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HIDDEN CONSTRAINTS LEARNING PROBLEM
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OVERVIEW OF HIDDEN CONSTRAINTS LEARNING STRATEGIES

Classifiers

Support Vector Classifier

Naive Bayes Classifier

Gaussian Process Classifier 

Neural Networks 

K-Nearest Neighbors

Random Forest Classifier

… 

Active learning

Uncertainty-based query
approaches

Disagreement-based query
approaches

Diversity- and density-based 
approaches

Expected error Reduction / 
One-step-look-ahead

[Cacciarelli and Kulahci, 2021]

One-step-look-ahead

Expected Error Reduction 
[Roy and McCallum, 2001]
[Zhao et al, 2021] 

 Generalization error 

Expensive numerical simulators

Support Vector Classifier

Naive Bayes Classifier

Gaussian Process Classifier 

Neural Networks 

K-Nearest Neighbors

Random Forest Classifier

… 
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OVERVIEW OF HIDDEN CONSTRAINTS LEARNING STRATEGIES

Classifiers

Support Vector Classifier

Naive Bayes Classifier

Gaussian Process Classifier 

Neural Networks 

K-Nearest Neighbors

Random Forest Classifier
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Active learning

Uncertainty-based query 
approaches

Disagreement-based query 
approaches

Diversity- and density-
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Expected error Reduction / 
One-step-look-ahead

[Cacciarelli and Kulahci, 2021]

Expected Error Reduction 
[Roy and McCallum, 2001]
[Zhao et al, 2021] 
 Generalization error 

Stepwise Uncertainty 
Reduction strategies ?  

One-step-look-ahead
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LEARNING HIDDEN CONSTRAINT LEARNING WITH 
GAUSSIAN PROCESS CLASSIFIER

The GPC model allows to predict the probability of success of a simulation: 
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GAUSSIAN PROCESS CLASSIFIER FORMULATION
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GAUSSIAN PROCESS CLASSIFIER FORMULATION
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LEARNING HIDDEN CONSTRAINT WITH GPC
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STEPWISE UNCERTAINTY REDUCTION STRATEGY FOR 
HIDDEN CONSTRAINTS LEARNING
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STEPWISE UNCERTAINTY REDUCTION STRATEGY FOR 
HIDDEN CONSTRAINTS LEARNING
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RESULTS: COMPARISON CRITERIA
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RESULTS: COMPARISON OF DIFFERENT ENRICHMENT CRITERIA

[Menz et al.,2023]
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TOY EXAMPLE BASED ON BRANIN



15 |   ©  2 0 1 6  I F P E N

TOY EXAMPLE BASED ON BRANIN
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TOY EXAMPLE BASED ON BRANIN

Mean CPU times (in seconds) of the learning function evaluation on 20 repetitions with 
2000 integration points

SMOCUARCHISSUR BATCH
(2 points)

ARCHISSURARCHISSUR with 
old formulation 

Method

0.8490.4120.0790.311
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DAMAGE PREDICTION OF A WIND TURBINE
Wind parameters: 
𝑈ഥ , 𝑇𝐼, 𝑁𝑎𝑐𝑌𝑎𝑤

Turbsim

𝑛௦௘௘ௗ simulations of 
wind

Mean damage across 
wind turbine tower base  

…

Multiphysics 
simulator OpenFast

Multiphysics 
simulator OpenFast

…
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DAMAGE PREDICTION OF A WIND TURBINE

failure / success
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RESULTS FOR THE DAMAGE PREDICTION OF A WIND 
TURBINE

Evolution of 𝑐𝑟𝑖𝑡ி for ARCHISSUR and SMOCU

failure / success
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CONCLUSIONS AND OUTLOOK

Great potential to learn hidden constraints with application to an industrial test case

Application on a analytic case in 10 dimensions tackled in the preprint

Faster decrease of the error measure as a function of number of simulation on the test 
cases

Can this work be integrated within space-filling or optimization strategies to help in the 
presence of hidden constraints?
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APPLICATION IFPEN : DOMMAGE EN PIED DE TOUR D’UNE ÉOLIENNE 
OFFSHORE

failure / success

Failure for at least one of the wind seeds ௦௘௘ௗ = simulation failure
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MOCU/SMOCU


