previous iteration, we fit models (least squares)

µmodel
ℓ = Cαh

α
ℓ

Vmodel
ℓ = Cβh

β
ℓ

We take a Normal-Gamma prior for (µℓ,Vℓ), with mode in (µmodel
ℓ ,Vmodel

ℓ )

Then V̂ℓ is the MAP Bayesian estimator based on the Normal-Gamma prior
and the actual samples acquired at iteration j

Effectively, we have

Mℓ = 0 V̂ℓ = Vmodel
ℓ (prior model)

Mℓ → ∞ V̂ℓ ≈ V̂arMℓ
[∆ℓQ] (sample variance)

V̂ℓ is then used to determine the sample sizes Mℓ for the next iteration.
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Multilevel Monte Carlo method

The CMLMC algorithm

Choose a sequence of decreasing tolerances: tol0 > tol1 > . . . > tolK = tol and

an initial guess of the rates (α(0), β(0), γ(0)), constants (C
(0)
α ,C

(0)
β ,C

(0)
γ ) and

variances {V̂ (0)
ℓ }L(0)

ℓ=0,

for k = 1, . . . ,K

Based on rates (α(k−1), β(k−1), γ(k−1)), constants (C
(k−1)
α ,C

(k−1)
β ,C

(k−1)
γ )

and variances {V̂ (k−1)
ℓ }L(k−1)

ℓ=0

compute optimal L(k) s.t. C
(k−1)
α hα(k−1)

L ≤ tolk

2

compute optimal {M
(k)
ℓ }L

(k)

ℓ=0 s.t.
∑L(k)

ℓ=0

V̂
(k−1)
ℓ

Mℓ
≤

tol
2

k

2
.

run MLMC with L(k), {M
(k)
ℓ }L

(k)

ℓ=0

update rates (α(k), β(k), γ(k)), constants (C
(k)
α ,C

(k)
β ,C

(k)
γ ) and variances

{V̂
(k)
ℓ }L

(k)

ℓ=0 based on the new simulations performed

k = k + 1

end for
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Multilevel Monte Carlo method

Alternative error splitting based on CLT

It has been shown in [Collier-HajiAli-N.-vonSchwerin-Tempone, 2015], [Hoel-Krumscheid, 2019] that
the estimator µ̂MLMC satisfies a CLT. More precisely, taking L = L(tol) to satisfy a
bias condition and Mℓ = Mℓ(tol) with optimal allocation to satisfy the variance
condition, under mild assumptions

µ̂MLMC − E[µ̂MLMC ]√
Var[µ̂MLMC ]

d−→ N(0, 1)

Alternative Error splitting for aymptotic confidence level 1− δ

|B̂L| ≈ (1− θ)tol, cδ

√√√√
L∑

ℓ=0

V̂ℓ

Mℓ
≈ θtol

CMLMC can also estimate the optimal splitting parameter: at iteration k

(L(k), θ(k)) = argmin
θ∈(0,1)

L(k−1)≤L≤Lmax

Cost
(k−1)(L, θ), s.t. C (k−1)

α hα
(k−1)

L ≤ (1− θ)tolk
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Multilevel Monte Carlo method

Computation of CL and pressure coeff. for RAE2822 airfoil

Parameter Reference value (r) Uncertainty

α∞ 2.31◦ T N (r , 2%r , 90%r , 100%r)
Operational M∞ 0.729 T N (r , 2%r , 90%r , 110%r)

p∞ 101325 [N/m2] −

T∞ 288.5 [K ] −

Rs 0.00839 T N (r , 2%r , 90%r , 110%r)
Geometrical Rp 0.00853 T N (r , 2%r , 90%r , 110%r)

xs 0.431 T N (r , 2%r , 90%r , 110%r)
xp 0.346 T N (r , 2%r , 90%r , 110%r)
ys 0.063 T N (r , 2%r , 90%r , 110%r)
yp −0.058 T N (r , 2%r , 90%r , 110%r)
Cs −0.432 -
Cp 0.699 -
θs −11.607 -
θp −2.227 -

ys

yp xs

xp

Cs

Cp

Rs

Rp

xθs

θp

M∞

α∞
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Multilevel Monte Carlo method

MLMC hierarchies and comparison with MC

0 1 2 3 4 5 6 7
10−8

10−7

10−6

10−5

10−4

10−3

10−2

β = 2.07

CL - GEOM(6)+OPER(2)

C-MLMC

MC

LS fit

0 1 2 3 4 5 6 7
l

101

102

103

104

3768

482

179

51

14

5

Υ = 1.58

10−7 10−6 10−5 10−4 10−3 10−2

ε

10−3

10−1

101

103

105

107

109

1011

1013

1015

1017

1019

1021

C
[h
]∗

n
C
P
U

ε−2−(1.04/1.45)

ε−2

Scalar QoI CL- GEOM(6)+OPER(2)

MC

C-MLMC

Deterministic

0 1 2 3 4 5 6 7
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C-MLMC
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0 1 2 3 4 5 6 7
level
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1524
964

245

92

32
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10−7 10−6 10−5 10−4 10−3 10−2

ε

10−3

10−1

101

103

105

107
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1013
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C
[h
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n
C
P
U
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10−7 10−6 10−5 10−4 10−3 10−2

ε
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1020

C
[h
]∗

n
C
P
U

MC - G(10)+O(2)

C-MLMC - G(10)+O(2)
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MC - G(6)+O(2)

C-MLMC - G(6)+O(2)

MC - G(6)
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MC - O(2)
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MLMC for moments and distributions

Outline

1 Problem setting

2 Multilevel Monte Carlo method

3 MLMC for moments and distributions

4 Generalizations of MLMC

F. Nobile (EPFL) MLMC for UQ CEA/EDF/INRIA Summer School 2021 42



MLMC for moments and distributions

Beyond expectations: computation of central moments

Goal: compute µp(Q) = E[(Q − E[Q])p]

How to apply and tune MLMC in this case?

Let ~QM = {Q(1), . . . ,Q(M)} be an iid sample from Q and µ̂p( ~QM) and estimator
for µp(Q). E.g. for p = 2 consider the sample variance estimator

µ̂2( ~QM) =
1

M − 1

M∑

i=1


Q(i) −

M∑

j=1

Q(j)

M




2

Idea: telescope on µ̂p

µ̂MLMC
p = µ̂p( ~Q0,M0) +

L∑

ℓ=1

(
µ̂p( ~Qℓ,Mℓ

)− µ̂p( ~Qℓ−1,Mℓ−1
)
)

with ( ~Qℓ,Mℓ
, ~Qℓ−1,Mℓ

) generated with the same noise, and otherwise independent
between levels.
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MLMC for moments and distributions

Beyond expectations: computation of central moments

Two main issues:

It is important that µ̂p( ~QM) is unbiased to preserve the telescopic property in
expectation. (Mℓ is small on finest levels and the corresponding bias could be
large)

We should be able to estimate Var[µ̂p( ~Qℓ,Mℓ
)− µ̂p( ~Qℓ−1,Mℓ−1

)] to tune the
MLMC algorithm

Idea: use h-statistics [Pisaroni-Krumscheid-N. 2017]

hp( ~QM) : unbiased estimator of µp(Q) with minimal variance

(see [Bierig-Chernov 2015-2016] for an alternative approach with biased estimators)

Multilevel estimator: hMLMC
p =

L∑

ℓ=0

(hp( ~Qℓ,Mℓ
)− hp( ~Qℓ−1,Mℓ

)), ~Q−1,M0
= ~0
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MLMC for moments and distributions

Computation of central moments

Observe that

E[hMLMC
p ] =

L∑

ℓ=0

(E[hp( ~Qℓ,Mℓ
)]− E[hp( ~Qℓ−1,Mℓ

))]

=
L∑

ℓ=0

(µp(Qℓ)− µp(Qℓ−1)) = µp(QL)

Var[hMLMC
p ] =

L∑

ℓ=0

Var[hp( ~Qℓ,Mℓ
)− hp( ~Qℓ−1,Mℓ

)]︸ ︷︷ ︸
=O(M−1

ℓ
)

Definind Vℓ,p = MℓVar[hp( ~Qℓ,Mℓ
)− hp( ~Qℓ−1,Mℓ

)] we have

Mean squared error: MSE(hMLMC
p ) = (µp(Q)− µp(QL))

2

︸ ︷︷ ︸
Bias2

+

L∑

ℓ=0

Vℓ,p

Mℓ

︸ ︷︷ ︸
Variance

Same structure of MSE as for expectation.
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MLMC for moments and distributions

Computation of central moments

Complexity result for hℓ = h0δ
ℓ, δ ∈ (0, 1)

Assume µ2p(Qℓ) < ∞ for all ℓ and there exist α, β, γ > 0, 2α ≥ min{β, dγ} s.t.

|µp(Q)− µp(Qℓ)| = O(hαℓ ),

Vℓ,p = O(hβℓ ),

Cℓ = Cost(Q
(i,ℓ)
ℓ ,Q

(i,ℓ)
ℓ−1 ) = O(h−dγ

ℓ ),

Then, taking L = O(tol
1
α ) and Mℓ =

⌈
tol−2

√
Vℓ,p

Cℓ

(∑L
k=0

√
CkVk,p

)⌉
leads to

MSE(hMLMC
p ) . tol2 and Cost(hMLMC

p , tol) .





tol−2, β > dγ

tol−2| log(tol)|2, β = dγ

tol−2− dγ−β
α , β < dγ
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MLMC for moments and distributions

Computation of central moments

Technical difficulty: how to estimate the variances Vℓ,p (needed for optimal
allocation and error control)

Define ~X+
ℓ,Mℓ

= ~Qℓ,Mℓ
+ ~Qℓ−1,Mℓ

, ~X−
ℓ,Mℓ

= ~Qℓ,Mℓ
− ~Qℓ−1,Mℓ

∆ℓhp = hp( ~Qℓ,Mℓ
)− hp( ~Qℓ−1,Mℓ

) can be expressed as a power sum

∆ℓhp =
∑

a+b≤p

Sa,b(~X
+
ℓ,Mℓ

, ~X−
ℓ,Mℓ

), Sa,b(~X , ~Y ) =
∑

i

(X (i))a(Y (i))b

Unbiased estimators V̂ℓ,p of Vℓ,p can be computed in closed form starting from

the power terms Sa,b(~X
+
ℓ,Mℓ

, ~X−
ℓ,Mℓ

) [Pisaroni-Krumscheid-N. 2017].
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MLMC for moments and distributions

Beyond expectations: CDF, quantiles, and more

The cumulative distribution function (CDF) of Q can be seen as a parametric
expectation

F (θ) = E[φ(θ,Q)], φ(θ,Q) = ✶{Q≤θ}

One could apply MLMC on many values θi (using the same sample of Q) and
interpolate.

Problem: φ(θ,Q) is not smooth! the variance of the differences,
Vℓ = Var[φ(θ,Qℓ)− φ(θ,Qℓ−1)] will decay slowly. No much gain in using MLMC
vs MC.

Remedies:

[Giles-Nagapetyan-Ritter 2015, 2017] smoothing: Fǫ(θ) = E[φǫ(θ,Q)]. Technical
difficulty: ǫ should depend on the required tolerance  difficult tuning
of MLMC

[Bierig-Chernov 2016] approximate F or pdf based on moments

[Krumscheid-N. 2017] anti-derivative approach: F (θ) = Φ′(θ) with
Φ(θ) = E[φ(θ,Q)] and φ(θ, ·) Lipschitz continuous.
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MLMC for moments and distributions

Anti-derivative approach to CDF computation

For a given τ ∈ (0, 1) define

Φτ (θ) = E[φτ (θ,Q)], φτ (θ,Q) = θ +
1

1 + τ
(Q − θ)+

Then (assuming F ∈ C 1)

F (θ) = (1− τ)Φ′
τ (θ) + τ

and MLMC can be effectively used to approximate Φτ (θ) and its derivatives.

Moreover, from the approximation of Φτ and its derivatives we can get for free

pdf: p(θ) = F ′(θ) = (1− τ)Φ′′
τ (θ)

τ -quantile: qτ = inf{θ : F (θ) ≥ τ} = argminθ∈R
Φτ (θ)

Conditional Value at Risk

CVaRτ =
1

1− τ

∫ ∞

qτ

xdF (x) = min
θ∈R

Φτ (θ)
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MLMC for moments and distributions

Computing parametric expectations by MLMC

Goal: given φ(θ,Q), approximate Φ(θ) = E[φ(θ,Q)] and its derivatives uniformly
in Θ. Notation: Φℓ(θ) := E[φ(θ,Qℓ)].

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

x

Φ̂

Φ

Interpolation approach:

introduce a grid ~θ = {θ1, . . . , θn} ⊂ Θ

compute ΦMLMC (θj), j = 1, . . . , n by MLMC
(same sample of Qℓ for every θj)

Interpolate values
Φ̂MLMC (~θ) = {Φ̂MLMC (θj)}nj=1

Φ̂MLMC = In(Φ̂MLMC (~θ))

e.g. by spline or polynomial interpolation

Eventually, compute also derivatives
dmΦ̂MLMC

dθm
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MLMC for moments and distributions

Error splitting

Define the mean squared error: MSE(Φ̂MLMC ) = E[supθ∈Θ |Φ(θ)− Φ̂MLMC (θ)|2]

Error splitting

MSE(Φ̂MLMC ) . ‖Φ− InΦ(~θ)‖2∞︸ ︷︷ ︸
interp. error

+ ‖Φ(~θ)− ΦL(~θ)‖2∞︸ ︷︷ ︸
discret. error

+ log(n)
L∑

ℓ=0

Vℓ

Mℓ

︸ ︷︷ ︸
statistical error

with Vℓ = E[‖∆φ(~θ,Qℓ)− E[∆φ(~θ,Qℓ)]‖2ℓ∞ ]

All terms (and constants) can be estimated in practice... but rather painful.
Optimization of MLMC based on estimators V̂ℓ of Vℓ

[AyoulGuilmard-Ganesh-Krumscheid-N.-Pisaroni in preparation]

Complexity analysis for the error on Φ and its derivatives available in [Krumscheid-N.

2017].
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MLMC for moments and distributions

Example – risk averse optimization

min
x∈X

R(Q(x)), X : feasible design space

R: risk measure

Examples

R(Q) = E[Q] (risk neutral)

R(Q) = E[Q]± α std[Q]

R(Q) = qτ [Q] (τ -quantile)

R(Q) = CVaRτ [Q]
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MLMC for moments and distributions

Airfoil optimization under operating uncertainties
{
min
x∈X

R [CD(x)]

s.t CL(x) = C∗
L , thickness constraint

x : airfoil shape – PARSEC parameters
(Rs ,Rp, xs , xp,Cs ,Cp, θs , θp)

ys

yp xs

xp

Cs

Cp

Rs

Rp

y

xθs

θp

Rµ,σ [CD(x)] µCD
(x) + σCD

(x)

Rµ,σ,γ [CD(x)] µCD
(x) + σCD

(x) + µCD
(x) · γCD

(x)

RVaR90 [CD(x)] VaR90
CD

(x)

RCVaR90 [CD(x)] CVaR90
CD

(x)

Quantity Reference (r) Uncertainty

CL 0.5 −

Operating M∞ 0.75 B(2, 2, 0.1,M∞ − 0.05)
parameters Rec 6.5 · 106 −

p∞ [Pa] 101325 −

T∞ [K ] 288.5 −

Model: steady state Euler + boundary layer equation (MSES software)
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Generalizations of MLMC

Multi Index Monte Carlo method

Often, the computational model involves several
discretization parameters (e.g. spatial mesh size,
time step, domain truncation, model
simplification, etc.)

numerical solution: u~h,
~h = (h(1), . . . , h(d))

Introduce sequences of refined discretizations:

h
(i)
0 > h

(i)
1 > . . . > h

(i)
Li

For ~ℓ = (ℓ1, . . . , ℓd), denote Q~ℓ = Q(u
h
(1)
ℓ1

,...,h
(d)
ℓd

)

Difference operators

∆jQ~ℓ =

{
Q~ℓ − Q~ℓ−~ej

, if ℓj > 0

Q~ℓ, if ℓj = 0

∆Q~ℓ =

d⊗

j=1

∆jQ~ℓ =
∑

~j∈{0,1}d

(−1)|
~j|Q~ℓ−~j

ℓ1

ℓ2
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Generalizations of MLMC

Multi Index Monte Carlo method

Telescopic formula: given finest discretization level ~L = (L1, . . . , Ld)

E[Q~L] =
∑

~ℓ≤~L

E[∆Q~ℓ]

Multi Index idea: compute each expectation independently

µ̂MIMC
~L

=
∑

~ℓ≤~L

1

M~ℓ

M~ℓ∑

i=1

∆Q
(i,~ℓ)
~ℓ L1

L2

ℓ1

ℓ2

Further sparsification: often the set {~ℓ ≤ ~L} is not the optimal one. Optimized
index sets I ⊂ Nd can lead to substantial improvement

µMIMC
I =

∑

~ℓ∈I

1

M~ℓ

M~ℓ∑

i=1

∆Q
(i,~ℓ)
~ℓ

s

n

ℓ1

ℓ2
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Generalizations of MLMC

Complexity analysis

Assume h
(i)
ℓi

= h
(i)
0 σℓi

i , σi > 1 and

|E[∆Q~ℓ]| .
∏d

j=1 h
αi

ℓj

Var[∆Q~ℓ] .
∏d

j=1 h
βi

ℓj

Cost(∆Q~ℓ) .
∏

i h
−γi

ℓj
These assumptions require some type of “mixed regularity”.

Then, setting ni = log(σi )(αi +
γi−βi

2 ), the optimal sets are

IL = {~ℓ ∈ Nd : ~ℓ · ~n ≤ L}
Complexity analysis [HajiAli-N.-Tempone 2015]

Under the above assumptions, for any tol > 0 there exist L and {M~ℓ}~ℓ∈IL
such

that MSE (µMIMC
IL

) ≤ tol2 and

W (µMIMC
IL

) .

{
tol−2, if βj > γj , ∀j

tol
−2−maxj

γj−βj
αj | log tol |p, otherwise

with p depending on #{j : γj−βj

αj
= maxk

γk−βk

αk
}
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