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Approximation/Learning in high dimension

Many problems in statistics and machine learning require the approximation of functions
of many variables

u(x1, . . . , xd)

Supervised learning.
Approximation of a random variable Y by a function of a set of random variables
X = (X1, . . . ,Xd), using samples of (X ,Y ). The approximation is used as a
predictive model.

Unsupervised learning.
Estimation of the probability distribution of a random vector X = (X1, . . . ,Xd), from
samples of X .

These are two typical tasks in uncertainty quantification, where Y is some output
variable of a (numerical or experimental) model depending on a set of random
parameters X .
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Approximation/Learning in high dimension

The function u is approximated by an element of an approximation set Fn described by n

parameters, also called model class or hypothesis set.

A sequence (Fn)n≥1 of approximation sets is called an approximation tool. Standard
approximation tools include splines, wavelets, polynomials, kernel functions.

A fundamental question is to determine the complexity n = n(ǫ, u) to obtain an
approximation error ǫ.

For a function u from classical regularity classes (Sobolev, Besov or even analytic
functions), the complexity n(ǫ, u) typically grows exponentially with d for any
“reasonable” approximation tool, that is the curse of dimensionality.
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How to beat the curse of dimensionality ?

We have to

make further assumptions on the function, going ahead classical regularity
assumptions,

and propose ad-hoc approximation tools.

We would like

an approximation tool that achieves a good performance for many classes of
functions,

algorithms that practically compute approximations achieving a certain precision
with near optimal complexity.

A good candidate is provided by tree tensor networks, that are related to low-rank
structures of multivariate functions.
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Ranks of multivariate functions

Consider a multivariate function
v(x1, . . . , xd)

For a subset of variables
α ⊂ {1, . . . , d} := D,

the function v can be identified with a bivariate function

v(xα, xαc )

where xα and xαc are complementary groups of variables.

The rank of this bivariate function is called the α-rank of v , denoted rankα(v). It is the
minimal integer rα such that

v(x) =

rα∑

k=1

v
α
k (xα)w

αc

k (xαc )
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Low rank tensor formats

For T a collection of subsets of D and a given tuple r = (rα)α∈T , a tensor format is
defined by

T T
r (H) =

⋂

α∈T

{v ∈ H : rankα(v) ≤ rα}

where H is some finite dimensional space of multivariate functions.

In the particular case where T is a dimension partition tree, T T
r (H) is a tree-based

tensor format.

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker format

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train format

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Hierarchical Tucker format
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Tree-based tensor formats as tree tensor networks

Consider a tensor space H = H1 ⊗ . . .⊗Hd of multivariate functions, and let
{φν

iν
: 1 ≤ iν ≤ Nν} be a basis of Hν , e.g. splines, wavelets, or a set of features.

A function v ∈ T T
r (H) admits a representation

v(x) =
∑

1≤i1≤N1

. . .
∑

1≤id≤Nd

ai1,...,idφ
1
i1
(x1) . . . φ

d
id
(xd)

with a tensor a ∈ R
N1×...×Nd having an explicit representation

ai1,...,id =
∑

1≤kβ≤rβ
β∈T

∏

α∈I(T )

a
α
(kβ )β∈S(α),kα

d∏

ν=1

a
ν
iν ,kν

with parameters {aα}α∈T forming a tree tensor network.

a1,2,3,4,5

a1,2,3

a1 a2,3

a2 a3

a4,5

a4 a5
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Tree-based tensor formats as compositional functions

By identifying a tensor aα ∈ R
n1×...×ns×rα with a R

rα -valued multilinear function

f
α : Rn1 × . . .× R

ns → R
rα ,

a function v in T T
r (H) admits a representation as a tree-structured composition of

multilinear functions {f α}α∈T .

f 1,2,3,4,5

f 1,2,3

f 1 f 2,3

f 2 f 3

f 4,5

f 4 f 5

For the above tree,

v(x) = f
1,2,3,4,5(f 1,2,3(f 1(Φ1(x1)), f

2,3(f 2(Φ2(x2)), f
3(Φ3(x3))), f

4,5(f 4(Φ4(x4)), f
5(Φ5(x5))))

where Φν(xν) = (φν
iν
(xν))1≤iν≤Nν is a vector of Nν features in the variable xν .
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Representation complexity of tree tensor networks

The number of parameters (representation complexity) is

C(T , r ,H) =
∑

α∈I(T )

rα
∏

β∈S(α)

rβ +

d∑

ν=1

rνNν .

Noting that #T ≤ 2d − 1,

C(T , r ,H) ≤ R
s + (d − 2)R s+1 + dRN,

where s is the arity of the tree, R the maximum rank, and N the maximum number of
features per variable.
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Approximation power of tree tensor networks

We want to quantify the best approximation error

e
T
r (u) = min

v∈T T
r (H)

‖u − v‖

for a target function u in some function classes and compare it with other approximation
tools.

We consider functions in L2
µ(X ) where X = X1 . . .×Xd is equipped with a product

measure µ, and

‖u − v‖2 =

∫

X

(u(x)− v(x))2dµ(x).
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Linear widths of multivariate functions

For each α ∈ T , we start by considering the approximation error by functions with
bounded α-rank,

e
α
rα(u)

2
L2 = inf

rankα(v)≤rα

‖u − v‖2 = inf
rankα(v)≤rα

∫

Xαc

‖u(·, xαc )− v(·, xαc )‖2L2µα
dµαc (xαc ),

which is equivalent to

e
α
rα(u)

2
L2 = inf

dim(Vr )=r

∫

Xαc

‖u(·, xαc )− PVr u(·, xαc )‖2L2µα
dµαc (xαc )

where the infimum is taken over all r -dimensional subspaces.

By considering the set of partial evaluations of u

Kα(u) = {u(·, xαc ) : xαc ∈ Xαc } ⊂ L
2
µα

(Xα),

we have
e
α
r (u)L2 ≤ inf

dim(Vr )=r
sup

f∈Kα(u)

‖f − PVr f ‖ := dr (Kα(u))L2µα
,

the upper bound being the Kolmogorov r -width of Kα(u).
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Approximation power of tree tensor networks

For a given tree, given a collection of spaces Uα with dimension rα, α ∈ T \ {D}, the
approximation

ur =
∏

α∈T

PUαu

obtained by successive orthogonal projections (suitably ordered) satisfies ur ∈ T T
r (U),

with U = U1 ⊗ . . .⊗ Ud and

‖u − ur‖
2 ≤

∑

α∈T\{D}

‖u − PUαu‖
2

Taking the infimum over the spaces Uα for interior nodes α ∈ I(T ) and taking Uν = Hν

for leaf nodes ν, we deduce that the best approximation error in T T
r (H) satisfies

e
T
r (u)

2
L2 ≤

∑

α∈I(T )\{D}

e
α
rα(u)

2 +

d∑

ν=1

‖u − PHνu‖
2

Then error bounds can be obtained with information on the linear widths of the sets
Kα(u) of partial evaluations of u.
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Approximation power for Sobolev classes

For functions u ∈ Hs((0, 1)d), partial evaluations also have Sobolev regularity, and
from results on Kolmogorov widths of Sobolev balls, we deduce that

e
α
rα(u) . rα

−s/dα‖u‖Hs , dα = min{#α, d −#α}.

Using suitable spaces Hν (e.g. splines), we obtain that the complexity to achieve a
precision ǫ (whatever the tree) is

n(ǫ, u) . ǫ
−d/s

,

which is the ideal performance we can expect, which is achieved by other tools (e.g.
multivariate splines).

For functions u in mixed Sobolev classes Hs
mix(T

d), from bounds on Kolmogorov
widths of mixed Sobolev balls, we obtain

e
α
rα(u) . r

−s
α log(rα)

s(dα−1)

and a complexity to achieve a precision ǫ (with binary trees)

n(ǫ, u) . ǫ
−3/s log(ǫ−1)d

almost the ideal performance achieved by hyperbolic cross (sparse) approximation.

Other bounds in [Schneider and Uschmajew 2014] using results on bilinear
approximation [Temlyakov 1989].
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Approximation power for compositional functions
[with Markus Bachmayr and Reinhold Schneider]

Tree tensor networks they can perform much better for non standard classes of functions,
e.g. a tree-structured composition of regular functions {uα : α ∈ T}, see [Mhaskar, Liao,
Poggio 2016] for deep neural networks.

u(x) = u1,2,3,4 (u1,2 (u1(x1), u2(x2)) , u3,4 (u3(x3), u4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions uα ∈ W s,∞ with ‖uα‖L∞ ≤ 1 and ‖uα‖W s,∞ ≤ B, the
complexity to achieve an accuracy ǫ

n(ǫ, u) . ǫ
−3/s

L
3
B

3L
d
1+3/2s

with L = log2(d) for a balanced tree and L = d − 1 for a linear tree.

Bad influence of the depth through the norm B of functions uα (roughness).

For B ≤ 1 (and even for 1-Lipschitz functions), the complexity only scales
polynomially in d : no curse of dimensionality !
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Deep versus shallow networks

A function in canonical format (shallow network)

u(x) =
r∑

k=1

u
1
k(x1) . . . u

d
k (xd)

can be represented in tree-based format with a similar complexity.

Conversely, a typical function in tree-based format T T
r has a canonical rank

depending exponentially in d .

Deep is better !

For a balanced or linear binary tree T , the subset of tensors v in T T
r (Rn×...×n) with

canonical rank less than min{n, r}d/2 is of Lebesgue measure 0 [Cohen et al. 2016,
Khrulkov et al 2018]

But a typical function in T T
r may admit a representation complexity exponential in d

when using another tree.
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Selection of a tree

Choosing a good tree (architecture of network) is a crucial but combinatorial problem...

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

{1} {4}{2} {8}

{3} {7} {6}

{5}

{3} {2}{4}

{7}{5}

{8}{6} {1}

Stochastic algorithms for tree optimization (with some heuristics) proposed in
[Grelier, Nouy and Chevreuil 2018].
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Risk

A classical approach is to introduce a risk functional R(v) whose minimizer over the set
of functions v is the target function u and such that

R(v)−R(u)

measures some distance between the target u and the function v .

The risk is defined as an expectation

R(v) = E(γ(v ,Z))

where γ is called a contrast (or loss) function, and Z = X or (X ,Y ).

For least-squares regression in supervised learning, R(v) = E((Y − v(X ))2),
u(X ) = E(Y |X ) and

R(v)−R(u) = E((u(X )− v(X ))2) = ‖u − v‖2L2µ

with X ∼ µ.

For density estimation with L2-loss, R(v) = E(‖v‖2L2µ
− 2v(Z)) and

R(v)−R(u) = ‖u − v‖2L2µ
is the L2 distance between v and the probability density

u of Z with respect to a reference measure µ.
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Empirical risk minimization

Given i.i.d. samples {zi}
n
i=1 of Z , an approximation ûn

F of u can be obtained by
minimization of the empirical risk

R̂n(v) =
1

n

n∑

i=1

γ(v , zi )

over a certain model class F .

Denoting by uF the minimizer of the risk over F , the error

R(ûn
F )−R(u) = R(ûn

F )−R(uF )︸ ︷︷ ︸
estimation error

+ R(uF )−R(u)
︸ ︷︷ ︸

approximation error

For a given sample, when taking larger and larger model classes, approximation error
ց while estimation error ր.

Methods should be proposed for the selection of a model class taking the best from
the available information.
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Estimation error

Given a model class F , a minimizer uF of the risk R over F and a minimizer ûn
F of the

empirical risk R̂n over F , the estimation error

R(ûn
F )−R(uF ) ≤ R(ûn

F )− R̂n(û
n
F ) + R̂n(uF )−R(uF )

so that

R(ûn
F )−R(uF ) ≤ 2 sup

v∈F

|R̂n(v)−R(v)| = 2 sup
v∈F

|
1

n

n∑

i=1

γ(v , zi )− E(γ(v ,Z))|

and an error bound can be obtained by analyzing the fluctuations of 1
n

∑n

i=1 γ(v , zi )
around its mean.
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Estimation error

Assume that F is compact in L∞, and that for all v ,w ∈ F , the contrast is uniformly
bounded and Lipschitz,

|γ(v ,Z)| ≤ B, |γ(v ,Z)− γ(w ,Z)| ≤ L‖v − w‖L∞

Then using a standard concentration inequality (here Hoeffding), we obtain

P( sup
v∈F

|
1

n

n∑

i=1

γ(v , zi )− E(γ(v ,Z))| ≥ 2ǫB) ≤ 2N ǫB
2L
e
− nǫ2

2

where N ǫB
2L

= N ( ǫB
2L
,F , ‖ · ‖L∞) is the covering number of F .
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Metric entropy of tree tensor networks
[with Bertrand Michel]

Assume H ⊂ L∞(X ) with basis functions {φi}i∈I normalized in L∞(X ).

For any representation of v ∈ T T
r (H) with parameters {f α : α ∈ T}, the multilinearity of

the parametrization implies

‖v‖L∞ ≤
∏

α

‖f α‖α,∞,

with a suitable choice of norms

‖f α‖α,∞ = sup
‖zβ‖∞≤1

‖f α((zβ)β∈S(α))‖∞

Considering the model class

F = RF1, F1 = {v ∈ T T
r (H) : max

α∈T
‖f α‖α,∞ ≤ 1},

we obtain an upper bound of the metric entropy

logN (ǫ,F , ‖ · ‖L∞) ≤ CF log(6ǫ−1
R#T ),

where CF = C(T , r ,H) is the representation complexity of elements of F .
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Coming back to estimation error

We conclude that if

n ≥ 8ǫ−2
B

2
(
log(2η−1) + CF log(12ǫ−1

RL#T )
)

then
P(R(ûn

F )−R(uF ) ≤ ǫ) ≥ 1− η.

Also

E(R(ûn
F )−R(uF )) . B

√
CF

n

√
log(n)

Note that better bounds may be obtained using refined concentration inequalities for
suprema of empirical processes

sup
v∈F

|
1

n

n∑

i=1

γ(v , zi )− E(γ(v ,Z))|

Anthony Nouy Centrale Nantes 27 / 36



Learning algorithm for tree tensor networks

A function v in the model class T T
r (H) has a representation v(x) = Ψ(x)((aα)α∈T )

where each parameter aα is in a tensor space R
Kα

and Ψ(x) is a multilinear map.

The empirical risk minimization problem over the nonlinear model class T T
r

min
(aα)α∈T

1

n

n∑

i=1

γ(Ψ(·)((aα)α∈T ), zi )

can be solved using an alternating minimization algorithm, solving at each step an
empirical risk minimization problem with a linear model

Ψ(x)((aα)α∈T ) =
∑

k∈Kα

Ψα
k (x)a

α
k

with functions Ψα
k (x) depending on fixed parameters aβ , β 6= α.

In a L2 setting, possible re-parametrization for having orthonormal functions Ψα
k (x).

Sparsity in the tensors aα can be exploited in different ways, e.g. by proposing
different sparsity patterns and use a model selection technique (e.g. based on
validation).

For a leaf node ν, the approximation space Hν can be selected from a candidate
sequence of spaces Hν

0 ⊂ . . . ⊂ Hν
L ⊂ . . .
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Learning algorithm for tree tensor networks

Selection an optimal model class T T
r (H) is a combinatorial problem.

An algorithm is proposed in [Grelier, Nouy, Chevreuil 2018] that performs adaptations of
the tree T (architecture), the rank r (widths) and the approximation space H.

Start with an initial tree T and learn an approximation v ∈ T T
r (H) with rank

r = (1, ..., 1). Then repeat

Increase some ranks rα based on estimates of truncation errors

min
rankα(v)≤rα

R(v)−R(u)

Learn an approximation v in T T
r (H), with adaptive selection of H

Optimize the tree for reducing the storage complexity of v (stochastic algorithm
using a suitable distribution over the set of trees)

min
T

C(T , rankT (v),H)
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Model selection

Algorithms generate a sequence of estimations ûn
m in different model classes (Fm)m∈M

(with different trees Tm, ranks rm and background approximation spaces Hm).

The model selection approach of Barron, Birgé and Massart can be used, which consists
in minimizing a penalized empirical risk

min
m∈M

R̂n(û
n
m) + λpen(m)

with a penalty pen(m) depending on the complexity CFm of the model.

This yields a model m̂ that satisfies oracle inequalities.

In practice, the parameter λ can be estimated with slope heuristics.
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Improving estimation error

A better performance can be obtained by using as empirical risk

R̂n(v) =
1

n

n∑

i=1

wiγ(v , z̃i )

where the z̃i are i.i.d. samples from a measure dPZ̃ = w(z)dPZ and the weights
wi = w(z̃i )

−1.

The choice of sampling measure should be adapted to the risk and model class, and
may be deduced from concentration inequalities.
See [Cohen and Migliorati 2017][Haberstich, Nouy, Perrin 2020] for least-squares
regression and linear models.
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Improving estimation error
[with C. Haberstich and G. Perrin]

For tree tensor networks, use a specific sampling measure for each parameter, and
estimate the parameters sequentially (from leaves to root).

For a given α, the risk

R(v) = E((Y − v(X ))2) = E(E((Y − v(X ))2|Xαc ))

is estimated by

R̂n(v) ≈
1

p

p∑

j=1

1

q

q∑

i=1

(y i,j − v(x i
α, x

j
αc ))

2

where samples (x i
α, x

j
αc ) are not independent, and the x i

α are generated according a
measure depending on the previously estimated tensors.

Link to empirical principal component analysis of multivariate functions [Nouy
2019], for the estimation of optimal spaces Uα for the approximation of partial
evaluations u(·, xαc ).
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Concluding remarks

For classical sampling, the obtained theoretical results are related to the minimizer
ûn
F of the empirical risk over the model class F = T T

r (H), but available algorithms
do not guarantee to find a solution of

min
v∈T T

r (H)
R̂n(v)

Convexification of tree tensor networks ?
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Available software

Tensor formats and related algorithms are available in a Matlab toolbox
ApproximationToolbox, available on GitHub.

A. Nouy, E. Grelier, and L. Giraldi.
ApproximationToolbox.
February 2020. doi:10.5281/zenodo.3653971.

A python package will be available soon.

See https://anthony-nouy.github.io/software.html
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Thank you for your attention
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