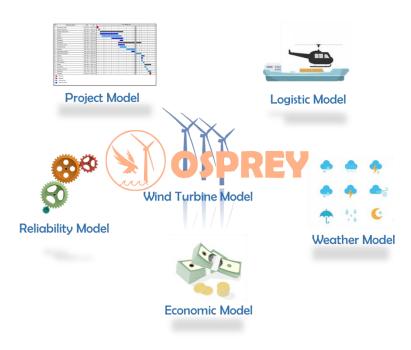


On the fly sensitivity analysis for a discrete event model

EDF R&D Département PRISME


OSPREY

2

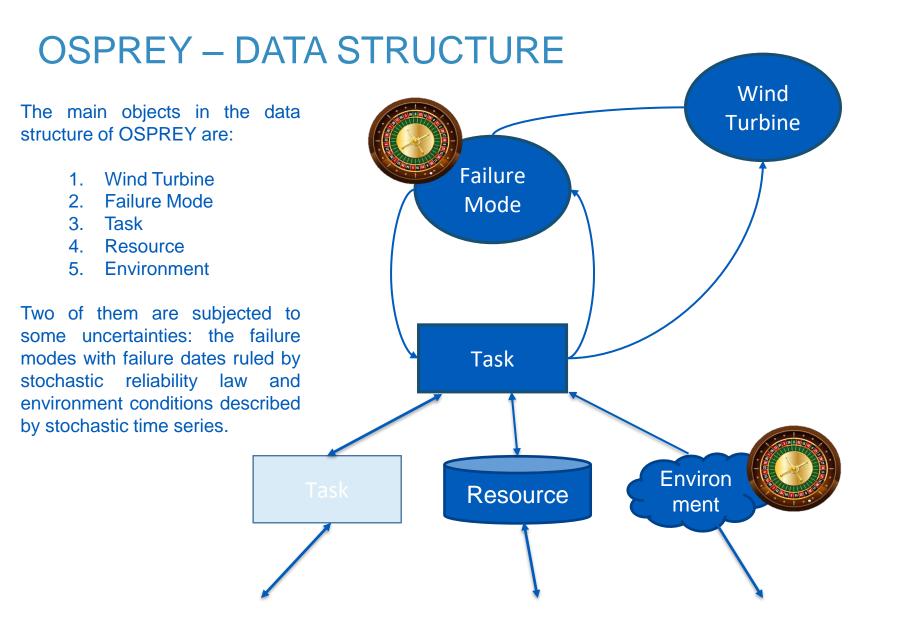
OSPREY – GENERAL ARCHITECTURE

The core of OSPREY is the wind turbine model, describing how the wind turbine farm is functioning.

This model is linked with various models describing the economic-technical environment the farm is operated in.

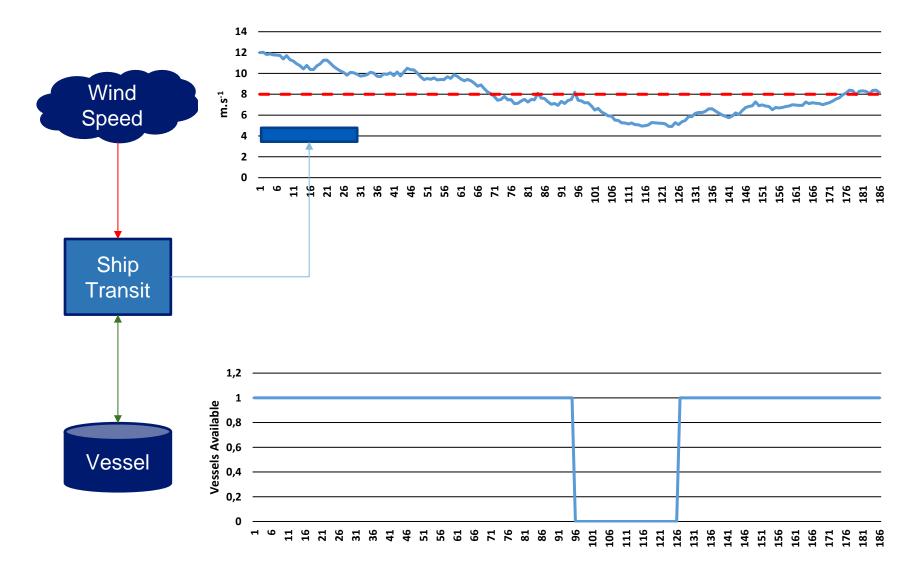
Some models use the expertize of EDF R&D that has been developed in the past for other power generation types.

Some models (weather, project) are new developments.

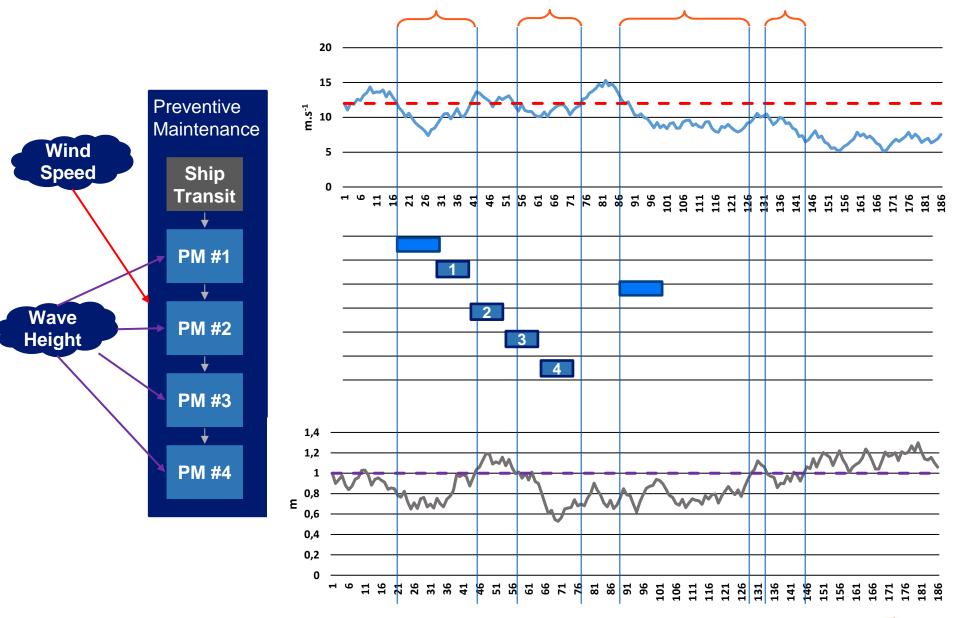

Modular structure of the software making it flexible and easy to maintain.

Java and C++ languages facilitate the distribution of the tool.

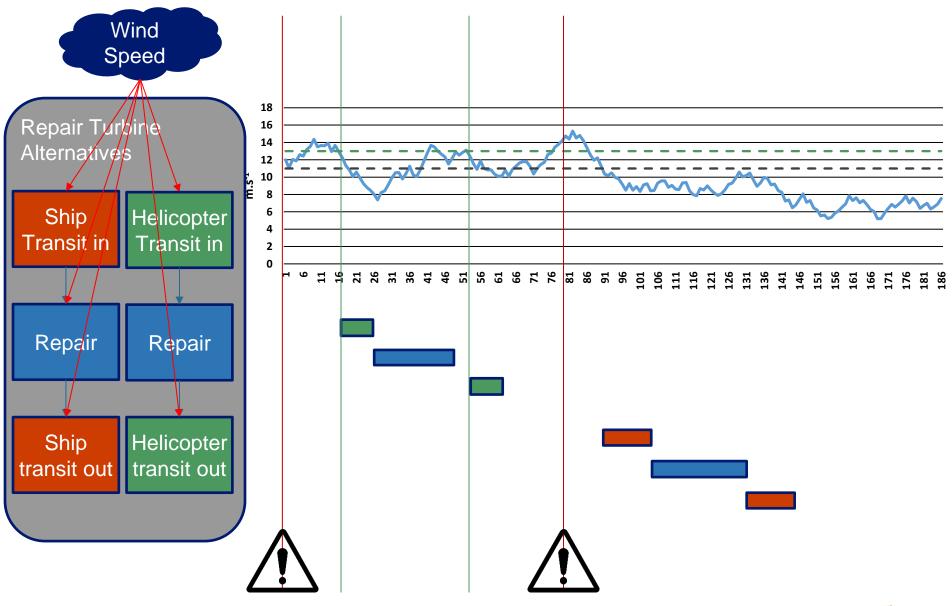
Graphical User Interface


Calculation Engine

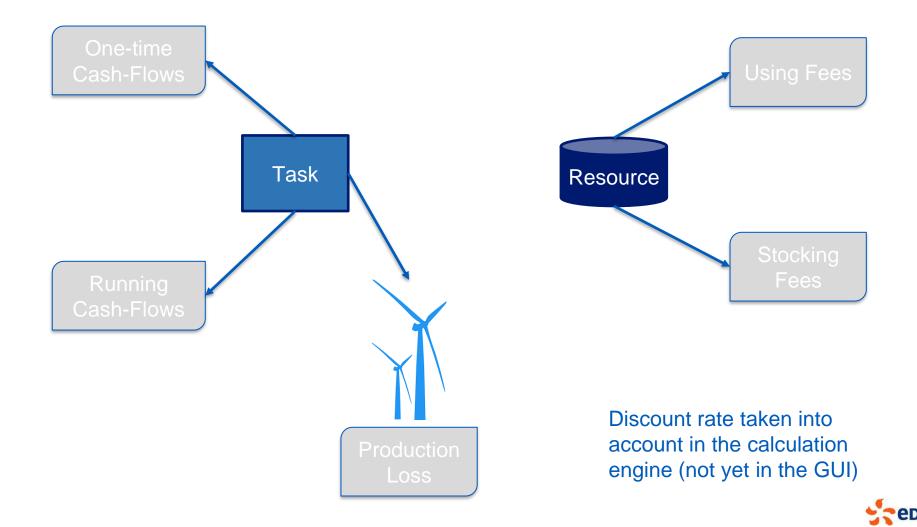
A Monte-Carlo simulation algorithm is implemented to simulate several possible lives of the farm and give to the user not only mean values but also risk indicators.



PROJECT MODEL – SIMPLE TASK



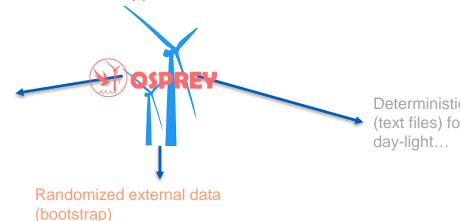
PROJECT MODEL – MACRO TASK



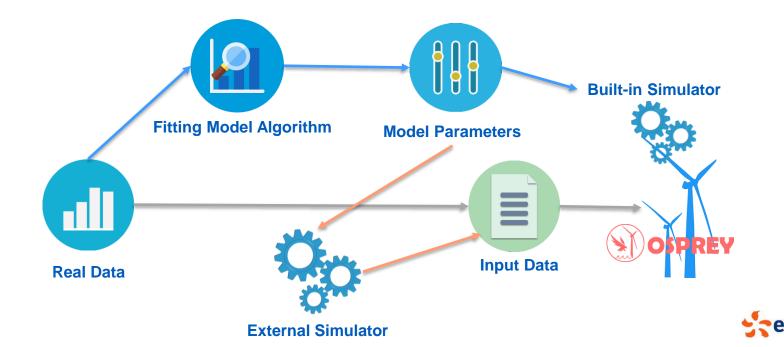
PROJECT MODEL – ALTERNATIVE TASKS

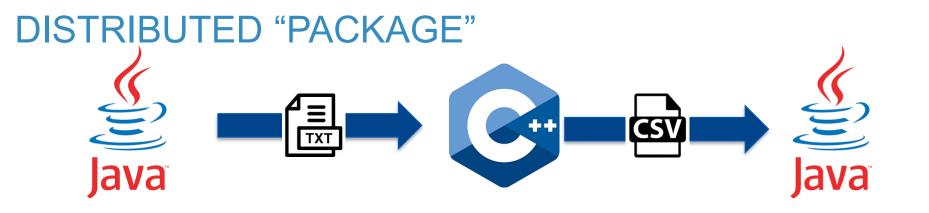
OSPREY – ECONOMIC MODEL

Tasks and resources generates cash-flows with different types and values. These cash-flows are summed up to give global economic indicators.


OSPREY – WEATHER MODEL

OSPREY can take into account several types of weather models

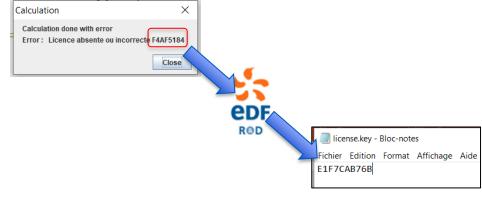

Built-in stochastic Auto-Regressive models:


 SWANN: model using Artificial Neural Network (done)

Deterministic data, cyclic or not (text files) for time of the day, tides, day-light...

Graphical User Interface

Calculation Engine


Graphical User Interface

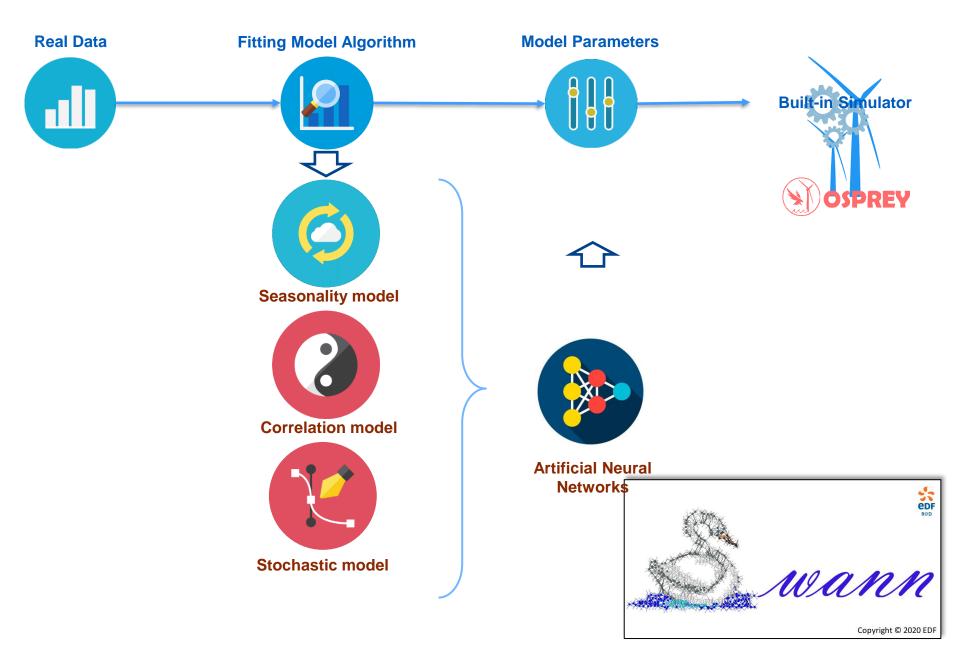
2_1						
Affichage						
Couper Copier le chemin d'accès Coller le raccourci	Déplacer Copier vers • Vers •	Supprimer Renommer	Nouveau dossier	Nouvel élément 👻 🚹 Accès rapide 👻	Propriétés	ifier 🔡
iers	Or	rganiser		Nouveau	Ouvrir	
PC > Documents > Ou	tils > OSPREY >	OSPREYv5_2_1				
Nom		Modifié le	~	Туре	Taille	
🛯 ResultatsDowntim	e.csv	06/09/2021	15:42	Fichier CSV Micr	ros 1 Ko	b
ResultatsDowntim	eDetail.csv	06/09/2021	15:42	Fichier CSV Micr	ros 1 Ko)
ResultatsPostponC	ause.csv	06/09/2021	15:42	Fichier CSV Micr	ros 1 Ko)
ResultatsPostponV	alue.csv	06/09/2021	15:42	Fichier CSV Micr	os 4 Ko)
ResultatsResource	.CSV	06/09/2021	15:42	Fichier CSV Micr	os 1 Ko)
ResultatsMeteo.cs	v	06/09/2021	15:42	Fichier CSV Micr	ros 1 712 Ko)
ResultatsProba.csv	r	06/09/2021	15:42	Fichier CSV Micr	os 810 Ko)
comm.txt		06/09/2021	15:42	Document texte	1 Ko	
General.csv		06/09/2021	15:42	Fichier CSV Micr	os 1 Ko)
Resultats.csv		06/09/2021	15:42	Fichier CSV Micr	os 22 Ko)
ResultatsAnnuel.cs	v	06/09/2021	15:42	Fichier CSV Micr	os 3 Ko)
study.txt		06/09/2021	15:42	Document texte	1 Ko)
ResultatsTrace.txt		06/09/2021	14:51	Document texte	1 Ko)
Iicense.key		31/08/2021	11:10	Fichier KEY	1 Ko)
OspreyCalculator.e	exe	25/08/2021	19:31	Application	881 Ko)
X_AAWind_Fecam	p.swn	25/08/2021	13:34	Fichier SWN	44 Ko)
X_AWave_Fecamp.	swn	25/08/2021	13:34	Fichier SWN	44 Ko)
sprey.log		03/06/2021	09:20	Document texte	395 Ko)
🔬 osprey.jar		02/06/2021	18:26	Executable Jar F	ile 444 Ko)
Iang.properties		01/06/2021	10:27	Fichier PROPERT	TES 20 Ko)
log.txt		05/09/2019	09:26	Document texte	1 Ko)
🔬 osprey_index.jar		21/08/2019	13:44	Executable Jar F	ile 261 Ko)
tooltips.properties	;	21/08/2019	12:18	Fichier PROPERT	TES 2 Ko	b
🗟 osprey64.dll		02/08/2019	12:50	Extension de l'a	рр 16 Ко)
osprey32.dll		02/08/2019	12:50	Extension de l'a	рр 12 Ко)
💿 osprey.bat		22/01/2019	16:02	Fichier de comn	na 1 Ko	0
loa4i.xml électionné 6 octet(s)		05/11/2018	12:57	Document XMI	1 Kc)

A folder containing all GUI files:

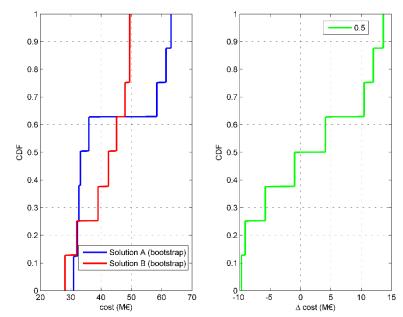
- 1. osprey.jar (GUI launcher)
- 2. lang.properties (editable text file with all GUI labels)
- 3. Calculation engine OspreyCalculator.exe
- 4. A license key file license.key

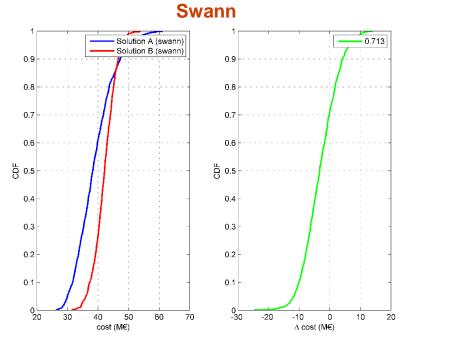
The interface is free to use without a valid license, it will be needed to run simulations

Send the Id number to EDF R&D and then edit the license.key file to enter the correct key that will be sent back


SWANN

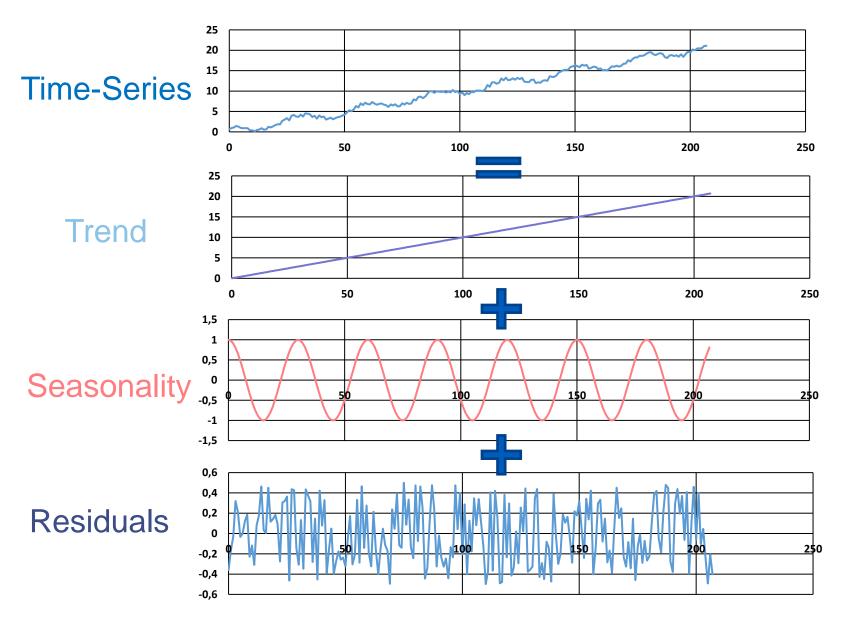
11


SWANN


SWANN

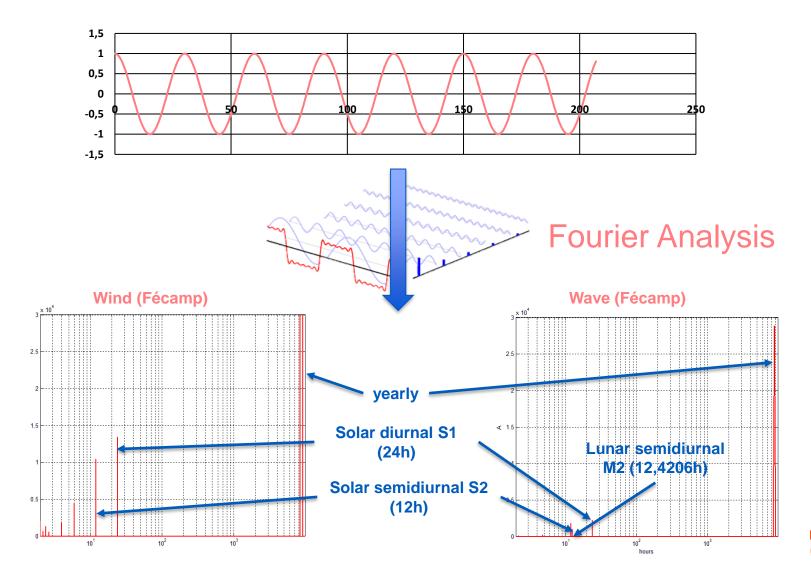
SWANN stands for Stochastic Weather Emulator using Artificial Neural Network

Stochastic weather generator is important for Asset Management because observed data don't provide enough data to asses risk indicators

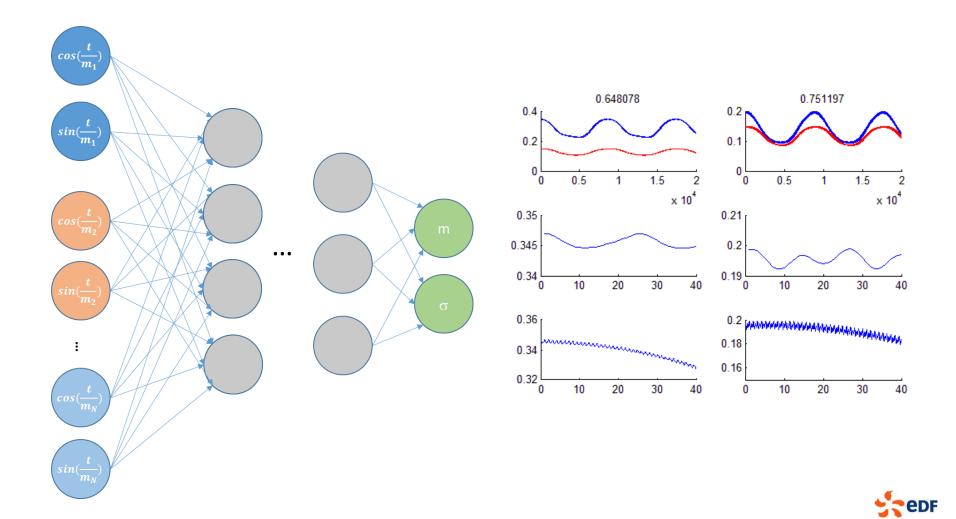

Bootstrap

	Mean (M€)	Median (M€)			
Solution A	43,4	33,2			
Solution B	41,6	42,4			

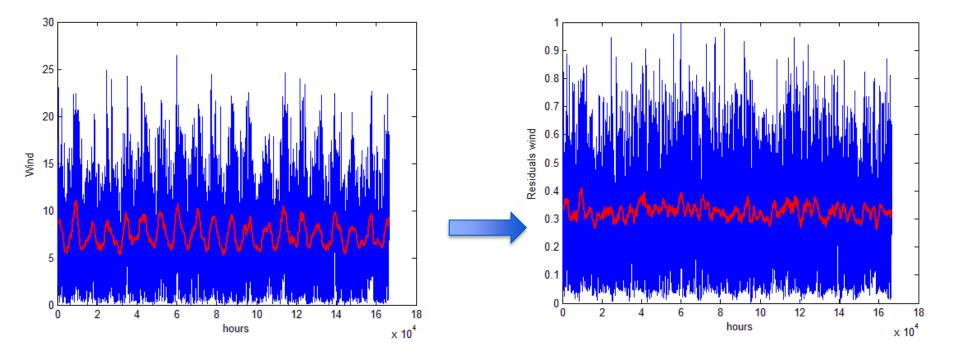
	Mean (M€)	Median (M€)
Solution A	38,9	38,2
Solution B	42,1	42,1
		- e


TIME SERIES

SEASONNALITY

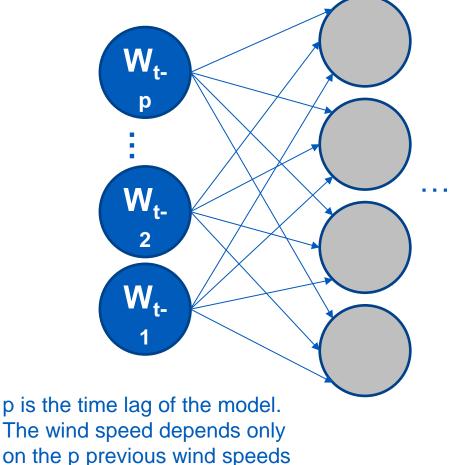

In the case of metocean data, seasonality is the deterministic sum of harmonic constituents (like tides)

edf


SEASONNALITY

Once the constituents are selected, the global harmonic of average and standard deviation of seasonality are interpolated with an ANN

RESIDUALS


Once the seasonality is taken out we are left with stochastic residuals. The resulting time series is supposed to be stationary

RESIDUALS

For stochastic weather generators, residuals may be modelled with a stochastic process (AutoRegressive, Moving-Average...) A generic model can use a Neural Network trained on past observed weather data

The loss function is the Log-Likelihood function given the obervation at time step t. For a Gaussian:

W.

m

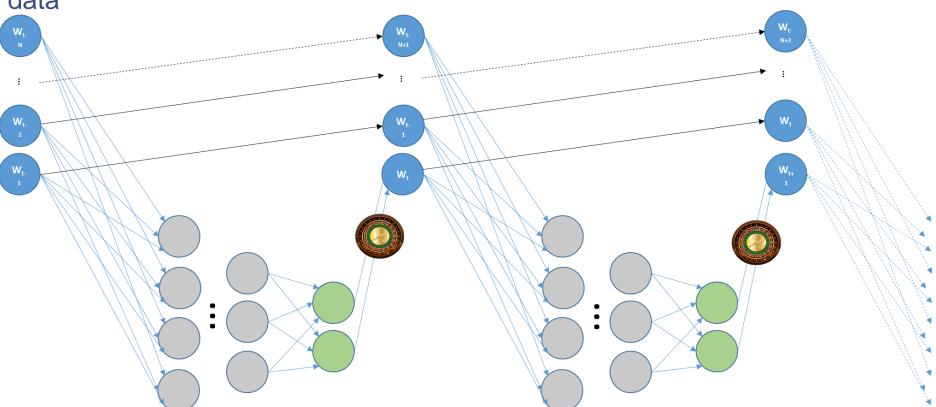
σ


$$L = -\frac{\ln(2 \cdot \pi)}{2} - \ln(\sigma) - \frac{(W_t - m)^2}{2 \cdot \sigma^2}$$

CORRELATION

Different possible methods to take into account the correlation between several data (wind speed Vs wave height for example):

- Rigorous models like Copulas
- Simplified iterative correlation


One variable at time step t will depend on its p previous values & q previous values for correlated variables with a higher rank & q-1 previous values and the current value for correlated variables with a lower rank

SIMULATION

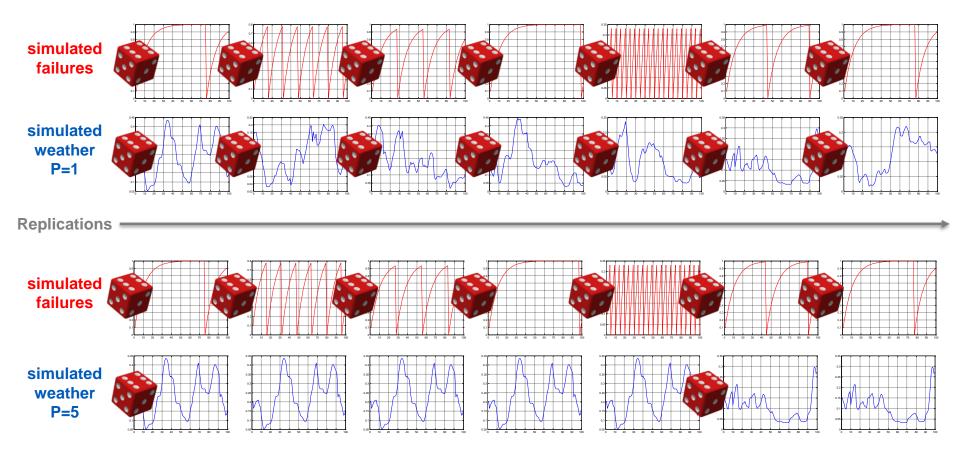
Time series are simulated iteratively based on the models fitted on observed data

At each time step random values are created based on the output of the network. These values being used as inputs for the next time step.

Once the residuals are generated, data is "reseasoned" using the seasonality models

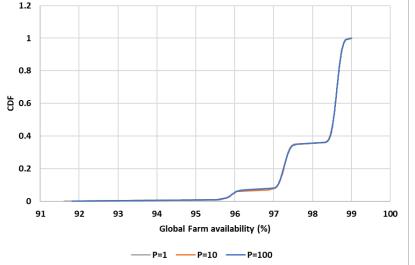
Simulation

21

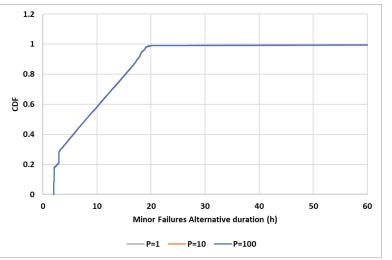

RISK RESULTS

Full Storing	•
No Risk-Informed Results	
Full Storing	
Streaming Risk Results	

- <u>Full storing</u>: classic method used in past version of OSPREY. All replications output are stored and quantiles are calculated in posttreatment.
 - Pros: convergence to the exact quantile function is known. Possibility to replay a quantile.
 - Cons: large results files (storage issues but moreover exporting times issues)
- <u>Streaming Risk Results</u>: based on Robbins-Monro algorithm, the quantiles approximations are updated at each replication without storing any values.
 Pros: no i/o time issues for the result files are smaller
 - Cons: convergence is not measurable (no confidence interval or convergence speed is known). Impossible to "replay" a given quantile.
- <u>No Risk-Informed Results</u>: no quantiles evaluation
 - Pros: fast calculations
 - Cons: no probabilistic results at all


WEATHER DATA SIMULATION

Increasing the period for weather data initialization P shortens the calculations with a potential loss of convergence




PERFORMANCE – WEATHER SIMULATION

1.2 1 0.8 <u>ප</u> 0.6 0.4 0.2 0 97.5 97.6 97.7 97.8 97.9 98 98.1 98.2 98.3 98.4 98.5 Global Farm availability (%) P=1 - P=10 - P=100

Limited impact on availability results

Only significant impact is visible for "deterministic" events. For other events the stochasticity of occurrence times is sufficient

ROBBINS-MONRO ALGORITHM

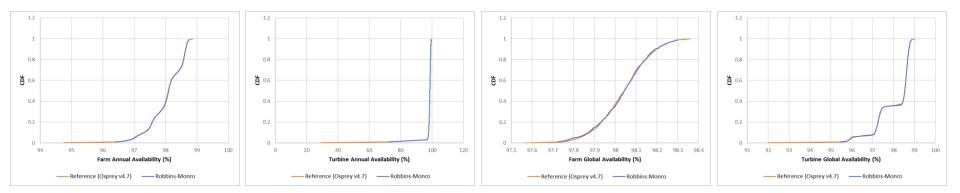
The algorithm was described by Robbins and Monro in 1951¹

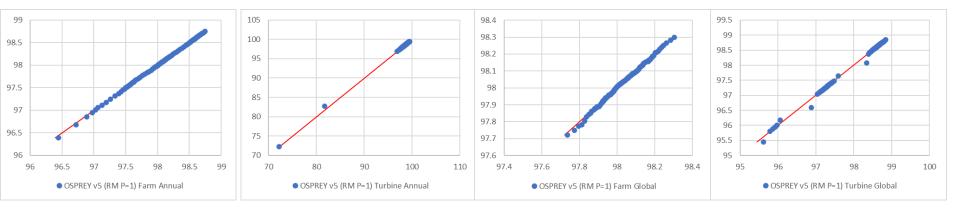
The chosen implementation is the based on the works of Bertrand looss²:

1. Application of the algorithm to quantiles approximation through an iterative "on-the-fly" formula:

$$q_{\alpha}(n+1) = q_{\alpha}(n) - \frac{C}{n^{\gamma}} \left(\mathbf{1}_{Y_{n+1} \leq q_{\alpha}(n)} - \alpha \right)$$

2. Dynamic evolution of C and γ parameters

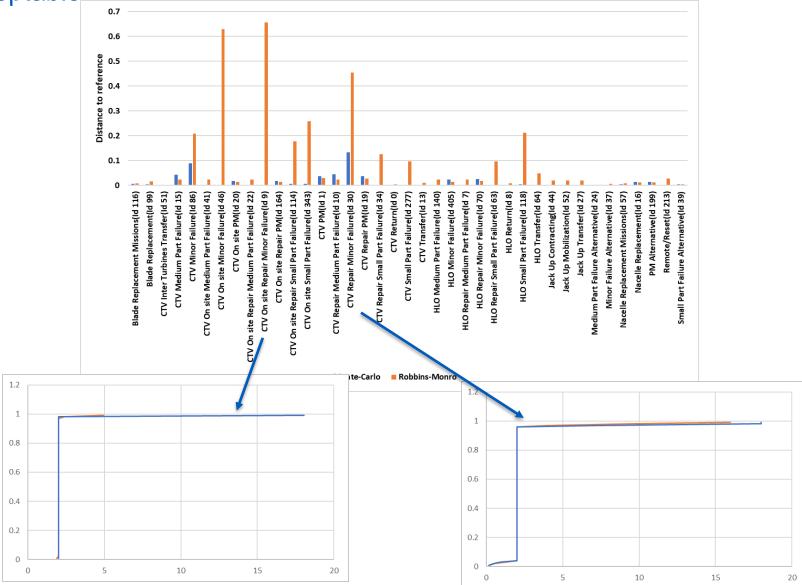

$$\gamma(n) = 0.5 + 0.5 \frac{n-1}{N-1}$$


$$C(n) = |q_{\alpha_{max}}(n-1) - q_{\alpha_{min}}(n-1)|$$

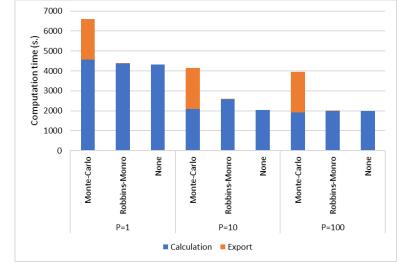
¹Robbins, H.; Monro, S. (1951). "A Stochastic Approximation Method". The Annals of Mathematical Statistics. 22 (3): 400.

Density Inorm - RM1

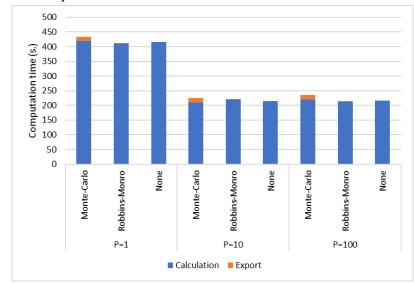
PERFORMANCE – QUANTILES EVALUATION (1/2)



Good performance on the availability indicators


PERFORMANCE – QUANTILES EVALUATION (2/2)

On task durations, poor performance on extreme quantiles, but globally acceptable



PERFORMANCE – CALCULATION TIME

1000 replications, 4 threads

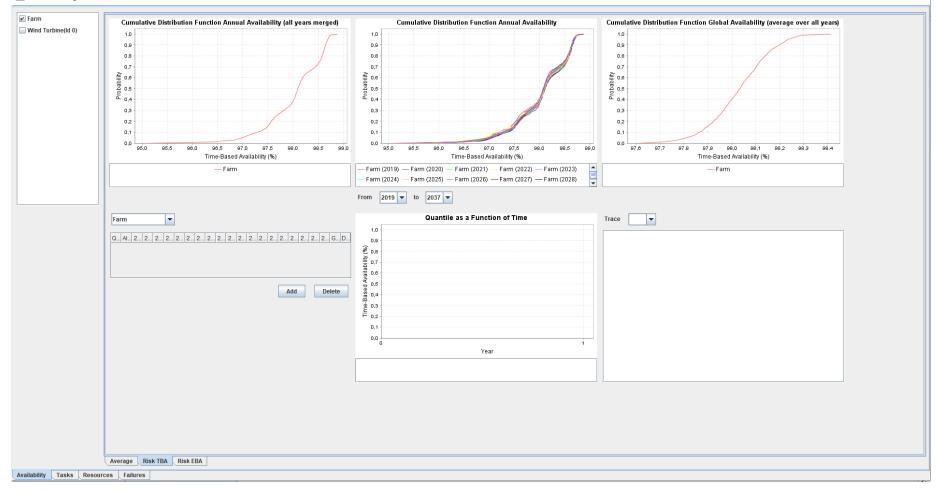
100 replications, 4 threads

Increasing the initialization period for weather simulation speeds up the calculation up to P=10 then converge

Export results are almost instantaneous for Robbins-Monro risk results (independent from the number of replications)

Results

29


AVAILABILITY CALCULATIONS - AVERAGE

AVAILABILITY CALCULATIONS - RISK

Calculation Log

Х

TASKS CALCULATIONS

TASKS RESSOURCES

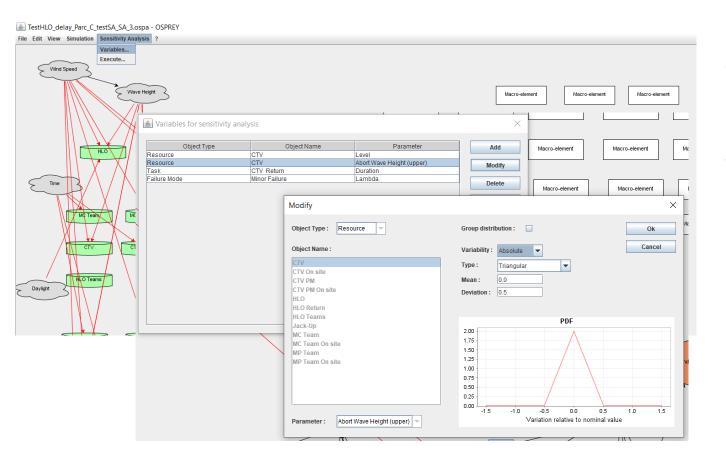
Sensitivity Analysis

34

SENSITIVY ANALYSIS

In addition with the variants generator implemented in the previous version, the sensitivity analysis features enables a deeper analysis of the impacts of variables uncertainties on Quantity of Interest.

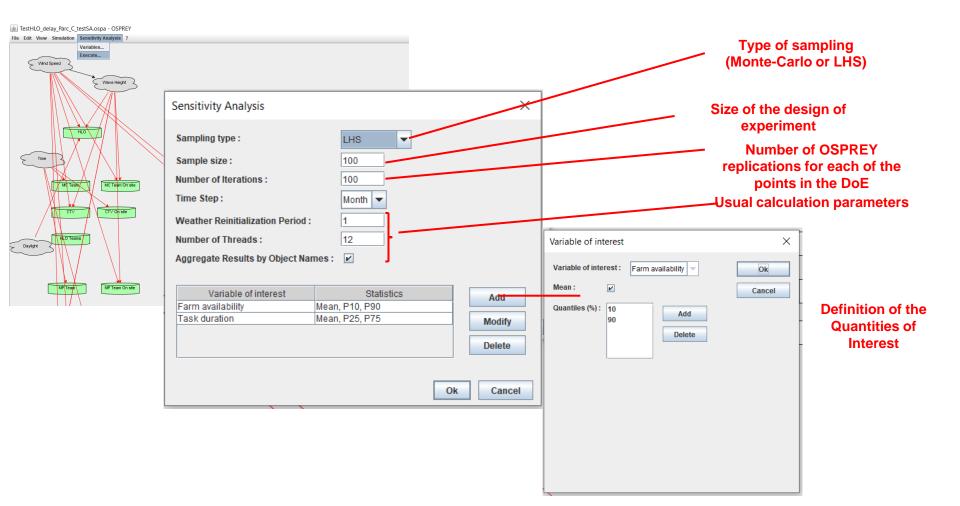
Osprey v6.0 Qol:


- Mean and quantiles of a farm availability
- Mean and quantiles of a task duration

Variables are the same available for variants generation in OSPREY previous version:

Variable Type	Parameters
Resource	Level All weather limits
Task	Duration All weather limits
Failure Mode (if not User Defined)	All parameters

GUI UNCERTAINTIES PARAMETERS



Variations of the variables are always differences with the nominal values

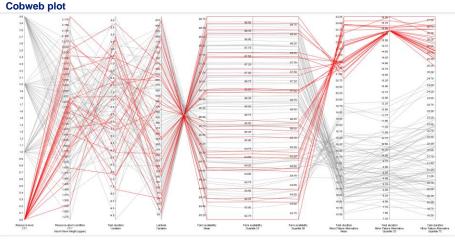
They can be defined in absolute values or percentage

GUI QUANTITIES OF INTEREST PARAMETERS

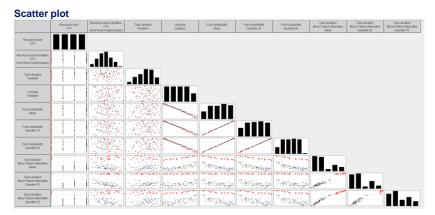
GUI SENSITIVITY ANALYSIS CALCULATIONS

Results of the calculations are saved in the OSPREY calculation log of the study file

Calculation Lo	ogs					×
Date	Туре	Name	Risk Results	Design of experiment	Iterations	View
16/11/2023 12:57	Sensitivity Analysis	TestAS		100 points (LHS)	100	
						Delete
						Delete all
						Close


Individual study files are created for each point of the DoE and stored in a directory with the same architecture than the variants generation feature

apier	5	Organi	ser	Nouveau	Ouvrin
e PC	>	Documents > Projets > OffShore > 0	OSPREY > TestAS > Tes	tAS	
	No	m ^	Modifié le	Туре	Taille
		TestHLO_delay_Parc_C_testSA_SA_1	09/11/2023 08:26	Dossier de fichiers	
		TestHLO_delay_Parc_C_testSA_SA_2	09/11/2023 10:05	Dossier de fichiers	
	3	TestHLO_delay_Parc_C_testSA_SA_3	09/11/2023 10:06	Dossier de fichiers	
	J.	TestHLO_delay_Parc_C_testSA_SA_4	09/11/2023 10:08	Dossier de fichiers	
		TestHLO_delay_Parc_C_testSA_SA_5	09/11/2023 10:09	Dossier de fichiers	
	1	TestHLO_delay_Parc_C_testSA_SA_6	09/11/2023 10:10	Dossier de fichiers	
	3	TestHLO_delay_Parc_C_testSA_SA_7	09/11/2023 10:12	Dossier de fichiers	
N.		TestHLO_delay_Parc_C_testSA_SA_8	09/11/2023 10:14	Dossier de fichiers	
	j,	TestHLO_delay_Parc_C_testSA_SA_9	09/11/2023 10:15	Dossier de fichiers	
	1	TestHLO_delay_Parc_C_testSA_SA_10	09/11/2023 10:17	Dossier de fichiers	
		TestHLO_delay_Parc_C_testSA_SA_11	09/11/2023 10:20	Dossier de fichiers	
	X	TestHLO_delay_Parc_C_testSA_SA_12	09/11/2023 10:21	Dossier de fichiers	
		TestHLO_delay_Parc_C_testSA_SA_13	09/11/2023 10:23	Dossier de fichiers	
	1	TestHLO_delay_Parc_C_testSA_SA_14	09/11/2023 10:24	Dossier de fichiers	
		TestHLO_delay_Parc_C_testSA_SA_15	09/11/2023 10:26	Dossier de fichiers	
		TestHLO_delay_Parc_C_testSA_SA_16	09/11/2023 10:28	Dossier de fichiers	
	3	TestHLO_delay_Parc_C_testSA_SA_17	09/11/2023 10:30	Dossier de fichiers	
	1	TestHLO_delay_Parc_C_testSA_SA_18	09/11/2023 10:31	Dossier de fichiers	
	1	TestHLO_delay_Parc_C_testSA_SA_19	09/11/2023 10:33	Dossier de fichiers	
	8	TestHLO_delay_Parc_C_testSA_SA_20	09/11/2023 10:34	Dossier de fichiers	



GRAPHICAL ANALYSIS

Once the variables and QoI are defined OSPREY runs the calculation and provides synthetic output to help users analyse the impact of uncertainties on key indicators of a model:

Possibility to select runs in a specific range of variables and/or quantities of interest values, appearing in red in the graphs

Correlation matrix

	Resource level CTV	Resource abort condition CTV Abort Wave Height (upper)	Task duration Variation	Lambda Variation	Farm availability Mean	Farm availability Quantile 10	Farm availability Quantile 90	Task duration Minor Failure Alternative Mean	Task duration Minor Failure Alternative Quantile 25	Task duration Minor Failure Alternative Quantile 75
Resource level CTV		-0.042	-0.031	-0.014	0.034	0.026	0.041	-0.499	-0.438	-0.504
Resource abort condition CTV Abort Wave Height (upper)	-0.042		-0.101	0.045	-0.019	-0.020	-0.023	-0.168	-0.335	-0.229
Task duration Variation	-0.031	-0.101		-0.091	0.082	0.083	0.084	0.073	0.160	0.098
Lambda Variation	-0.014	0.045	-0.091		-0.993	-0.994	-0.993	0.498	0.338	0.443
Farm availability Mean	0.034	-0.019	0.082	-0.993		1.000	1.000	-0.543	-0.400	-0.493
Farm availability Quantile 10	0.026	-0.020	0.083	-0.994	1.000		0.999	-0.537	-0.394	-0.487
Farm availability Quantile 90	0.041	-0.023	0.084	-0.993	1.000	0.999		-0.544	-0.400	-0.494
Task duration Minor Failure Alternative Mean	-0.499	-0.168	0.073	0.498	-0.543	-0.537	-0.544		0.933	0.984
Task duration Minor Failure Alternative Quantile 25	-0.438	-0.335	0.160	0.338	-0.400	-0.394	-0.400	0.933		0.944
Task duration Minor Failure Alternative Quantile 75	-0.504	-0.229	0.098	0.443	-0.493	-0.487	-0.494	0.984	0.944	

Needs

40

SENSITIVITY ANALYSIS

Need for sensitivity analysis indicators for discrete events models (HSIC has been implemented in a similar EDF tool, named VME)

Variables could be real, discrete or even "functional" (weather time-series)

Outputs are stochastic and potentially multimodal, sensitivity analysis could be done on the probabilistic distribution or on a given statistic (mean, quantile...)

Simulation times can be moderately high (up to a minute for a single replication of the Monte-Carlo algorithm)

Tackling the problem on a complete model could be a challenge, possibility to build a smaller dedicated model