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I HIDDEN CONSTRAINTS LEARNING PROBLEM

f: a computer code with inputs x € Q2 C R with simulation failures on €2.

Objective: determination of the feasible set:

M ={xe€Q:f(x)#NAN} = {x € Q: Lrix)znan = 1}

Learning hidden constraints is a binary classification problem:

@ We have binary observations: (X,)) = (Xj, ¥j)j=1....n, With y; = Lf(x;)#NAN-
@ Objective: predict the probability of belonging to the failure/non-failure class
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OVERVIEW OF HIDDEN CONSTRAINTS LEARNING STRATEGIES

Expensive numerical simulators

VN

Classifiers Active learning One-step-look-ahead

Support Vector Classifier Uncertainty-based query Expected Error Reduction
approaches [Roy and McCallum, 2001]

Naive Bayes Classifier [Zhao et al, 2021]
Disagreement-based query

Gaussian Process Classifier approaches - Generalization error

Diversity- and density-based
approaches

Expected error Reduction /
One-step-look-ahead

[Cacciarelli and Kulahci, 2021]
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I OVERVIEW OF HIDDEN CONSTRAINTS LEARNING STRATEGIES

Classifiers Active learning One-step-look-ahead

Gaussian Process Classifier

Stepwise Uncertainty
Reduction strategies ?

Expected error Reduction /
One-step-look-ahead

[Cacciarelli and Kulahci, 2021]
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I LEARNING HIDDEN CONSTRAINT LEARNING WITH
GAUSSIAN PROCESS CLASSIFIER

f: a computer code with inputs x € Q2 C R with simulation failures on €2.

Objective: determination of the feasible set:

M ={xe€Q:f(x)#NAN} = {x € Q: Lrix)znan = 1}

Learning hidden constraints is a binary classification problem:

@ We have binary observations: (X.,)Y) = (Xj, ¥j)j=1...n, With yj; = Lf(x)#NAN-
@ Objective: predict the probability of belonging to the failure/non-failure class

=» The formulation of the classification model is based on a Gaussian Process (GP)

surrogate

The GPC model allows to predict the probability of success of a simulation:

pn(x) = P[Yn(x) = 1] = P[Y(x) = 1|, V] (fp,ﬁ;’;,,e,;gg

| © 2016 IFPEN
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I GAUSSIAN PROCESS CLASSIFIER FORMULATION

In [Bachoc et al., 2020], the probability of non-failure is modeled using the sign of a latent

GP Z(x) ~ GP(mu(x, zp), kn(x)):
= —mp(x, zp)

palx) = IP[1 =1|x, X,y / o4 (z,)d dz
( ) [ Z(x)>0 I ] S y( n) ( m ) n
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I GAUSSIAN PROCESS CLASSIFIER FORMULATION

Practical building of the GPC model p,(x) for any x:

@ Optimization of the hyperparameters of the latent GP to maximize the likelihood:
P[sign(Z,) = Y]
()

@ Generation of realizations z,’ of Z,|sign(Z,) =Y
=» Approximation of p,(x):

(7)

gby=158 (—mnb«zn ))
il Vkn(x)
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I LEARNING HIDDEN CONSTRAINT WITH GPC

The feasible set learned by a GPC model can be characterized by a percentile of the
feasibility probability:| Qn = {x € Q: pa(x) > a},a € (0, 1]

Objective: Obtaining an accurate approximation of @,

Idea: draw a methodology from an existing paradigm used in Gaussian Process
Regression active learning for feasible set estimation: stepwise uncertainty reduction
strategy using the notion of random set [Bect et al., 2012, Molchanov, 2005]
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I STEPWISE UNCERTAINTY REDUCTION STRATEGY FOR
HIDDEN CONSTRAINTS LEARNING

et us consider the random set:

= {xeQ: Yyx)=1}

with Y,(x) the conditional Bernoulli [Dai et al., 2013] random variable Y (x)|X,Y, =)

The SUR strategy based on the uncertainty on " defined by the vorob’ev deviation
Var,]; [Chevalier, 2013, EI Amri et al., 2020, Vorobyev and Lukyanova, 2013] aim to
minimize at each step the following learning function:

In(xas1) = Bn [ Vark 1 (ns1, Z0ne1))]
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I STEPWISE UNCERTAINTY REDUCTION STRATEGY FOR
HIDDEN CONSTRAINTS LEARNING

We propose to minimize the expectation of uncertainty using the expectation on the
Bernoulli process Y,

En [-] = Ev, (1) [1&, Yn = Y]

Hence:

Jn(xn+1) = (1 — pn(Xnt1)) Varr|7—+1(xn+1 Yn(xnt1) =0)
+Pn(Xnt1) Vary g (Xat1, Ya(Xn41) = 1)

=» Advantage: no integration over the realizations of the latent GP Z(x,,1)

=» Simplified computation of Var +1(xn+1 Yn(Xnt1) = Yni1) with our proposed GPC
update formulae

(ifeam
10 | © 2016 IFPEN K nouvelles
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STEPWISE UNCERTAINTY REDUCTION STRATEGY FOR
HIDDEN CONSTRAINTS LEARNING

The Vorob'ev deviation is given by:
VHF,E+1(Xn+1~ Y.rl(xn—i—l) = .Vn—l—l) = /(1_pn+l(xJ)Hpn+1{x}za* +Pn—|—1(x)ﬂpn+1[x){a*!‘-"‘(dx)

with p,11(x) the future feasibility probability knowing Y, (x,11) = yn11 given by:
( ) 1 i &) _mn—l-l(xazi'!—l—l)
n X)= &
Pn+1 N Tnr1(X)

This probability can be computed by:

® using GP update formulae provided in [Chevalier, 2013]
@ sampling zin+1 using z. and:

z(xn+1)" ~ N (Mp(Xny1, z'n) kn(xn+1.xn+1)) truncated such that 5fgn(z(x,,+1)f) = Vnt1
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I RESULTS: COMPARISON CRITERIA
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I RESULTS: COMPARISON OF DIFFERENT ENRICHMENT CRITERIA

Compared strategies:
@ ARCHISSUR: An Active Recovery of a Constrained and Hidden Subset by SUR

method based on the Vorob'ev deviation = one point and batch versions [Menz et al.,2023]
@E‘t. {0,
Eop
Ok
@ Mix enrichment criterion: add the point corresponding to the maximum of the GP

variance (exploration) and the one where p,(x) value is the closest to 5

(exploitation) simultaneously

@ SMOCU enrichment measure: Soft-MOCU (Mean Objective Cost of Uncertainty)
method [Zhao et al., 2021] https://github. com/QianLab/Soft_MOCU
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I TOY EXAMPLE BASED ON BRANIN

Evolution of critg for MIX, ARCHISSUR, ARCHISSUR BATCH and SMOCU
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I TOY EXAMPLE BASED ON BRANIN

Pn map - ARCHISSUR BATCH
2 points: iteration 80

------ Pn map - SMOCU iteration 80
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I TOY EXAMPLE BASED ON BRANIN

Mean CPU times (in seconds) of the learning function evaluation on 20 repetitions with
2000 integration points

Method ARCHISSUR with ARCHISSUR ARCHISSUR BATCH SMOCU
old formulation (2 points)
0.311 0.079 0.412 0.849

* old formulation: £, [-] = Ez,(x,.,) [-|X: Zn = Z2]
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DAMAGE PREDICTION OF AWIND TURBINE

Wind parameters:
U,TI, NacYaw

\ 4

Turbsim

Wind loads are described by 3 parameters:

\ 4

@® wind speed U,

@ turbulence intensity T/,

Ngeeq Simulations of
wind

@ misalignment angle NacYaw.

£ 500

x = (U, TI, 6wina, NacYaw) !

Multiphysics

simulator OpenFast

200 0 a0 1000
time (s)

simulator OpenFast

Multiphysics

Mean damage across
wind turbine tower base
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I DAMAGE PREDICTION OF AWIND TURBINE

Specificity of this test case:

® non-regular frontier between
feasible/unfeasible sets

@ Presence of outliers

=» GPC model with noise on ob-
served points

failure /
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failure /

RESULTS FOR THE DAMAGE PREDICTION OF AWIND
TURBINE

Evolution of crity for ARCHISSUR and SMOCU
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I CONCLUSIONS AND OUTLOOK

@ Great potential to learn hidden constraints with application to an industrial test case
@ Application on a analytic case in 10 dimensions tackled in the preprint

@ Faster decrease of the error measure as a function of number of simulation on the test
cases

—Can this work be integrated within space-filling or optimization strategies to help in the
presence of hidden constraints?
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The Vorob'ev deviation is given by:
Var£+1(xn+1. Yn(Xnt1) = Ynr1) = /(l_pn+l(*"))ﬂpn+1(ﬂ2a*+Pn+1(x)ﬂpnq[?‘)‘iﬂ-‘*ﬂ(d}()

with p,11(x) the future feasibility probability knowing Y,(x,11) = y»11 given by:
N -
1 = _mn—!-l(xaz:':—l—l)
ni1(x) = — ¢
Pria() =y 2 ( Tne1(x)

This probability can be computed by:

® using GP update formulae provided in [Chevalier, 2013]
@ sampling ZLH using z. and:

z(xn“)" ~N (mn(xn+1, z'n) kn(xn+1,xn+1)) truncated such that sfgn(z{x,prl)") = ¥ g
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OFFSHORE

Climat,
Environnement

I APPLICATION IFPEN : DOMMAGE EN PIED DE TOUR D’UNE EOLIENNE

et Economie
circulaire

Failure for at least one of the wind seeds ng,.4 = simulation failure

failure /
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IVorob’ev expectation and deviation

Definition
Vorob'ev expectation is defined as the a™-percentile of I, where o™ is determined by:

E[x(M)] = 1(Qar)
with 1 the Lebesgue measure and Q, = {x € Q : pp(x) > a},a € (0, 1].

Vorob'ev expectation is a global minimiser of the vorob’ev deviation Var,(I') among
closed sets of volume equal to the mean volume of I:

Vary(T) = E[u(QaAT)|X, V)

with TAQ, = (M'\ Q) U (Q, \T)
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I MOCU/SMOCU

The enrichment criterion based on MOCU (Mean Objective Cost of Uncertainty)
formulation given in [Zhao et al., 2021] can be rewritten as:

uMOCU(y 1) = E,[Var,y1(I)]— Var, () with a = 0.5

Soft-MOCU learning function is a smooth concave approximation of MOCU given by:

USMOU(x,11) = Ex[Ea[gIn(exp(k * pat1(X)) + exp(k(1 — paya(X))))]
—  In(exp(k * pn(X)) + exp(k(1 — pa(X))))]

with k a smoothness parameter.
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