Sensitivity Analysis with Functional Inputs

Max D. Morris
Department of Statistics
Iowa State University
MASCOT-NUM, St-Etienne

- Sensitivity Analysis: Understanding the "overall impact" of individual inputs or groups of inputs on the output of a computer model.
- Computer Model: Focus on deterministic models - numerical implementations of explicitly or implicitly defined functions.
- Today: Review and propose a few approaches for extending popular sensitivity/uncertainty ideas developed for scalar-valued inputs to:
- models for which some inputs are themselves functions, and the output of interest is a scalar. (In fact, the output may be a scalar-valued summary of a function.)
- further, focus on input functions of one variable, e.g. time.

Examples involving time-varying inputs:

- Regional environment models. Boundary conditions may be time-varying functions.
- Chemical reactor models. "Forcing functions" including temperature, concentration, physical mixing rates.
- Groundwater hydrology models. Rainfall rates, pumping rates.
- Injection molding process models. Heat and pressure schedules.

Notation and Restrictions:

- Model inputs: $\left(x_{1} \ldots x_{m}, z_{1}(t) \ldots z_{n}(t)\right) \in \Delta$
- Model output: $y=f\left(x_{1} \ldots x_{m}, z_{1}(t) \ldots z_{n}(t)\right)$
- Attention here is focused on scalar $t \in[0,1]$, where $z_{i}(t)$ is continuous and "well-behaved"
- Will sometimes substitute a long vector of values over a t-grid for the function:

$$
z_{i}(t) \rightarrow \mathbf{z}_{i}=\left(\begin{array}{c}
z_{i}(0.00) \\
z_{i}(0.01) \\
z_{i}(0.02) \\
\ldots \\
z_{i}(1.00)
\end{array}\right)
$$

Three Basic Approaches popular with scalar-input problems, in decreasing order of the number of function evaluations generally required:

- Variance-based sensitivity analysis - A multivariate probability distribution is specified for x over its domain Δ, representing (ideally) situational uncertainty about \mathbf{x}. The goal is to understand how variability propogates to y. (e.g. Saltelli et al., 2000)
- Statistical surrogate-based sensitivity analysis - y is assumed to be a relatively "well behaved" function of \mathbf{x} that can be formally predicted or estimated via statistical modeling. Sensitivity of y to each x_{i} is assessed through model parameters (Welch et al., 1992), by computing variance-based indices on the estimate of f, or via a more formal Bayesian approach (Oakley \& O'Hagan, 2004).
- Simple approximation-based sensitivity analysis - The sensitivity of output to each input is assessed by numerical approximation to $\partial y / \partial x_{i}$, $i=1,2,3, \ldots, m$, or to an average of these quantities over Δ or some appropriate subregion (e.g. $\pm 1 \%$ about nominal values).

A Toy Function for Examples:

$$
y=f\left(x_{1}, x_{2}, z_{1}, z_{2}\right)=\int_{t=0}^{1} \max _{s \in(0, t]} z_{1}(s) \times \max \left[(1-t) x_{2}, z_{2}(t)\right]^{2} d t
$$

- Note that x_{1} does nothing

Some pictures:

$$
\text { - } z_{i}(t)=\left\{\begin{array}{ll}
2 t \max z_{i} & t<\frac{1}{2} \\
2(1-t) \max z_{i} & t \geq \frac{1}{2}
\end{array} \quad i=1,2, \quad \max z_{i} \in[0,1]\right.
$$

- Unreferenced x or z in each panel $=\frac{1}{2}$

1. Simple approximation-based sensitivity analysis

- Fruth, Roustant, and Kuhnt (2014)
- Restrict attention to input functions $z(t)$ that are:
- piece-wise constant on intervals defined by a grid on t,

$$
G=\left\{0=t_{0}<t_{1}<t_{2}<\ldots<t_{g}=1\right\}
$$

- take one of only two values within each interval

- Use a form of sequential bifurcation (Bettonvil, 1995) to progressively refine G. (Important, but I won't consider this aspect here.)
- For a given G, let $\mathbf{z}_{i}=\left(z_{i 1}, z_{i 2}, \ldots z_{i g}\right)^{\prime}$.
- Then $y=f\left(z_{1}(t), z_{2}(t), \ldots, z_{n}(t)\right)=f^{*}\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{n}\right)$, i.e. reduction to $g \times n$ two-level scalar-valued inputs ... there is much experimental design literature for this case.
- Define "centered" input values z as $\bar{z}=z-\frac{1}{2}$, so that 0 is the "nominal" value for each input, and $\bar{z}= \pm \frac{1}{2}$.
- The authors use least-squares to fit data from N model runs:

$$
\left(\hat{\alpha}, \hat{\beta}_{i k}, i=1 \ldots n, k=1 \ldots g\right)=\operatorname{argmin} \sum_{j=1}^{N}\left[y^{j}-\left(\alpha+\sum_{i=1}^{n} \sum_{k=1}^{g} \bar{z}_{i k}^{j} \beta_{i k}\right)\right]^{2}
$$

- Then use

$$
\hat{H}_{i k}=\hat{\beta}_{i k} /\left(t_{k}-t_{k-1}\right)
$$

as an index of the sensitivity of y to the value of z_{i} within the k th interval of the t-grid, normalized to be expressed on a per-unit basis of t.

- What should we hope to be estimating here?
- Suppose $G=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$
- Test function inputs are represented by $2 x$'s and 8 scalar-valued z 's.
- Each input is then associated with $2^{10-1}=512$ "slopes" associated with the edges of a 10 -dimensional hypercube ... here they are:

- Basic sequential bifurcation might lead to an accumulated experimental design as follows:

x_{1}	x_{2}	z_{11}	z_{12}	z_{13}	z_{14}	z_{21}	z_{22}	z_{23}	z_{24}	y
0	0	0	0	0	0	0	0	0	0	0.0000
1	1	1	1	1	1	1	1	1	1	1.0100
1	1	1	1	1	0	0	0	0	0	0.3384
1	1	1	1	1	1	1	0	0	0	0.3978
1	1	1	1	1	1	1	1	1	0	0.7649
1	1	1	1	1	1	1	1	0	0	0.5504
1	1	0	0	0	0	0	0	0	0	0.0000
1	1	1	1	0	0	0	0	0	0	0.3384
1	1	1	0	0	0	0	0	0	0	0.3384
1	1	1	1	1	1	0	0	0	0	0.3384
1	0	0	0	0	0	0	0	0	0	0.0000

(Note that a different experimental design would have been developed if the inputs had been listed in a different order ...)

- Data collected from this design lead to the following values of \hat{H} (compared to the the "truth" from a full 2^{10} design):

x_{1}	x_{2}	z_{12}	z_{12}	z_{13}	z_{14}	z_{21}	z_{22}	z_{23}	z_{24}
0.000	0.000	1.353	$\underline{0.000}$	$\underline{0.000}$	0.000	0.238	0.610	0.858	0.980
0.000	0.105	1.216	0.497	0.197	0.063	0.320	0.604	0.813	0.928

- These errors are not realizations of random noise in the data (since there is none), but can be thought of as bias in estimators that have no variance.
- If $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}$ is used as the basis of analysis, but the data are actually generated by a "true" model: $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}$ then the least-squares estimate $\boldsymbol{\beta}_{1}$ is

$$
\hat{\boldsymbol{\beta}}_{1}=\boldsymbol{\beta}_{1}+\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{X}_{2} \boldsymbol{\beta}_{2}=\boldsymbol{\beta}_{1}+\mathbf{A} \boldsymbol{\beta}_{2}
$$

- The experimental design determines \mathbf{X}_{1} and \mathbf{X}_{2}, and hence the alias matrix \mathbf{A}.
- Mitchell (1974) proposed using $\|\mathbf{A}\|$ as an index of design quality for estimating main-effects models when second-order terms are present in the data-generating process.
- We modify this idea slightly here to omit the first row of \mathbf{A} since this corresponds to bias in the model intercept, which is of no real interest to us.
\hat{H} and alias indices for designs of different sizes:
- $\mathrm{SB}=$ Sequential Bifurcation (as shown)
- $\mathrm{FO} S B=$ Foldover of Sequential Bifurcation design
- $\mathrm{PB}=$ minimal Plackett-Burman design
- FO PB $=$ Foldover of Plackett-Burman design
- $2_{I I I}^{10-5}=$ Minimum Aberation Regular Fraction of Resolution III
- $2_{I V}^{10-4}=$ Minimum Aberation Regular Fraction of Resolution IV
- $2_{I V}^{10-3}=$ (larger) Minimum Aberation Regular Fraction of Resolution IV
- $2^{10}=$ Full Two-Level Factorial design

(Underlines are errors of more than 0.10)

2. Variance-based sensitivity analysis

- looss and Ribatet (2009), Jacques et al. (2006) advocate a direct extension of the standard approach for scalar inputs, called the microparameter method.
- Quick reminder of the popular scalar-input approach

A	B	\mathbf{A}_{1}	\mathbf{A}_{2}	\mathbf{A}_{3}
x_{1} x_{2} x_{3}	x_{1} x_{2} x_{3}	x_{1} x_{2} x_{3}	x_{1} x_{2} x_{3}	$x_{1} x_{2} \quad x_{3}$
. 23.46 .81	. 53.27 .26	. 53.46 .81	. 23.27 .81	. 23.46 .26
. 71.52 .33	. 21.04 .37	. 21.52 .33	. 71.04 .33	. 71.52 .37

. 48.21 .50	. 88.49 .94	. 88.21 .50	. 48.49 .50	. 48.21 .94

- Then averages of squared differences of outputs corresponding to paired rows form the basis of sensitivity index estimates:
- $\mathbf{A} \& \mathbf{B} \rightarrow \widehat{\operatorname{Var}}(y)$, the unconditional variance
- $\mathbf{B} \& \mathbf{A}_{1} \rightarrow E_{x_{1}} \widehat{\operatorname{Var}}_{x_{2}, x_{3}}\left[y \mid x_{1}\right]$
- First-Order Sensitivity: $\hat{S}\left(x_{1}\right)=1-E_{x_{1}} \widehat{\operatorname{Var}}_{x_{2}, x_{3}}\left[y \mid x_{1}\right] / \widehat{\operatorname{Var}}(y)$
- $\mathbf{A \&} \mathbf{A}_{1} \rightarrow E_{x_{2}, x_{2}} \widehat{V a r}_{x_{1}}\left[y \mid x_{2}, x_{3}\right]$
- Total Sensitivity: $\hat{T}\left(x_{1}\right)=E_{x_{2}, x_{2}} \widehat{\operatorname{Var}}_{x_{1}}\left[y \mid x_{2}, x_{3}\right] / \operatorname{Var}(y)$
- and similarly for other inputs, using a different \mathbf{A}_{i} but the same \mathbf{A} and \mathbf{B} in each case.

The same approach can be taken when any or all inputs are functional

- Functional inputs (or their vector approximations) are regarded as realizations of stochastic processes (or multivariate distributions)
- For example, a Gaussian process with

$$
\begin{gathered}
E(z(t))=\frac{1}{2}, \operatorname{Var}(z(t))=\left(\frac{1}{6}\right)^{2} \\
\operatorname{Corr}\left(z\left(t_{1}\right), z\left(t_{2}\right)\right)=e^{-\theta\left|t_{1}-t_{2}\right|^{1.99}} \text { with } \theta=10
\end{gathered}
$$

- Realizations:

- In the examples that follow, I use this process model for both z_{1} and z_{2}, and represent them as 101-element vectors \mathbf{z}_{1} and \mathbf{z}_{2}.
- With:
$-x_{1}$ and $x_{2} \sim U[0,1]$, and each of \mathbf{z}_{1} and \mathbf{z}_{2} as described above
- 6 input arrays, 100,000 rows per array (600,000 function evaluations)
results for the example model are:

	x_{1}	x_{2}	\mathbf{z}_{1}	\mathbf{z}_{2}
\hat{S}	0.0092	0.1065	0.2565	0.5937
\hat{T}	0.0000	0.1277	0.2896	0.6382

- This is useful, but it offers little insight into how z_{1} and z_{2} influence y.
- Proposal: "Factor" the functional input into one or a few scalar-valued summaries and an independent functional residual (of hopefully little importance).

Special case: Gaussian processes: $\mathbf{z} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- Scalar-valued summaries: $\mathrm{s}=\mathbf{C}^{\prime} \mathbf{z}$
- e.g. coefficients of a low-order least-squares polynomial approximation to \mathbf{z}
- A "residual" : $\mathbf{r}=\left(\mathbf{I}-\mathbf{C}\left(\mathbf{C}^{\prime} \mathbf{C}\right)^{-1} \mathbf{C}^{\prime}\right) \boldsymbol{\Sigma}^{-1} \mathbf{z}$
- Both \mathbf{s} and \mathbf{r} are multivariate normal, and independent, and \mathbf{z} can be recovered from \mathbf{s} and \mathbf{r}
- Example:
- Univariate $s=\bar{z}$
- z generated as before

N

$\rightarrow s=0.5522$ and
t

- Hence, our example can be viewed as:

$$
y=f\left(x_{1}, x_{2}, s_{1}, \mathbf{r}_{1}, s_{2}, \mathbf{r}_{2}\right)
$$

- Use $s_{1}=\operatorname{ave}\left(\mathbf{z}_{1}\right)$ and $s_{2}=\operatorname{ave}\left(\mathbf{z}_{2}\right)$
- Now 8 input arrays, 100,000 rows per array (800,000 function evaluations)

	x_{1}	x_{2}	s_{1}	\mathbf{r}_{1}	s_{2}	\mathbf{r}_{2}
\hat{S}	-0.0068	0.0931	0.1350	0.1096	0.5534	0.0230
\hat{T}	0	0.1300	0.1656	0.1313	0.5989	0.0472

- s_{2} is important, while \mathbf{r}_{2} has little impact
- s_{1} is more important than \mathbf{r}_{1}, which is comparable to x_{2}

Comparison

- Comparing $S\left(\mathbf{z}_{1}\right)$ to $S\left(s_{1}\right)+S\left(\mathbf{r}_{1}\right)$, et cetera

3. Statistical surrogate-based sensitivity analysis

- loose and Ribatet (2009) also discussed using a joint modeling approach to sensitivity analysis with functional inputs, based on fitting two models to output data.
- The (conditional) mean and variance of the output are modeled as functions of scalar-valued inputs only, i.e.
- for inputs $=\left(x_{1}, \ldots, x_{m}, z_{1}(t), \ldots, z_{n}(t)\right)$,
- estimate models for $E\left(y \mid x_{1}, \ldots, x_{m}\right)$ and $\operatorname{Var}\left(y \mid x_{1}, \ldots, x_{m}\right)$.
- So, for example, $E_{x^{\prime} s} \operatorname{Var}_{z^{\prime} s}\left(y \mid x^{\prime} s\right)$ can be estimated by integrating the dispersion model w.r.t. the distribution of $x^{\prime} s$, et cetera.
- Authors used GLM and GAM in their examples.
- In this form, the approach does not separate the variability associated with different functional inputs.

Here I'll try something related, and refer to it as "semi-modeling":

- Draw F realizations of each input function,

$$
z_{1}^{i_{1}}(t) \ldots z_{n}^{i_{n}}(t), i_{1} \ldots i_{n}=1 \ldots F .
$$

- Model y only for the selected function values, i.e.

$$
y=f\left(x_{1} \ldots x_{m}, i_{1} \ldots i_{n}\right)
$$

where $i_{1} \ldots i_{n}$ are categorical variables, each with values $1 \ldots F$, indexing associated input function values.

- Given training data, fit a single predictive model of the output:

$$
\hat{y}=\hat{f}\left(x_{1} \ldots x_{m}, i_{1} \ldots i_{n}\right)
$$

- Then, for example, using a random sample of size R (much larger than F) of each of $x_{1} \ldots x_{m}, i_{1} \ldots i_{n}$ and $x_{1}^{\prime} \ldots x_{m}^{\prime}, i_{1}^{\prime} \ldots i_{n}^{\prime}$,

$$
\begin{aligned}
& -\widehat{\operatorname{Var}}(y)=\frac{1}{2 R} \sum_{r=1}^{R}\left(\hat{y}\left(x_{1}^{r} \ldots x_{m}^{r}, i_{1}^{r} \ldots i_{n}^{r}\right)-\hat{y}\left(x_{1}^{\prime r} \ldots x_{m}^{\prime r}, i_{1}^{\prime r} \ldots i_{n}^{\prime r}\right)\right)^{2} \\
& -\hat{T}\left(x_{1}\right)=\frac{1}{2 R} \sum_{r=1}^{R}\left(\hat{y}\left(x_{1}^{r} \ldots x_{m}^{r}, i_{1}^{r} \ldots i_{n}^{r}\right)-\hat{y}\left(x_{1}^{\prime r} \ldots x_{m}^{r}, i_{1}^{r} \ldots i_{n}^{r}\right)\right)^{2} / \widehat{\operatorname{Var}}(y) \\
& -\hat{S}\left(x_{1}\right)= \\
& {\left[\widehat{\operatorname{Var}}(y)-\frac{1}{2 R} \sum_{r=1}^{R}\left(\hat{y}\left(x_{1}^{r} \ldots x_{m}^{r}, i_{1}^{r} \ldots i_{n}^{r}\right)-\hat{y}\left(x_{1}^{r} \ldots x_{m}^{\prime r}, i_{1}^{\prime r} \ldots i_{n}^{\prime r}\right)\right)^{2}\right] / \widehat{\operatorname{Var}}(y)}
\end{aligned}
$$

and similarly for other inputs, both scalar and functional.

- Here I model y with a stationary Gaussian stochastic process model, where for

$$
\begin{gathered}
y=f\left(x_{1} \ldots x_{m}, i_{1}, \ldots i_{n}\right), y^{\prime}=f\left(x_{1}^{\prime} \ldots x_{m}^{\prime}, i_{1}^{\prime}, \ldots i_{n}^{\prime}\right) \\
E(y)=E\left(y^{\prime}\right)=\mu, \operatorname{Var}(y)=\operatorname{Var}\left(y^{\prime}\right)=\sigma^{2}, \operatorname{Cov}\left(y, y^{\prime}\right)=\sigma^{2} e^{-\mathrm{dist}} \\
\operatorname{dist}=\sum_{j=1}^{m} \theta_{j}\left(x_{j}-x_{j}^{\prime}\right)^{2}+\sum_{j=1}^{n} \phi_{j} I\left(i_{j} \neq i_{j}^{\prime}\right)
\end{gathered}
$$

fitting parameters via maximum likelihood.

Semi-Modeling

Results for the example model:

- $F=50$ realizations of each of $x_{1}, x_{2}, \mathbf{z}_{1}$ and \mathbf{z}_{2}, distributed as before.
- Design constructed by repeating each input value 5 times, and forming the $N=250$-run experimental design via the maximin distance criterion.
- Result provides a predictor of y for any combination of x_{1}, x_{2} and any of the 50 drawn realizations for each of \mathbf{z}_{1} and \mathbf{z}_{2}.
- Results ($R=10,000$):

	x_{1}	x_{2}	\mathbf{z}_{1}	\mathbf{z}_{2}
\hat{S}	0.0151	0.1299	0.2517	0.5839
\hat{T}	0.0088	0.1465	0.2715	0.6133

4-Input Comparison

- Results are consistent with those from the pure sampling-based approach, but requiring far fewer function evaluations.
- Replacing \mathbf{z}_{1} with s_{1} and \mathbf{r}_{1}, and \mathbf{z}_{2} with s_{2} and \mathbf{r}_{2} :

	x_{1}	x_{2}	s_{1}	\mathbf{r}_{1}	s_{2}	\mathbf{r}_{2}
\hat{S}	0.0062	0.0884	0.1664	0.0662	0.5931	0.0420
\hat{T}	0.0057	0.1069	0.1745	0.0782	0.6124	0.0412

Concluding thoughts:

- Can more bias-resistant alternatives to Sequential Bifurcation be developed for the piecewise constant inputs case (that doesn't require too many runs)?
- Traditional variance-based sensitivity analysis may be most effective if functional inputs can be decomposed into independent (1.) important low-dimensional, and (2.) less important higher-dimensional components.
- Meta-models that are accurate approximations for a moderate sample of functional inputs may improve the efficiency of variance-based sensitivity analysis.

References

- Bettonvil, B. (1995). "Factor Screening by Sequential Bifurcation," Comm. Statist.: Simulation Comput. 24(1) 165-185.
- Fruth, J., O. Roustant, and S. Kuhnt (2014). "Sequential Designs for Sensitivity Analysis of Functional Inputs in Computer Experiments," Reliab. Eng. Syst. Safety, to appear.
- loss and Ribatet (2009). "Global Sensitivity Analysis of Computer Models with Functional Inputs," Reliab. Eng. Syst. Safety 94 1194-1204.
- Jacques, J., C. Lavergne, and N. Devictor (2006). "Sensitivity Analysis in Presence of Model Uncertainty and Correlated Inputs," Reliab. Eng. Syst. Safety 91 1126-1126.
- Mitchell, T.J. (1974). "Computer Construction of "D-Optimal" First-Order Designs," Technometrics 16(2) 211-220.
- Oakley, J.E., and A. O'Hagan (2004). "Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach," J.R. Statist. Soc. B 66(3) 751-769.
- Saltelli, A., K. Chan, and E.M. Scott, eds. (2000). Sensitivity Analysis, Wiley, West Sussex, England.
- Welch, W.J., R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). "Screening, Predicting, and Computer Experiments," Technometrics 34(1) 15-25.

