Computer Experiments with Time-Varying Inputs: Gaussian Surrogates and Experimental Designs

Max D. Morris
Department of Statistics
Iowa State University

MASCOT-NUM, St-Etienne

Setting

Examples

- Population growth/diversity as a function of resources
- Material fatigue as a function of stress
- Global climate as a function of greenhouse gas emission

Background \& Notation

- Deterministic computer models
- For scalar-valued output and vector-valued input:

$$
y_{\mathbf{x}}=f(\mathbf{x}), \quad \mathbf{x} \in \Delta
$$

- "Meta-model" or "Surrogate" based on a prior (pre-data) Gaussian Stochastic Process (GaSP) indexed by input:

$$
\begin{gathered}
E\left(y_{\mathbf{x}}\right)=\mu \quad \operatorname{Var}\left(y_{\mathbf{x}}\right)=\sigma^{2} \\
\operatorname{Corr}\left(y_{\mathbf{x}_{1}}, y_{\mathbf{x}_{2}}\right)=e^{-\theta \times D\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \mathbf{w}\right)}=e^{-\theta \sum_{i} w_{i} \times d\left(\mathbf{x}_{1}^{i}, \mathbf{x}_{2}^{i}\right)}
\end{gathered}
$$

- View D as a weighted distance between x's; positive correlation decreases as distance increases.
- For:
- an experimental design: $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{N}\right\}$
- resulting data (outputs): y
- specified μ, σ^{2}, θ
- output prediction at \mathbf{x}_{0} proceeds via the conditional GaSP as:

$$
\begin{gathered}
\hat{y}_{\mathbf{x}_{0}}=E\left(y_{\mathbf{x}_{0}} \mid \mathbf{y}\right)=\mu+\mathbf{r}_{0 X}^{\prime} \mathbf{R}_{X X}^{-1}(\mathbf{y}-\mu \mathbf{1}) \\
\operatorname{se}\left(\hat{y}_{\mathbf{x}_{0}}\right)=\sqrt{\operatorname{Var}\left(y_{\mathbf{x}_{0}} \mid \mathbf{y}\right)}=\sqrt{\sigma^{2}\left(1-\mathbf{r}_{0 X}^{\prime} \mathbf{R}_{X X}^{-1} \mathbf{r}_{0 X}\right)}
\end{gathered}
$$

where $\left\{\mathbf{r}_{0 X}\right\}_{i}=\operatorname{Corr}\left(y_{\mathbf{x}_{0}}, y_{\mathbf{x}_{i}}\right)$, and $\left\{\mathbf{R}_{X X}\right\}_{i j}=\operatorname{Corr}\left(y_{\mathbf{x}_{i}}, y_{\mathbf{x}_{j}}\right)$

- e.g. Sacks et al. (1989), Currin et al. (1991), Santner et al. (2003).
- Example: | $\left(x^{1}, x^{2}\right)$ | $(.2, .2)$ | $(.2, .8)$ | $(.8, .2)$ | $(.8, .8)$ | $(.5, .5)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | y | 9.0 | 9.0 | 9.0 | 12.0 |
| 10.0 | | | | | |
| | | | | | |

$-\mu=10, \sigma^{2}=3$
$-D\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \mathbf{w}\right)=\sum_{i=1}^{2} w_{i}\left(x_{1}^{i}-x_{2}^{i}\right)^{2}, \theta=1, w_{1}=w_{2}=1$:
conditional mean, y -hat

x1
conditional std. dev.

x1

Vector Inputs \& Functional Outputs

- Now

$$
y_{\mathbf{x}}(t)=f(\mathbf{x}, t), \quad \mathbf{x} \in \Delta, \quad t \in[0, T]
$$

- As yesterday, to facilitate things, define a time-grid:

$$
\begin{gathered}
G=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \ldots, \tau_{M}\right\}, \quad 0<\tau_{1}<\tau_{2}<\tau_{3}<\ldots<\tau_{M} \leq T \\
\mathbf{y}_{\mathbf{x}}=f(\mathbf{x}), \quad \mathbf{x} \in \Delta
\end{gathered}
$$

- GaSP: If we restrict the structure to be the same at each \mathbf{x} :

$$
E\left(\mathbf{y}_{\mathbf{x}}\right)=\boldsymbol{\mu} \quad \operatorname{Var}\left(\mathbf{y}_{\mathbf{x}}\right)=\mathbf{\Sigma}
$$

- Conte and O'Hagan (2011) discuss two approaches to modeling covariances across x -space:
1.) "Multivariate Output" (or MO)
- $\operatorname{Cov}\left(\mathbf{y}_{\mathbf{x}_{i}}, \mathbf{y}_{\mathbf{x}_{j}}\right)=e^{-\theta \times D\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \mathbf{w}\right)} \times \boldsymbol{\Sigma}$.
- This treats the covariance as separable, factoring it into components associated with differences between \mathbf{x} vectors, and output components.
- C \& O'H discuss a special case of this, "Time Index" (or TI) that adds structure suggested by outputs that are continuous functions of time:

$$
\{\boldsymbol{\Sigma}\}_{i, j}=\sigma^{2} e^{-\phi \times d\left(t_{i}, t_{j}\right)}
$$

- Implications:
- At any \mathbf{x} and t, the correlation between $y_{\mathbf{x}}(t)$ and $y_{\mathbf{x}}(t+\delta)$ is the same for any fixed δ
- At any t, the correlation between $y_{\mathbf{x}_{i}}(t)$ and $y_{\mathbf{x}_{j}}(t)$ is the same
2.) "Many Single-output ..." (or MS)
- $\operatorname{Cov}\left(\left\{\mathbf{y}_{\mathbf{x}_{i}}\right\}_{r},\left\{\mathbf{y}_{\mathbf{x}_{j}}\right\}_{s}\right)=\left\{\begin{aligned} \sigma^{2} e^{-\theta \times D\left(\mathbf{x}_{i}, \mathbf{x}_{j} ; \mathbf{w}_{r}\right)} & r=s \\ 0 & \text { otherwise }\end{aligned}\right.$
- Implications:
- At any \mathbf{x} and t, the correlation between $y_{\mathbf{x}}(t)$ and $y_{\mathbf{x}}(t+\delta)$ is zero for any $\delta \neq 0$ (much stronger assumption than $\mathrm{MO} / \mathrm{TI}$)
- The correlation between $y_{\mathbf{x}_{i}}(t)$ and $y_{\mathbf{x}_{j}}(t)$ can be different at different t (weaker assumption than $\mathrm{MO} / \mathrm{TI}$)
- In the form given here, TI has only one more parameter than MS.
- Using M output values for each of N model runs, the computational effort for parameter estimation is driven by the order of the correlation matrix:
- TI: One unified model, kronecker-factors of order M and N
- MS: M independent models, each of order N

Functional Inputs \& Outputs

- Morris (2012), a further development of the MS idea.
- Input function over time:

$$
z(t), t \in[0,1]
$$

- Output also a function of time, with y^{τ} potentially influenced by $z(t)$ with $t \leq \tau$:

$$
y_{z}^{\tau}=f(z(t), t \in[0, \tau]) \quad \tau \in[0, T]
$$

- GaSP:

$$
\begin{gathered}
E\left(y_{z}^{\tau}\right)=\mu(\tau) \quad \operatorname{Var}\left(y_{z}^{\tau}\right)=\sigma^{2}(\tau) \\
\operatorname{Corr}\left(y_{z_{1}}^{\tau}, y_{z_{2}}^{\tau}\right) \quad=\exp \left\{-\theta \int_{0}^{\tau} w_{\tau}(\tau-t) \times d\left(z_{1}(t), z_{2}(t)\right) d t\right\} \\
=\exp \left\{-\theta \times D\left(z_{1}, z_{2} ; w_{\tau}\right)\right\}
\end{gathered}
$$

- Integral generalizes sum in product correlation for vector-valued \mathbf{x}; now a weighted distance between functions over $[0, \tau]$.
- Here, I'm using $w_{\tau}(\tau-t)=\exp \left\{-\beta(\tau-t)^{2}\right\}$, suggesting a belief that at any time, output is most sensitive to "recent" values of the input function.

- Other forms would be $\mathrm{m}^{\mathrm{Tme}} \mathrm{more}$ appropriate, for example, for models in which early inputs are most critical, and the system "solidifies" over time to be less influenced by z (e.g. some chemical reactions).
- In any case, w_{τ} must be non-zero over $[0, \tau]$ to guarantee non-zero distance between distinct z_{1} and z_{2}.
- As with MS, model $\left(y_{z_{1}}^{\tau_{1}}, y_{z_{2}}^{\tau_{2}}\right)$ with $\tau_{1} \neq \tau_{2}$ as independent.

Inference

- Define a time grid for output modeling and prediction:

$$
G=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \ldots, \tau_{M}\right\}, \quad 0<\tau_{1}<\tau_{2}<\tau_{3}<\ldots<\tau_{M} \leq T
$$

- Experimental design:

$$
Z=\left\{z_{1}, z_{2}, z_{3}, \ldots, z_{N}\right\}
$$

- Resulting data:

$$
\begin{array}{lllll}
\mathbf{y}_{1} & \mathbf{y}_{2} & \ldots & \mathbf{y}_{N} & \leftarrow \text { organized by } Z \\
\mathbf{y}^{1} & \mathbf{y}^{2} & \ldots & \mathbf{y}^{M} & \leftarrow \text { organized by } G
\end{array}
$$

- Log likelihood \propto :

$$
\begin{aligned}
& -\sum_{m=1}^{M}\left\{N \times \ln \left(\sigma^{2}\left(\tau_{m}\right)\right)+N \times \ln \left(\left|\mathbf{R}_{m}\right|\right)\right. \\
+ & \left.\left(\mathbf{y}^{m}-\mu\left(\tau_{m}\right) \mathbf{1}\right)^{\prime} \mathbf{R}_{m}^{-1}\left(\mathbf{y}^{m}-\mu\left(\tau_{m}\right) \mathbf{1}\right) / \sigma^{2}\left(\tau_{m}\right)\right\}
\end{aligned}
$$

where $\left\{\mathbf{R}_{m}\right\}_{i j}=\exp \left\{-\theta \times D\left(z_{i}, z_{j} ; w_{\tau_{m}}\right)\right\}$

- Parameters: θ, and

$$
\mu(-) \quad \sigma^{2}(-) \quad w_{\tau}(-)
$$

each over $[0, T]$, assigned a reasonable parametric form.

- For known parameters, output prediction for input z_{0} at time τ_{m} is:

$$
\begin{gathered}
E\left(y_{\chi 0}^{\tau_{m}} \mid \mathbf{y}\right)=\mu\left(\tau_{m}\right)+\mathbf{r}_{0, m}^{\prime} \mathbf{R}_{m}^{-1}\left(\mathbf{y}^{m}-\mu\left(\tau_{m}\right) \mathbf{1}\right) \\
\operatorname{Var}\left(y_{\chi 0}^{\tau_{m}} \mid \mathbf{y}\right)=\sigma^{2}\left(\tau_{m}\right)\left[1-\mathbf{r}_{0, m}^{\prime} \mathbf{R}_{m}^{-1} \mathbf{r}_{0, m}\right]
\end{gathered}
$$

where $\left\{\mathbf{r}_{0, m}\right\}_{i}=\exp \left\{-\theta \times D\left(z_{0}, z_{i} ; w_{\tau_{m}}\right)\right\}$

- For unknown parameters:
- empirical Bayes: Estimate from data (typically via maximum likelihood) and treat as known
- full Bayes: Assign priors, incorporate parameter uncertainty

Example: A "Small" Model

- Model of marrow stem-cells, Jones, Morris \& Young (1991):
- input $=$ time-rate of ionizing radiation exposure
- output $=$ quantity of normal, injured, and killed cells as functions of time, $t \in[0,1000]$

output

Example: Experiment

- $N=5$ runs of the model and resulting output (normal cells):
input

output

- Output prediction at $G=\{400,450,500, \ldots, 1000\}$, with

$$
w_{\tau}(\tau-t)=\exp \left\{-\beta(\tau-t)^{2}\right\}
$$

- "Gaussian" correlation form (i.e. weighted L_{2} distance between z 's):

$$
\left.D\left(z_{i}, z_{j} ; w_{\tau}\right)\right\}=\int_{0}^{\tau} w_{\tau}(\tau-t)\left(z_{i}(t)-z_{j}(t)\right)^{2} d t
$$

- Bayesian prediction of y at times in G, using independent priors:
$-\theta \sim \operatorname{Gamma}($ mean $=$ std.dev. $=0.02$)
$-\beta \sim \operatorname{Gamma}($ mean=std.dev. $=0.02$)
- at each $\tau \in G$ independently, μ uniform over $(-\infty, \infty)$
- common σ^{2} for all $\tau \in G$, with density inversely proportional to its value
- Predict output for:
input

output

Experimental Design

- Select Z so that $\operatorname{Var}\left(y_{z_{0}}^{\tau} \mid \mathbf{y}\right)$ is small for all $\tau \in G$ and all z_{0} of interest.
- Predictive D-optimality/Entropy optimality minimizes a summary measure of this across all $z(t) \notin Z$.
- Johnson, Moore, Ylvisaker (1990) showed that for vector-valued inputs \mathbf{x}, as correlations become weak (θ large), maximin distance designs are optimal in this sense:

Pick X to maximize: $\quad \phi=\min _{\mathbf{x}_{i}, \mathbf{x}_{j} \in X} \quad D\left(\mathbf{x}_{i}, \mathbf{x}_{j} ; \mathbf{w}\right)$

- In our case, if $\sigma^{2}\left(\tau_{m}\right)=\sigma^{2}$, generalization leads to:

Pick Z to maximize: $\quad \phi=\min _{z_{i}, z_{j} \in Z} \min _{\tau \in G} D\left(z_{i}, z_{j} ; w_{\tau}\right)$

Example: Rerun with Optimal Design

- Input functions of interest: $z^{*}(t)=\frac{r_{1}}{s_{1}^{2}+\left(t-t_{1}\right)^{2}}+\frac{r_{2}}{s_{2}^{2}+\left(t-t_{2}\right)^{2}}$

$$
\begin{aligned}
& r_{1}, r_{2}=1,2,5 \\
& s_{1}, s_{2}=100,200,500,1000,2000,5000 \\
& t_{1}, t_{2}=200,300,400, \ldots, 800
\end{aligned}
$$

each normalized to total dose of 200 :

$$
z(t)=200 \times z^{*}(t) / \int_{0}^{1000} z^{*}(u) d u
$$

- Exposure received along a linear path passing within distances s_{1} and s_{2}, at times t_{1} and t_{2}, of two point sources of relative strength r_{1} and r_{2}.
- $9072 z(t)$'s.
- Construction algorithm: Repeated "backward elimination," from an initial random sample, of z 's that are closest to others.
- $N=5$ runs of the model and resulting output:

output

- Predictions:
input

output

Maximin Distance-Optimal Designs

- Morris (2014)
- $0<z(t)<1$
- $t \in[0,1]$
- For all $\tau \in G$,

$$
\begin{aligned}
& -w_{\tau}(\tau-t)>0, \int_{0}^{\tau} w_{\tau}(\tau-t) d t=1 \\
& -D\left(z_{i}, z_{j} ; w_{\tau}\right)=\int_{0}^{\tau} w_{\tau}(\tau-t)\left(z_{i}(t)-z_{j}(t)\right)^{2} d t
\end{aligned}
$$

- Theorem:

1. $N=2$: maximum $\phi=1$
2. $\underline{N=0 \bmod 4:}$ maximum $\phi=\frac{1}{2} \frac{N}{N-1}$

- Proof is by construction, and requires $z(t)$ to jump between 0 and $1 O(N \times M)$ times! (So the main practical value of this result is the bound, not the construction)

Example

- $G=\{0.4,0.5,0.6,0.8,1\}$
- $w_{\tau}(\tau-t)=2 t / \tau^{2}$
- $N=8$
- $z_{i}(t)$ values determined, for example, by regular 2^{7-4} fractional factorial design, with "change points" at:

Concoluding Remarks

- In practice, other distance measure may be more appropriate:

- Still, "distance based" ${ }^{\text {t }}$ design ideas popular with Ga'SP models can be used.
- The approach easily generalizes to
- multiple time-series inputs, or mixed time-function and scalar inputs
- functions of both time and space ...

References:

- Currin, C., T. Mitchell, M. Morris, and D. Ylvisaker, "Bayesian Prediction of Deterministic Functions ...," JASA 86, 1991, 953-963.
- Johnson, M.E., L.M. Moore, and D. Ylvisaker, "Minimax and Maximin Distance Designs," JSPI 26, 1990, 131-148.
- Jones, T.D., M.D. Morris, and R.W. Young, "A Mathematical Model for Radiation-Induced Myelopoiesis," Radiation Research 128, 1991, 258-266.
- Morris, M.D., "Gaussian Surrogates for Computer Models with Time-Varying Inputs and Outpust," Technometrics 54, 2012, 42-50.
- Morris, M.D., "Maximin Distance Optimal Designs for Computer Experiments with Time-Varying Inputs and Outputs," Journal of Statistical Planning and Inference 144, 2014, 63-68.
- Sacks, J., W. Welch, T. Mitchell, and H. Wynn, "Design and Analysis of Computer Experiments," Stat. Science 4, 1989, 409-423.
- Santner, T.J., B.J. Williams, and W.I. Notz, The Design and Analysis of Computer Experiments, 2003, Springer.

For $N=$ even, $G=\left\{\tau_{1}\right\}$:

- Find $0=t_{1}^{0}<t_{1}^{2}<t_{1}^{3}<\ldots<t_{1}^{n-2}<t_{1}^{n-1}=\tau_{1}$ that evenly divide the integral of $w_{\tau_{1}}$:

$$
\begin{gathered}
\int_{0}^{t_{1}^{1}} w_{\tau_{1}}\left(\tau_{1}-t\right) d t=\int_{t_{1}^{1}}^{t_{1}^{2}} w_{\tau_{1}}\left(\tau_{1}-t\right) d t=\ldots= \\
\int_{t_{1}^{n-2}}^{\tau_{1}} w_{\tau_{1}}\left(\tau_{1}-t\right) d t=\frac{1}{n-1}
\end{gathered}
$$

- Z such that within each of $\left[0, t_{1}^{1}\right),\left[t_{1}^{1}, t_{1}^{2}\right], \ldots,\left[t_{1}^{N-2}, \tau_{1}\right]$

$$
\begin{aligned}
& N / 2 \text { of } z_{i}(t)=0 \\
& N / 2 \text { of } z_{i}(t)=1
\end{aligned}
$$

maximize total inter- z distance:

$$
\sum_{i<j} \int_{0}^{\tau_{1}} w_{\tau_{1}}\left(\tau_{1}-t\right)\left(z_{i}(t)-z_{j}(t)\right)^{2} d t=\left(\frac{N}{2}\right)^{2}
$$

- In particular ...

For $N=0 \bmod 4, G=\left\{\tau_{1}\right\}$:

- Let \mathbf{Z} be the $n \times(N-1)$ design matrix for any balanced, orthogonal, main-effects-saturated, 2-level design, with coding levels 0 and 1, e.g. for $N=4$

$$
\mathbf{Z}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

- For Z s.t. $z_{i}(t)=\mathbf{Z}_{i j}$ for $t \in\left[t_{1}^{j-1}, t_{1}^{j}\right]$ is Mm-optimal with $\phi=\frac{1}{2} \frac{N}{N-1}$

For $N=0 \bmod 4, G=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \ldots, \tau_{M}\right\}$:

- Define $t_{j}^{m}, m=2,3, \ldots, M, j=1,2, \ldots, N-2$ s.t.

$$
\sum_{k=1}^{m} \int_{t_{k}^{j}}^{t_{k}^{j+1}} w_{\tau_{m}}\left(\tau_{m}-t\right) d t=\frac{1}{N-1}, j=1,2, \ldots, N-1
$$

- Extend $0 / 1$ pattern used in $\left[0, \tau_{1}\right]$:

$$
Z \text { s.t. } z_{i}(t)=\mathbf{Z}_{i j} \text { for } t \in\left[t_{k}^{j-1}, t_{k}^{j}\right], k=2,3, \ldots, M
$$

- $D\left(z_{i}, z_{j} ; w_{\tau}\right)$ is the same for all pairs of input functions and $\tau \in G$
- $\rightarrow Z$ is Mm-optimal with $\phi=\frac{1}{2} \frac{N}{N-1}$

