
Bayesian optimization to solve black 
box problems with hidden constraints

Nathalie Bartoli (ONERA - DTIS/M2CI)

Thierry Lefebvre, Rémi Lafage, Paul Saves

Ce document est la propriété de l'ONERA. Il ne peut être communiqué à des tiers et/ou reproduit sans l'autorisation préalable écrite de l'ONERA, et son contenu ne peut être divulgué. 

This document and the information contained herin is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA.

Youssef Diouane

Joseph Morlier



Tools to design the new aircraft configurations

2

M
D

O
 F

ra
m

e
w

o
rk

Disciplinary Tools

Optimization Tools 

Uncertainty
Quantification  Tools

Concepts roadmap

➔Take into account more information earlier in the design process

➔Keep a design space as large as possible
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State of the art: Multidisciplinary Design Analysis and 

Optimization
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Goal: Aircraft/drone design optimization

Martins J. R. R. A. and Ning A. Engineering Design Optimization. Cambridge University Press, 2020. 

wing span, x

Pressure p

(aerodynamics)

Displacements u

(structures)

Range r

Exemple: 

max Range 

with respect to wing span

such that the aircraft is balanced (fixed point solved between aerodynamic and structure disciplines) 
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Image from the MDO Lab 
(Michigan University)

MDO needs:
- A non-linear solver (Gauss-Seidel, 

Newton,…) to solve MDAs
- An optimizer (gradient based, gradient 

free, …) to solve the optimization
problem

Expensive black box problems

Gradient based optimization

Evolutionary algorithms

Bayesian optimization

Aerodynamic

Structure

Design 

variables

Objective function

and constraints

displacement

loads

Multi-Disciplinary Analysis

MDA

State of the art: Multidisciplinary Design Analysis and 

Optimization 

Goal: Aircraft/drone design optimization

Wing span

Fuel burn, Range

Emission, Noise ….

Martins J. R. R. A. and Ning A. Engineering Design Optimization. Cambridge University Press, 2020. 



Different strategies
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Lambe, A. B., & Martins, J. R.R.A. (2012). Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Structural and 

Multidisciplinary Optimization, 46(2), 273-284.

Jasa, J. P., Hwang, J. T., & Martins, J. R. (2018). Open-source coupled aerostructural optimization using Python. Structural and Multidisciplinary Optimization, 57(4), 1815-1827.

Hwang, J. T., & Martins, J. R. (2018). A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives. ACM Transactions on Mathematical Software 

(TOMS), 44(4), 37.

Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM review, 47(1), 99-131.



Different strategies

7
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Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM review, 47(1), 99-131.

Gradient-based

algorithm

Derivatives of 

objective and 

constraints

Methods for computing

derivatives

(coupled adjoint)

Source codes 

available

MDOlab strategy within

OpenMDAO



Different strategies
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Gradient-free 

algorithm

Black box 

functions
(objective, constraints)

Costly functions

replaced by 

surrogate models

Exploration design, 

Trade-off studies, 

Sensitivity analysis,

Uncertainty analysis

Optimization

Generic approach 

Extension to 

multiple disciplines

Audet, C., & Hare, W. (2017). Derivative-free and blackbox optimization. Berlin: Springer International Publishing

Powell, M. J. (1994). A direct search optimization method that models the objective and constraint functions by linear interpolation. In Advances in optimization and numerical analysis (pp. 51-

67). Springer, Dordrecht.

Forrester, A., Sobester, A., & Keane, A. (2008). Engineering design via surrogate modelling: a practical guide. John Wiley & Sons



Overview
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Bayesian optimization

Gaussian processesExpensive black-box Design of experiments

Surrogate model

New concepts

Ω

Expensive

computations

Analyze
Improvements

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑚𝑖𝑛
inputs ∈ Ω

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (inputs)

𝑠. 𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (input𝑠)

Global optimization

Expensive black-box 

optimization

Multidisciplinary design analysis

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒



Outline
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• Kriging based surrogate models

• Bayesian optimization 

– mono & multiobjective

– hidden constraints

• Applications

– DRAGON: ONERA hybrid electric aircraft

– Jet engine architecture

– BRAC: BOMBARDIER conventional aircraft 



Methodology developments: Surrogate Models
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Definition of a metamodel library dedicated to Aircraft design

• Models to handle a large number of design variables

New Kriging models: KPLS & KPLS-K

• Models to handle heterogeneous functions

Mixture of experts (MOE)

• Models to handle heterogeneous variables

Kriging based on continuous relaxation 

• Models to handle multifidelity data

Co-Kriging (MFKPLS, MFKPLS-K)

Co-Kriging with heteroscedastic Noise



SMT 2.8 features (November 2024):

• Models to handle a large number of design 

variables (KPLS – KPLSK – MGP)

• Mixture of experts to handle heterogeneous

functions (MOE)

• Different covariance kernels added

• Multi-fidelity models (MFK – MFKPLS –

MFKPLSK)

• Noisy kriging to handle uncertainties on data

• Kriging models for mixed variables (continuous, 

discrete, categorical) & associated kernels

• Kriging models for hierarchical variables (meta, 

neutral, decreed) & associated kernels

• Sparse GP models to handle large database

• Bayesian optimization (EGO without constraint) 

for continuous and mixed variables
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open source python 

toolbox for surrogate models

Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., & Martins, J. R. (2019). A Python surrogate modeling framework with derivatives. Advances in Engineering Software, 135, 102662.

Saves, P., Lafage, R., Bartoli, N., Diouane, Y., Bussemaker, J., Lefebvre, T., Hwang J. & Martins, J. R. (2024). SMT 2.0: A Surrogate Modeling Toolbox with a focus on hierarchical and mixed 

variables Gaussian processes. Advances in Engineering Software, 188, 103571.

➔ Surrogate models with some focus 

on derivatives

➔ Included some Jupyter notebooks 

github.com/SMTorg/smt



SMT: Focus on derivatives
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𝒚 = 𝒇(𝒙, 𝒙𝒕, 𝒚𝒕) 𝒙𝒕, 𝒚𝒕 Training data

𝒙, 𝒚 Prediction data

Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., & Martins, J. R. (2019). A 

Python surrogate modeling framework with derivatives. Advances in Engineering 

Software, 135, 102662.

Saves, P., Lafage, R., Bartoli, N., Diouane, Y., Bussemaker, J., Lefebvre, T., Hwang J. & 

Martins, J. R. (2024). SMT 2.0: A Surrogate Modeling Toolbox with a focus on hierarchical and 

mixed variables Gaussian processes. Advances in Engineering Software, 188, 103571.

• (𝑑𝑦𝑡/𝑑𝑥𝑡): training 

derivatives used for 

gradient-enhanced 

modeling

• (𝑑𝑦/𝑑𝑥): prediction 

derivatives

• (𝑑𝑦/𝑑𝑦𝑡): derivatives 

with respect to the 

training data



Gaussian process or Kriging model
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D. G. Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):119–139, 1951

C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning, volume 1. MIT press Cambridge, 2006.

Gaussian process 

characterized by:

• its mean (or trend)

𝜇(𝑥) ∈ ℝ
• its covariance Kernel

k(𝑥, 𝑥′) ∈ ℝ

𝑥 ∈ ℝ𝒅

𝑦(𝑥) ∈ ℝ



Gaussian process or Kriging model

23

Estimate of y(x) 

Quantification of 

the uncertainties in 

these estimates

D. G. Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):119–139, 1951

C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning, volume 1. MIT press Cambridge, 2006.

2 points

Gaussian process 

characterized by:

• its mean (or trend)

𝜇(𝑥) ∈ ℝ
• its covariance Kernel

k(𝑥, 𝑥′) ∈ ℝ

+ information provided by data

𝑥 ∈ ℝ𝒅

𝑦(𝑥) ∈ ℝ



Gaussian process or Kriging model

23

Estimate of y(x) 

Quantification of 

the uncertainties in 

these estimates

D. G. Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):119–139, 1951

C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning, volume 1. MIT press Cambridge, 2006.

4 points

Gaussian process 

characterized by:

• its mean (or trend)

𝜇(𝑥) ∈ ℝ
• its covariance Kernel

k(𝑥, 𝑥′) ∈ ℝ

+ information provided by data

𝑥 ∈ ℝ𝒅

𝑦(𝑥) ∈ ℝ



Gaussian process or Kriging model

23

DOE (LHS)

Estimation of 

hyperparameters

θi (i=1,…,d) by MLE

Covariance matrix

Prediction and variance

estimations at a new point
ො𝑦 𝑠2

ො𝑦(𝑥)

ො𝑦(𝑥) ± 3𝑠(𝑥)

99% confidence interval
𝑥

D. G. Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):119–139, 1951

C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning, volume 1. MIT press Cambridge, 2006.

𝑓(x) ⇒ 𝑌 𝑥 = 𝑁(ො𝑦 𝒙 , s2 𝒙 )

𝑥 ∈ ℝ𝒅

𝑦(𝑥) ∈ ℝ



Gaussian process or Kriging model

23

➔ Hyperparameters tuning

➔ Number of hyperparameters

increases with the dimension d 
(number of design variables) 

➔ Curse of dimensionality

DOE (LHS)

Estimation of 

hyperparameters

θi (i=1,…,d) by MLE

Covariance matrix

Prediction and variance

estimations at a new point
ො𝑦 𝑠2

𝑥

D. G. Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):119–139, 1951

C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning, volume 1. MIT press Cambridge, 2006.

𝑥 ∈ ℝ𝒅

𝑦(𝑥) ∈ ℝ



18

Kriging models: KPLS & KPLS-K

Wold H (1966) Estimation of Principal Components and Related Models by Iterative Least squares, Academic Press, New York, pp 391–420

Bouhlel, M. A., Bartoli, N., Otsmane, A., and Morlier, J., “Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction,” Structural and 

Multidisciplinary Optimization, Vol. 53, No. 5, 2016, pp. 935–952.

Bouhlel, M. A., Bartoli, N., Otsmane, A., and Morlier, J., “An Improved Approach for Estimating the hyperparameters of the  Kriging Model for high-dimensional problems through The Partial Least 

Squares Method”, Mathematical Problems in Engineering, Vol. 2016(4),  May 2016

➔ Exploitation of information provided by PLS (Partial Least Squares) in the construction of 

the Kriging model to reduce the dimension: KPLS and KPLS-K models

𝑘 𝑥, 𝑥′ = 𝜎2exp −

𝑖=1

𝑑

𝜃𝑖 𝑥𝑖 − 𝑥𝑖′
𝑝𝑖

𝑘𝑃𝐿𝑆 𝑥, 𝑥′ = 𝜎2exp −

𝑖=1

𝑑

η𝑖 𝑥𝑖 − 𝑥𝑖′
𝑝𝑖

η𝑖 =

𝑗=1

ℎ

𝜃𝑗 𝑤𝑖,𝑗
𝑝𝑖

Ordinary 

Kriging

KPLS

𝑑 parameters 𝜃𝑖
to evaluate

ℎ parameters 𝜃𝑗 to evaluate

Covariance kernel

with

• 𝑤𝑖,𝑗 𝑖=1,⋯,𝑑 describes how sensitive the  j-th principal component is to each design variable i ➔ PLS 

• 𝜃𝑗 describes how sensitive the function is to each principal component (max h≈ 4) ➔ MLE 

• If ℎ = 𝑑➔ classical Kriging (exponential kernels)

with

Models to handle a large number of design variables
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Kriging models: KPLS & KPLS-K

Surrogate RE (%) CPU time

Ordinary

Kriging

(Scikit-

Learn)

3.28e-7 17 min 23 s

KPLS h=4 4.52e-7 37 s

d=124 inputs, 1 output 

training: 500 points LHS, 

validation: 100 points LHS 

Intel(R) Core(TM) i7-4500U CPU@1.80GHz, 6.00 Go 

RAM

MOPTA test case function

from automotive industry

Surrogate RE (%) CPU time

Ordinary

Kriging

(Snecma ref)

2.24 1min 33s

KPLS h=1 1.62 0.90 s

KPLS h=2 1.62 1.56 s

d=98 inputs, 1 output 

training: 340 points LHS, 

validation: 24 points LHS 

Intel(R) Xeron(R) CPU W3565@3.20GHz, 7.98 Go RAM 

Quad core

SNECMA test case 

(turbomachinery) 

➔ CPU time drastically reduced: interest for adaptive enrichment optimization method

➔ Automatic choice for the number of  PLS components 

Time / 28 Time / 60

𝑅𝐸 =
𝑦− ො𝑦 2

𝑦 2
100

Jones, D., “Large-scale multi-disciplinary mass optimization in the auto industry,” MOPTA 2008 Conference (20 August 2008)

Bouhlel, M.-A., Ph.D. thesis, ISAE-SUPAERO, 2016, https://hal.archives-ouvertes.fr/tel-01293319

Models to handle a large number of design variables
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Mixture of Experts (MOE)

→ Mixture of experts technique 

• Divide the database into K clusters (Expectation-

Maximization)

• Build a local surrogate model on each cluster (RBF, 

Polynomial functions, Kriging,…)

• Recombine the K local models into a global model 

Jordan, M. I., Jacobs, R. A, “Hierarchical mixtures of experts and the EM algorithm“, Neural Comput. 6 (1994) 181–214.

Bettebghor, D., Bartoli, N., Grihon, S., Morlier, J., and Samuelides, M., “Surrogate modeling approximation using a mixture of experts based on EM joint estimation,” Structural and 

Multidisciplinary Optimization, Vol. 43, No. 2, 2011, pp. 243–259

Liem, R. P., Mader, C. A., and Martins, J. R. R. A., “Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Mission Analysis,” Aerospace Science and 

Technology, Vol. 43, 2015, pp. 126–151

Models to handle heterogeneous functions

መ𝑓 𝑥 =

𝑖=1

𝐾

𝑃 𝑘 = 𝑖/𝑋 = 𝑥 መ𝑓𝑖

K number of clusters (Gaussian components)

𝑃 𝑘 = 𝑖/𝑋 = 𝑥 probability to be in the cluster i

(posterior probability given by the Expectation-Maximization algorithm)

መ𝑓𝑖 local expert build using the points in cluster i (RBF, Polynomial 
functions, Kriging,…)
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Models to handle heterogeneous functions

Mixture of Experts (MOE)

→ Mixture of experts technique 

• Divide the database into K clusters 

(Expectation-Maximization)

• Build a local surrogate model on each cluster 

(RBF, Polynomial functions, Kriging,…)

• Recombine the K local models into a global 

model 

Jordan, M. I., Jacobs, R. A, “Hierarchical mixtures of experts and the EM algorithm“, Neural Comput. 6 (1994) 181–214.

Bettebghor, D., Bartoli, N., Grihon, S., Morlier, J., and Samuelides, M., “Surrogate modeling approximation using a mixture of experts based on EM joint estimation,” Structural and 

Multidisciplinary Optimization, Vol. 43, No. 2, 2011, pp. 243–259

Liem, R. P., Mader, C. A., and Martins, J. R. R. A., “Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Mission Analysis,” Aerospace Science and 

Technology, Vol. 43, 2015, pp. 126–151

Comparison on Buckling critical loads PhD D. Bettebghor 2011
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Hybrid variables 

Variables types:

• Continuous (x) Ex: wing

length

• Integer (z) Ex: winglet

number

• Categorical (u) Ex: Plane 

shape / material properties

Categorical variables: n variables, 

n=2

u1= shape

u2= color

Levels: Li levels for I in 1,..n, 

L1=3, L2=2  

Levels(u1)= square, circle, rhombus

Levels(u2)= blue, red

Categories: ς𝐢=𝟏
𝐧 𝐋𝐢, 2*3=6

- Blue square

- Blue circle

- Blue rhombus

- Red square

- Red circle

- Red rhombus

6 possibilities

Models to handle mixed variables (continuous, discrete, 

categorical) 
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Ex: Garrido-Merchán and Hernández-Lobato model

➔ Model as a Continuous Relaxation (one-hot-encoding)

Example with 1 categorical variable X and two levels

• Red color

• Blue color

➔1 Categorical variable replaced by 2 continuous

variables denoted by X1 and  X2 ∈ [0,1]

• If X1>X2 => (1., 0.) => Blue color

• If X1<X2 => (0.,1.) => Red color

Garrido-Merchán E. C., Hernández-Lobato D. “Dealing with categorical and integer-valued variables in Bayesian Optimization with Gaussian processes”. Neurocomputing, vol. 380 (2020), pages 20-35

Saves, P., Bartoli, N., Diouane, Y., Morlier, J., & Lefebvre, T. (2021, March). Enhanced Kriging models within a Bayesian optimization framework to handle both continuous and categorical inputs. In SIAM CSE21

State of the Art approach: Continuous Relaxation 

A continuous kernel 

(in the relaxed dimension)

X2
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Ex: Garrido-Merchán and Hernández-Lobato model

➔ Model as a Continuous Relaxation (one-hot-encoding)

Example with 1 categorical variable X and two levels

• Red color

• Blue color

➔1 Categorical variable replaced by 2 continuous

variables denoted by X1 and  X2 ∈ [0,1]

• If X1>X2 => (1., 0.) => Blue color

• If X1<X2 => (0.,1.) => Red color

Garrido-Merchán E. C., Hernández-Lobato D. “Dealing with categorical and integer-valued variables in Bayesian Optimization with Gaussian processes”. Neurocomputing, vol. 380 (2020), pages 20-35

Saves, P., Bartoli, N., Diouane, Y., Morlier, J., & Lefebvre, T. (2021, March). Enhanced Kriging models within a Bayesian optimization framework to handle both continuous and categorical inputs. In SIAM CSE21

State of the Art approach: Continuous Relaxation 

A continuous kernel 

(in the relaxed dimension)

𝑑′

X2



X1
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Ex: Garrido-Merchán and Hernández-Lobato model

➔ Model as a Continuous Relaxation (one-hot-encoding)

Example with 1 categorical variable X and two levels

• Red color

• Blue color

➔1 Categorical variable replaced by 2 continuous

variables denoted by X1 and  X2 ∈ [0,1]

• If X1>X2 => (1., 0.) => Blue color

• If X1<X2 => (0.,1.) => Red color

Garrido-Merchán E. C., Hernández-Lobato D. “Dealing with categorical and integer-valued variables in Bayesian Optimization with Gaussian processes”. Neurocomputing, vol. 380 (2020), pages 20-35

Saves, P., Bartoli, N., Diouane, Y., Morlier, J., & Lefebvre, T. (2021, March). Enhanced Kriging models within a Bayesian optimization framework to handle both continuous and categorical inputs. In SIAM CSE21

State of the Art approach: Continuous Relaxation 

➔ Increase the dimension 
A continuous kernel 

(in the relaxed dimension)

X2



X1

25

Ex: Garrido-Merchán and Hernández-Lobato model

➔ Model as a Continuous Relaxation (one-hot-encoding)

Example with 1 categorical variable X and two levels

• Red color

• Blue color

➔1 Categorical variable replaced by 2 continuous

variables denoted by X1 and  X2 ∈ [0,1]

• If X1>X2 => (1., 0.) => Blue color

• If X1<X2 => (0.,1.) => Red color

Garrido-Merchán E. C., Hernández-Lobato D. “Dealing with categorical and integer-valued variables in Bayesian Optimization with Gaussian processes”. Neurocomputing, vol. 380 (2020), pages 20-35

Saves, P., Bartoli, N., Diouane, Y., Morlier, J., & Lefebvre, T. (2021, March). Enhanced Kriging models within a Bayesian optimization framework to handle both continuous and categorical inputs. In SIAM CSE21

State of the Art approach: Continuous Relaxation 

X2

➔ Use of KPLS models to decrease the dimension 
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Toy function with a categorical variable (10 levels)

Models to handle mixed variables (continuous, discrete, 

categorical) 

1 continuous + 1 categorical variable (10 levels) ➔ 11 continuous variables
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Recent activities on mixed kernels   

Saves, P., Diouane, Y., Bartoli, N., Lefebvre, T., & Morlier, J. (2023). A mixed-categorical correlation kernel for Gaussian process. Neurocomputing, 550, 126472. 

Bussemaker, J. H., Bartoli, N., Lefebvre, T., Ciampa, P. D., & Nagel, B. (2021). Effectiveness of Surrogate-Based Optimization Algorithms for System Architecture Optimization. In AIAA 

AVIATION 2021 FORUM (p. 3095).

Audet, C., Hallé-Hannan, E., & Le Digabel, S. (2023, February). A general mathematical framework for constrained mixed-variable blackbox optimization problems with meta and categorical

variables. In Operations Research Forum (Vol. 4, No. 1, p. 12). Cham: Springer International Publishing.

Hallé-Hannan E, Audet A, Diouane Y,  Le Digabel S., Saves P., A graph-structured distance for heterogeneous datasets with meta variables, 2024, Neurocomputing, Under review.

o Mixed kernels integration (Phd P. Saves)

Available kernels
Continuous Relaxation, 

Gower distance, 

Homoscedastic hypersphere, 

Exponential Homoscedastic hypersphere

+ KPLS for dimension reduction with automatic

choice for number of PLS components

o Extension to hierarchical variables 

(variable-size problems) 

Consider conditionally active distances
New proposed kernels (Phd P. Saves & Collab. E. 

Hallé-Hannan Polytechnique Montréal)

New application cases (Collab. J. H Bussemaker

DLR)



Multidisciplinary Design Analysis and Optimization for new 

configurations

29

Goal: Aircraft/drone design optimization

min objective function f(x,y(x))

with respect to design variables x (continuous, discrete, categorical, hierarchical)

subject to constraints g(x,y(x))

➔ y(x) are solution of a non linear system (MDA) 

➔ Objective and constraint functions could be costly
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d design variables 

m mixed constraints

Optimization problem in the field of aircraft design

• Main characteristics for aircraft design problem
• Mono & Multi objective, multi-constraints (1 ~ 100 constraints)

• Intermediate dimension problem (1 ~ 100 variables), mixed variables

• Costly evaluation (CFD, FEM, objective and/or constraints)

• Handling non linear constraints (black box, no derivative available)

• Handling hidden constraints

• Applications
• Disciplinary solvers (aerodynamic, structure, propulsion, …)

• Overall aircraft design process (MDA)

1 to n objectives

d design variables 

m mixed constraints (eq. & ineq)



How to build an efficient iterative process?

31

• Find the global minimum with a limited budget of function

evaluations

• Use Bayesian information to detect interesting and 

promising areas  (exploitation/exploration trade-off)

Number of Function

Evaluations

Global aspect

Bayesian

Optimization

Evolutionnary

algorithms

Gradient-

based

algorithms



Bayesian optimization

32

Potential

minimum

Current

Minimum 𝑦𝑚𝑖𝑛

Example: BO to tune NN hyperparameters within AlphaGo
Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., & de Freitas, N. (2018). Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855.

1. Probabilistic model 

(surrogate model)

uses data and Bayes 

theorem to compute

posterior distribution

2. Optimization done via an 

acquisition function

uses the posterior

distribution to decide which

data to obtain

𝑌 𝑥 = 𝑁(ො𝑦 𝒙 , s2 𝒙 )



Enrichment infill sampling criterion 

Exploitation Exploration

Expected Improvement criterion (EI) 

Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient global optimization of expensive black-box functions,” Journal of Global optimization, Vol. 13, No. 4, 1998, pp. 455–492.
Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J. R. A. A., Morlier, J. Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing 
design. Aerospace Science and Technology, 90:85–102, 2019.

Φ: cumulative distribution function N(0,1) 𝜙: probability density function N(0,1)
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Kriging or Gaussian process of the 
objective function

𝑓(x) ⇒ 𝑌 𝑥 = 𝑁(ො𝑦 𝒙 , s2 𝒙 )

EI 𝑥 = (𝑦𝑚𝑖𝑛 − ො𝑦 𝒙 )Φ
𝑦𝑚𝑖𝑛− ො𝑦 𝒙

𝑠 𝒙
+s 𝒙 𝜙

𝑦𝑚𝑖𝑛− ො𝑦 𝒙

𝑠 𝒙

33

Φ cumulative distribution function

𝜙 probability density function of 𝒩(0,1)



Surrogate

models
(objective & constraints)

Enrichment infill sampling criterion 

Expected Improvement criterion (EI) 

Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient global optimization of expensive black-box functions,” Journal of Global optimization, Vol. 13, No. 4, 1998, pp. 455–492.
Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J. R. A. A., Morlier, J. Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing 
design. Aerospace Science and Technology, 90:85–102, 2019.

35

Kriging or Gaussian process of the 
objective function

➔ Different criteria available for the acquisition function (EI, WB2, WB2S)

𝑓(x) ⇒ 𝑌 𝑥 = 𝑁(ො𝑦 𝒙 , s2 𝒙 )

34



SEGOMOE main characteristics
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• Mono & multi objective Bayesian optimizer

• Mono & Multi fidelity sources

• Equality & inequality constraints (1 ~ 100 constraints)

• Intermediate dimension problem (1 ~ 100 variables)

• Heterogenous variables (continuous, discrete, categorical, hierarchical)

• Costly evaluation (CFD, FEM, objective and/or constraints)

• Handling non linear objectives & constraints (black box, no derivative 

available) and hidden constraints

• Based on SMT toolbox for surrogate models

• Remote access via a web interface 

• Opensource version in EgoBox (Mono Obj & Mono Fidelity) 
Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J.R.R.A., Bouhlel,  M.-A. Bouhlel & Morlier, J. (2019). Adaptive modeling strategy for constrained global 

optimization with application to aerodynamic wing design. Aerospace Science and technology, 90, 85-102.

Lafage, R. (2022). egobox, a Rust toolbox for efficient global optimization. Journal of Open Source Software, 7(78), 4737

1 to n objectives

d design variables 

m mixed constraints



SEGOMOE

SEGO MOE

Mixture Of ExpertsSuper Efficient Global 

Optimization

Combination of surrogate

models

Global optimization with

limited number of function

evaluations
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Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient global optimization of expensive

black-box functions,” Journal of Global optimization, Vol. 13, No. 4, 1998, pp. 455–492.

Sasena, M., Flexibility and efficiency enhancements for constrained global design 

optimization with Kriging approximations, Ph.D. thesis, niversity of Michigan, 2002

Jordan, M. I., Jacobs, R. A, “Hierarchical mixtures of experts and the EM algorithm“, Neural Comput. 

6 (1994) 181–214.

Bettebghor, D., Bartoli, N., Grihon, S., Morlier, J., and Samuelides, M., “Surrogate modeling 

approximation using a mixture of experts based on EM joint estimation,” Structural and 

Multidisciplinary Optimization, Vol. 43, No. 2, 2011, pp. 243–259

Liem, R. P., Mader, C. A., and Martins, J. R. R. A., “Surrogate Models and Mixtures of Experts in 

Aerodynamic Performance Prediction for Mission Analysis,” Aerospace Science and Technology, Vol. 

43, 2015, pp. 126–151



Initial DOE building

Building / Training
Surrogate models

Optimization

criteria

MOE

Evaluation of problem true

functions

Problem

definition

Adding new point to 

DOE

37

SEGOMOE algorithm – Mono objective

Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J.R.R.A., Bouhlel,  M.-A. Bouhlel & Morlier, J. (2019). Adaptive modeling strategy for constrained global 

optimization with application to aerodynamic wing design. Aerospace Science and technology, 90, 85-102.

( ො𝑦 𝒙 , s2 𝒙 )



Initial DOE building

Building / Training
Surrogate models

Optimization

criteria

MOE

Evaluation of problem true

functions

Problem

definition

Adding new point to 

DOE
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SEGOMOE algorithm – Mono objective

Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J.R.R.A., Bouhlel,  M.-A. Bouhlel & Morlier, J. (2019). Adaptive modeling strategy for constrained global 

optimization with application to aerodynamic wing design. Aerospace Science and technology, 90, 85-102.

( ො𝑦 𝒙 , s2 𝒙 )



Some SEGOMOE application examples 
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Nacelle aerodynamic Bombardier Research 

Aircraft Configuration

Dragon  hybrid electric

aircraft

Mono, Continuous

d = 18, c = 8

Mono, Continuous

d = 18, c = 2 Mono, Mixed

d = 29, c = 5

Multi, Mixed

d = 19, c = 2

Business jet family

Mach number distribution

Bartoli N,  Lefebvre T, Dubreuil S, Panzeri M, d’Ippolito R, Anisimov K, Savelyev A. Robust Nacelle Optimization design investigated in the AGILE European Project, 19th AIAA/ISSMO 

Multidisciplinary Analysis and Optimization Conference, AIAA AVIATION Forum, (AIAA 2018-3250)

Priem, R., Gagnon, H., Chittick, I., Dufresne, S., Diouane, Y., & Bartoli, N. (2020). An efficient application of Bayesian optimization to an industrial MDO framework for aircraft design. In AIAA 

aviation 2020 forum (p. 3152).

Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., ... & Defoort, S. (2022). Bayesian optimization for mixed variables using an adaptive dimension reduction process: applications 

to aircraft design. In AIAA SCITECH 2022 Forum (p. 0082).

Bussemaker, J. H., Ciampa, P. D., Singh, J., Fioriti, M., Cabaleiro De La Hoz, C., Wang, Z., ... & Mandorino, M. (2022). Collaborative Design of a Business Jet Family Using the AGILE 4.0 MBSE 

Environment. In AIAA Aviation 2022 Forum (p. 3934).

Phd M-A Bouhlel 2016, R. Priem 2020, R. Charayron 2023, P. Saves 2024



Recent methodological developments
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SEGOMOE capabilities

• To handle a large number of design variables 

KPLS based models

• To handle heterogeneous functions

Mixture of experts models

• To handle highly non-convex constraints

Adapted acquisition function

• To handle mixed integer variables

Continuous relaxation & KPLS models

• To handle multifidelity models

2-step approach based on multifidelity Kriging

• To handle multiple objectives 

Predicted Pareto Front approach

• To handle hidden constraints

Comparisons of different strategies
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Application to mixed categorical optimization problem

DRAGON green aircraft concept

✓ Distributed electric propulsion aircraft: propulsive efficiency

✓ 30% reduction of CO2 emissions by 2035

✓ 150 passengers over 2750nm

✓ Transonic cruise speed (M0.78)

P. Schmollgruber, C. Doll, J. Hermetz, R. Liaboeuf, M. Ridel, I. Cafarelli, O. Atinault,  C.  Francois,  and  B.  Paluch. “Multidisciplinary  Exploration  of  DRAGON:  an ONERA  Hybrid  

Electric  Distributed  Propulsion  Concept”.  In: AIAA  Scitech 2019, 2019

Phd P. Saves in collaboration with E. Nguyen Van, C. David, S. Defoort
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FAST-OAD: an OpenMDAO based aircraft sizing tool 
Code overview

FastOAD* conceptual design framework:

• OpenSource framework developed by 

ONERA/ISAE-SUPAERO

• Based on OpenMDAO

• Automates MDA/MDO for simple and rapid 

OAD studies, concept evaluation and 

optimization

• Includes Level 0 disciplinary models for 

transport aircraft (geometry, weight, HQ, 

aerodynamics, mission/performance…)

• Modularity of each discipline model to include 

higher fidelity modelling

https://github.com/fast-aircraft-design/FAST-OAD

David C., Delbecq S. Defoort S., Schmollgruber P., Benard E., Pommier-Budinger V., From FAST to FAST-OAD: An open source framework for rapid Overall Aircraft Design, 2021 IOP Conf. 

Ser.: Mater. Sci. Eng.1024 012062.



DRAGON green aircraft concept
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• 5 inequality constraints (MC)

• Fuel mass to minimize

• 10 continuous design variables

• 2 categorical design variables

• Electric propulsion Architecture: 17 choices

• Turboshaft layout: 2 choices

➔29 variables in relaxed dimension 

➔ 14 variables in relaxed dimension 

Categorical

or

Hierarchical

Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., ... & Defoort, S. (2022). Bayesian optimization for mixed variables using an adaptive dimension reduction process: 

applications to aircraft design. In AIAA SCITECH 2022 Forum (p. 0082).

2 possibilities



DRAGON optimization test case

48

2 possibilities 

➔Categorical choice: 

29 variables in relaxed dimension (10+17+2)

Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., ... & Defoort, S. (2022). Bayesian optimization for mixed variables using an adaptive dimension reduction process: 

applications to aircraft design. In AIAA SCITECH 2022 Forum (p. 0082).

Neutral



DRAGON optimization test case

48

2 possibilities 

➔Categorical choice: 

29 variables in relaxed dimension (10+17+2)

➔Hierarchical choice: 

14 variables in relaxed dimension (10+2+2)

Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., ... & Defoort, S. (2022). Bayesian optimization for mixed variables using an adaptive dimension reduction process: 

applications to aircraft design. In AIAA SCITECH 2022 Forum (p. 0082).

2

4

6

DecreedMetaNeutral



DRAGON optimization results
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Convergence plots
Boxplots

after 160 evaluations

10 runs of (10 + 150) iterations

29 params

147 params

12 params

Comparison of BO with different kernels & NSGAII 

Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., ... & Defoort, S. (2022). Bayesian optimization for mixed variables using an adaptive dimension reduction process: 

applications to aircraft design. In AIAA SCITECH 2022 Forum (p. 0082)

Blank J. and Deb K., pymoo: Multi-Objective Optimization in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567

Categorical variants without PLS

Gower distance GD

Continuous Relaxation CR

Homoscedastic hypersphere HH 



DRAGON optimization results
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3 params

12 params

3 params

Comparison of BO with different kernels & NSGAII 

Categorical variants with PLSConvergence plots
Boxplots

after 160 evaluations

10 runs of (10 + 150) iterations

Gower distance GD

Continuous Relaxation CR

Homoscedastic hypersphere HH 

29 params

147 params

12 params

Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., ... & Defoort, S. (2022). Bayesian optimization for mixed variables using an adaptive dimension reduction process: 

applications to aircraft design. In AIAA SCITECH 2022 Forum (p. 0082)

Blank J. and Deb K., pymoo: Multi-Objective Optimization in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567



DRAGON optimization results
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29 params

147 params

12 params

13 params

Comparison of BO with different kernels & NSGAII 

Categorical or Hierarchical variants Convergence plots
Boxplots

after 160 evaluations

10 runs of (10 + 150) iterations

Gower distance GD

Continuous Relaxation CR

Homoscedastic hypersphere HH

Hierarchical HIER 

Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., ... & Defoort, S. (2022). Bayesian optimization for mixed variables using an adaptive dimension reduction process: 

applications to aircraft design. In AIAA SCITECH 2022 Forum (p. 0082)

Blank J. and Deb K., pymoo: Multi-Objective Optimization in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567



DRAGON optimization results
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29 params

147 params

12 params

13 params

Comparison of BO with different kernels & NSGAII 

Saves, P., Bartoli, N., Diouane, Y., Lefebvre, T., Morlier, J., David, C., ... & Defoort, S. (2022). Bayesian optimization for mixed variables using an adaptive dimension reduction process: 

applications to aircraft design. In AIAA SCITECH 2022 Forum (p. 0082).

Categorical or Hierarchical variantsConvergence plots
Boxplots

after 160 evaluations

10 runs of (10 + 150) iterations

➔Hierarchical choice: best trade off convergence & CPU time 



How to handle hidden constraints?

A failed simulation in an optimization:

a simulation that terminates unexpectedly resulting in an 

error (𝑁𝑎𝑁) in the outcomes (objectives or constraints) 

• 𝑓𝑚 𝑥 → 𝑁𝑎𝑁 and/or 𝑔𝑘 𝑥 → 𝑁𝑎𝑁

• Deterministic and requires an evaluation

• Non-quantifiable and unrelaxable

• Hidden (hence “hidden constraint”)

➔called hidden or unknown constraints

➔Bayesian Optimization (BO) to adapt

52

Hidden constraints also known as:

Unknown, unspecified, forgotten, virtual, and crash constraints

Le Digabel, S., & Wild, S. M. (2024). A taxonomy of constraints in black-box simulation-based optimization. Optimization and Engineering, 25(2), 1125-1143.



How to handle hidden constraints?

• Different strategies:

– Remove the failed points from the DOE and add a 

constraint to avoid neighborhoods around these points

– Use some techniques to avoid the expensive 

computation 

➔Collaboration with J. H. Bussemaker (DLR)

➔Collaboration with A. Tfaily (Bombardier)

53

Tfaily, A., Diouane, Y., Bartoli, N., & Kokkolaras, M. (2024). Bayesian optimization with hidden constraints for aircraft design. Structural and Multidisciplinary Optimization, 67(7), 123.

Bussemaker, J. H., Saves, P., Bartoli, N., Lefebvre, T., & Nagel, B. (2024). Surrogate-Based Optimization of System Architectures Subject to Hidden Constraints. In AIAA AVIATION FORUM 

AND ASCEND 2024



Strategies for satisfying hidden constraints
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• Cannot train a surrogate model on 𝑁𝑎𝑁

• Naive approach: reject failed points and train 

only using viable points

• Replace failed points

– Neighborhood values

– Predicted values (different values α)

• Predict location of failed region

– Train model to predict the Probability of Viability (PoV)

• Binary labels for each 𝑥: 0 = failed, 1 = viable

• Classification model → 𝑃𝑜𝑉(𝑥′) = probability that 𝑥′

belongs to class “1”

• Regression model → 𝑃𝑜𝑉 𝑥′ = ො𝑦(𝑥′)

– Apply as 𝑓-penalty (modify acquisition function) 

– or as 𝑃𝑜𝑉𝑚𝑖𝑛 constraint in infill optimization 

Bussemaker, J. H., Saves, P., Bartoli, N., Lefebvre, T., & Nagel, B. (2024). Surrogate-Based Optimization of System Architectures Subject to Hidden Constraints. In AIAA AVIATION FORUM 

AND ASCEND 2024

Forrester, A. I., et al., "Optimization with missing data," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006.

Lee, H., et al., "Optimization Subject to Hidden Constraints via Statistical Emulation," UC Santa Cruz, Apr. 2010.

Huyer, W., and Neumaier, A., “SNOBFIT – Stable Noisy Optimization by Branch and Fit,” ACM Transactions on Mathematical Software, Vol. 35, No. 2, 2008, pp. 1–25.

Alimo, S. R., Beyhaghi, P., and Bewley, T. R., “Delaunay-Based Global Optimization in Nonconvex Domains Defined by Hidden Constraints,” Computational Methods in Applied Sciences, 

Springer International Publishing, 2018, pp. 261–271. 



Strategies for satisfying hidden constraints
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• Cannot train a surrogate model on 𝑁𝑎𝑁

• Naive approach: reject failed points and train 

only using viable points

• Replace failed points

– Neighborhood values

– Predicted values (different values α)

• Predict location of failed region

– Train model to predict the Probability of Viability (PoV)

• Binary labels for each 𝑥: 0 = failed, 1 = viable

• Classification model → 𝑃𝑜𝑉(𝑥′) = probability that 𝑥′

belongs to class “1”

• Regression model → 𝑃𝑜𝑉 𝑥′ = ො𝑦(𝑥′)

– Apply as 𝑓-penalty (modify acquisition function) 

– or as 𝑃𝑜𝑉𝑚𝑖𝑛 constraint in infill optimization 

Collaboration J. H. Bussemaker

Comparisons between SOTA

different strategies

Collaboration A. Tfaily

Modification of the acquisition 

function



Comparison of hidden constraint strategies
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• 18 test problems (mono and multi-obj)
– 2 – 9 continuous 𝑥; 0 – 6 discrete 𝑥

– 1 – 3 objectives; 1 – 9 constraints

– With and without hierarchy

– 0% – 83% failure rate

• BO settings
– 𝑛𝑑𝑜𝑒 = (2 ⋅ 𝑛𝑥)/(1 − 60%)

– 𝑛𝑖𝑛𝑓𝑖𝑙𝑙 = 50

– 16 repetitions

– SBArchOpt* implementation

• Performance comparison using HyperVolume regret 

Δ𝐻𝑉
– Integral over Δ𝐻𝑉𝑖 = (𝐻𝑉𝑘𝑛𝑜𝑤𝑛 − 𝐻𝑉𝑖)/𝐻𝑉𝑘𝑛𝑜𝑤𝑛
– Ranking per test problem: rank 1 has the best (lowest) Δ𝐻𝑉

regret

– Best strategy achieves rank 1 and 2 most often

Strategy Sub-strategy Configuration

Rejection

Replacement

Neighborhood

Global, max

Local

5-nearest, max

5-nearest, mean

Predicted worst
𝛼 = 1

𝛼 = 2

Prediction

Random Forest Classifier 𝑃𝑜𝑉𝑚𝑖𝑛 = 50%

K-Nearest Neighbors 𝑃𝑜𝑉𝑚𝑖𝑛 = 50%

Radial Basis Function 𝑃𝑜𝑉𝑚𝑖𝑛 = 50%

GP Classifier 𝑃𝑜𝑉𝑚𝑖𝑛 = 50%

Variational GP 𝑃𝑜𝑉𝑚𝑖𝑛 = 50%

Mixed-discrete GP 𝑃𝑜𝑉𝑚𝑖𝑛 = 50%

All test problems, experiments, and algorithms 

are available open source!

https://sbarchopt.readthedocs.io/

Collaboration with J. H. Bussemaker (DLR)

https://sbarchopt.readthedocs.io/


Strategy comparison results
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Collaboration with J. H. Bussemaker (DLR)

Breiman, L. (2001). “Random Forests.” Machine Learning, 45, 5–32.

Saves, P., et al. "A general square exponential kernel to handle mixed-categorical variables for Gaussian process," AIAA AVIATION 2022 Forum, Chicago, USA, 2022.

• Best strategies:

1. Prediction using a Random 

Forest Classifier

2. Prediction using a Mixed-

discrete GP

• GP with categorical kernels

3. Replacement (predicted α = 1)

• Training + infill times are increased 

by 70% – 90% (compared to 

rejection)

Δ𝐻𝑉 𝒓𝒆𝒈𝒓𝒆𝒕

RFC: Random Forest Classifier (RFC)

kNN: k Nearest Neigbors

RBF: Radial Basis Function

MD GP: Mixed Discrete GP

Predicted worst (𝜶=1)

Predicted worst (𝜶=2)



Parameter studies
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Collaboration with J. H. Bussemaker (DLR)

Breiman, L. (2001). “Random Forests.” Machine Learning, 45, 5–32.

Saves, P., et al. "A general square exponential kernel to handle mixed-categorical variables for Gaussian process," AIAA AVIATION 2022 Forum, Chicago, USA, 2022.

• Predicted worst replacement

– Increasing 𝛼 → more 

conservative, less exploration, 

less performance

• Prediction

– Increasing 𝑃𝑜𝑉𝑚𝑖𝑛 → same 

trends

– Best at low 𝑃𝑜𝑉𝑚𝑖𝑛 or as 𝑓-

penalty

• Recommendation

– Prediction with Mixed Discrete 

GP (MDGP) or Random Forest 

Classifier (RFC)

– 𝑃𝑜𝑉𝑚𝑖𝑛 = 25%

Prediction strategiesReplacement



Application Case: Jet engine architecture optimization
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Collaboration with J. H. Bussemaker (DLR)

Bussemaker, J.H., et al., "System Architecture Optimization: An Open Source Multidisciplinary Aircraft Jet Engine Architecting Problem," AIAA AVIATION 2021 FORUM, Virtual Event, 2021

• Evaluation budget: 300 (DOE 113 points + 187 

infill points)

• 𝑃𝑜𝑉𝑚𝑖𝑛 = 25%

• Prediction strategy with RFC and MD GP 

perform similarly

• Able to find the optimum in 300 evaluations 

vs 3250 evaluations using an evolutionary 

algorithm (92% reduction)

▪ System Architecture Optimization  test problem framework

▪ Minimize Thrust-Specific Fuel Consumption (TSFC)

▪ 3 discrete, 3 categorical and  9 continuous design variables

▪ 11 hierarchical variables

▪ 1 – 5 minutes per evaluation

▪ 50% failure rate

24 runs



• Using

• a new feasibility enhanced expected feasible improvement EFIFE function 

is defined

where the factor α enables the reduction of the impact of the 

classifier on the exploration part of EI

Modification of the acquisition function 

66

Collaboration with A. Tfaily (BOMBARDIER)

Bachoc, F., Helbert, C., and Picheny, V., “Gaussian process optimization with failures: classification and convergence proof,” Journal of Global Optimization, Vol. 78, No. 3, 2020,

Tfaily, A., Diouane, Y., Bartoli, N., & Kokkolaras, M. (2024). Bayesian optimization with hidden constraints for aircraft design. Structural and Multidisciplinary Optimization, 67(7), 123.

• pnf is the probability of non failure based on a classifier (kNN, GP, RF, SVM, …)

• exploration factor: α(𝑥) ∈ 0,1 with a dynamic calculation based on the variance

➔allows the acquisition function to explore closer to a failure region even if pnf is low



Modification of the acquisition function 
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Collaboration with A. Tfaily (BOMBARDIER)

Tfaily, A., Diouane, Y., Bartoli, N., & Kokkolaras, M. (2024). Bayesian optimization with hidden constraints for aircraft design. Structural and Multidisciplinary Optimization, 67(7), 123.

• Aircraft conceptual design problem:

Bombardier Research Aircraft (BRAC)

• minimization of aircraft weight using 12 design variables

and subject to 8 inequality constraints

• A landing gear design code fails in certain wing/fuselage configurations

𝛼=1 for EFIP

Average of 20 optimization runs - kNN classifier with k=3

𝛼(x) for EFIFE



Modification of the acquisition function 
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Collaboration with A. Tfaily (BOMBARDIER)

Tfaily, A., Diouane, Y., Bartoli, N., & Kokkolaras, M. (2024). Bayesian optimization with hidden constraints for aircraft design. Structural and Multidisciplinary Optimization, 67(7), 123.

• Aircraft conceptual design problem:

Bombardier Research Aircraft (BRAC)

• minimization of aircraft weight using 12 design variables

and subject to 8 inequality constraints

• A landing gear design code fails in certain wing/fuselage configurations

Average of 10 optimization runs - kNN classifier with k=3

EFIFE



Conclusions and perspectives 

• Bayesian Optimization for MDO 

– Mixed-discrete, hierarchical, mono and multi-objective, constrained

– Subject to hidden constraints

• Hidden constraint strategies

– Neighborhood constraint

– Failed area prediction through Probability of Viability (PoV)
• 𝑃𝑜𝑉𝑚𝑖𝑛 =25% with a RFC or MD GP model works best

– Modify acquisition function (EI, WB2, WB2S)

➔ Integrated within SEGOMOE framework

• Application to more complex problems

72

wildfire fighting case Urban air mobility 
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• Open source python toolbox: surrogate 

modeling methods, sampling techniques, 

and benchmarking functions

• Focus on derivatives (training derivatives used for 

gradient-enhanced modeling, prediction derivatives) 

• New Kriging based surrogate models for higher 

dimension (KPLS and KPLS-K)

• Noisy Kriging to handle uncertainties on data

• Multifidelity Kriging with or without noise (MFK, 

MFKPLS) 

• Mixture of experts technique for 

heterogeneous functions

• Mixed integer Kriging to handle discrete and 

categorical variables

github.com/SMTorg/smt SEGOMOE

• Mono & multi objective Bayesian optimizer

• Mono & Multi fidelity sources

• Handling non linear objectives & constraints (black 

box, no derivative available)

• Equality & inequality constraints 

(1 ~ 100 constraints)

• Intermediate dimension problem 

(1 ~ 100 variables)

• Heterogenous variables (continuous, discrete, 

categorical)

• Costly evaluation (CFD, FEM, objective and/or 

constraints)

• Hidden constraints 

• Based on SMT toolbox for surrogate models

• Remote access via a web interface

Two frameworks


