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Introduction to code tuning

What is code tuning or calibration of computer model?

◮ Definition: The process of matching the computer model to the
observed data by adjusting the unknown constants (or parameters) in
the computer model.

◮ The unknown constants or parameters : Tuning parameters or
calibration parameters

◮ Statistically speaking, code tuning (or calibration) is a kind of
estimating the tuning parameters
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Introduction to code tuning

Example of code tuning

◮ Nuclear fusion experiments: tokamak

◮ A simple measure of energy efficiency in tokamak is the global energy
confinement time ω. The theoretical model :

ω = f ( τ , P , I , N, B) , (1)

where f is a known function calculated by a very complex simulation
code (called Baldur).

◮ τ = ( τ1 , τ2, τ3, τ4 ) are the unknown tuning parameters which
have physical meaning.

◮ Input Variables: P is the input total power, I is the plasma current, N
is the electron density, B is the magnetic field
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Introduction to code tuning

◮ Real experimental data: 42 observations from PDX tokamak

◮ The experimental data consisted of 4 input variables (P , I , N, B)
and the real observation ωE

◮ In computer code, we treat τ as input variables (T ). There are eight
independent variables (T , P , I , N, B) and computer response ωC .

◮ How can we estimate the tuning parameters?
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Introduction to code tuning

Nonlinear least squares method for code tuning

◮ τ is estimated by minimizing the residual sum of squares

RSS(τ ) =

nE∑

i=1

[ yE i − Y (τ , xE i )]
2, (2)

where yE i is an observed response (ωE ) from real experiments and
Y (τ , xE i ) is the corresponding theoretical value (ωC ) from Baldur

◮ Here, we assume the computer model is valid: no bias or inadequacy
problem in the computer code
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Introduction to code tuning

◮ We need to use a numerical optimization routine, because the
minimizer of RSS(τ ) is not analytically available

◮ Problem: Baldur simulator needs 5 cpu minutes on a Cray
supercomputer for one execution

◮ Computationally infeasible to minimize RSS(τ ) by using a numerical
optimization routine
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Some statistical methods for code tuning

One statistical tuning method

◮ Replace the computer code by a cheap metamodel or an emulator

◮ We use the Gaussian process (GP) model among many possible
choices

◮ Minimizing criterion

RSSP(τ ) =

nE∑

i=1

[ yE i − Ŷ (τ , xE i )]
2, (3)

where Ŷ (τ , xE i ) is the empirical BLUP of the true computer
response Y at (τ , xE i ): Kriging

◮ Computation of Ŷ is quick. It makes the problem feasible:
Approximate NLS method (ANLS)
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Some statistical methods for code tuning

References, for example

◮ Park (1991) Tuning Complex Computer Codes to Data..., Thesis

◮ Cox, Singer and Park (2001) Statistical method for tuning complex
computer code ..., Comp Stat & Data Anal

◮ Kennedy and O’Hagan (2001) Bayesian Calibration of Computer
models, JRSS-B

◮ Higdon, Kennedy, Cavendish et al (2004). Combining field data and
computer simulations for calibration ... SIAM J Sci Comput
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Some statistical methods for code tuning

References, for example

◮ Loeppky, Bingham, Welch (2006) Computer Model Calibration or
Tuning in Practice. Tech Report, Univ of British Columbia

◮ Han, Santner, Rawlinson (2009). Simultaneous determination of
tuning and calibration parameters .... Technometrics

◮ Kumar (2015) Sequential tuning of complex computer models. J Stat
Comp Sim

◮ Many references .....
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Some statistical methods for code tuning

GP metamodel

◮ Modeling:

y(x) =
d∑

j=1

βj fj(x) + Z (x) + e, (4)

where f ’s are known functions and β’s are regression coefficients.

◮ Z (.) is assumed to be a Gaussian process with mean zero and
covariance between Z (t) and Z (u),

V (t, u) = σ2Z R(t, u)

where σ2Z is the process variance, R(t, u) is the correlation function.

◮ e is assumed to be normaly distributed N(0, σ2e ). When the response
of a computer code is deterministic, we do not include the e term in
model (4).
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Some statistical methods for code tuning

◮ The covariance function we have used is from the power exponential
family, among many possible choices

R(t, u) = exp [−

d∑

i=1

θi | ti − ui |
2], θi ≥ 0 (5)

◮ GP parameters: ψ = (β, θ, σ2Z , γe), where γe = σ2e/σ
2
Z
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Some statistical methods for code tuning

MLE for GP parameter estimation

◮ Maximizing the likelihood function wrt ψ

L(y ;ψ, x) =
(2πσ2Z )

−n/2

√
| V |

exp

(
−
(y − Fβ)tV−1(y − Fβ)

2 σ2Z

)
(6)

where F is a design matrix.

◮ The MLE of σ2 and β are given by

β̂ = (F tV−1F )−1F tV−1y , σ̂2Z =
1

n
(y−F β̂)tV−1(y−F β̂), (7)

◮ Negative log likelihood is proportional to

λ(ψ) = n log σ̂2Z + log | V |
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Some statistical methods for code tuning

MLE for GP parameter estimation

◮ Since the likelihood equations do not lead to a closed form solution, a
numerical optimization procedure is required.

◮ One can use a R-package ”DiceKriging” provided by Roustant,
Ginsbourger, Deville (2012) J. Stat. Software
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Some statistical methods for code tuning

Notations: There are two data sets

◮ E-data: real Experimental data, nE , XE (τ ), FE , yE , βE
◮ C-data: Computer experimental data, nC , XC (T ), FC , yC , βC
◮ B-data: Both of (combined) E-data and C-data, nB = nE + nC

◮ Tuning parameters : τ

◮ GP parameters : ψ : ψE , ψC
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Some statistical methods for code tuning

Bayesian code tuning using GP model

◮ Kennedy and O’Hagan (2001) considered the posterior distribution of
(τ , ψ1) given data and ψ̂2. Prior information on (τ , ψ1) are used.

◮ They considered the inadequacy term c2 of the computer model,
which was estimated by using E-data.

◮ They used the MLE to estimate some GP parameters (ψ2) by using
C-data

◮ Numerical integration was used

◮ Advantage: It takes account of the uncertainty of prediction (Ŷ ), and
model inadequacy correction was applied. This method worked better
than the ANLS for their one example.
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Some statistical methods for code tuning

Other Bayesian approaches

◮ For example, Higdon, Kennedy, Cavendish et al (2004) used full
Bayesian modeling and MCMC for code tuning

◮ Bayarri, Berger, Paulo, Sacks et al.(2007) used full Bayesian approach
and MCMC for validating computer model, but is similar to Bayesian
calibration

◮ Goldstein and Rougier (2007) used Bayes linear modeling for code
tuning
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Some statistical methods for code tuning

Separation of tuning and calibration parameters

◮ Han, Santner and Rawlinson (2009) defined:

◮ Tuning parameters: have no meaning in the physical experiments but
needed to control the solution of numerical algorithm in the computer
code. For example, the amount of discretization in the curve used to
describe some phenomenon in the model

◮ Calibration parameters: have meaning in the physical experiments,
but their values are either unknown or unmeasured during the running
of the physical experiments, For example, the parameters in nuclear
fusion model.
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Some statistical methods for code tuning

Separation of tuning and calibration parameters

◮ They proposed a method of simultaneously determining both
parameters. Basically, they estimated the tuning parameters using a
kind of the ANLS, and estimated the calibration parameters using a
Bayesian approach and MCMC

◮ In this presentation, I use the term “tuning parameter” only: no
separation yet
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Some statistical methods for code tuning

Likelihood-based approaches for code tuning

◮ Since the GP model is assumed to the E-data as well as the C-data

◮ Cox, Singer and Park (2001) considered the likelihood function of
(τ , ψ) for the B-data (combined data)

◮ Full MLE: The method maximizes the Full likelihood wrt all
parameters (τ , ψ)

◮ They estimated (τ , ψ) simultaneously using the B-data
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Some statistical methods for code tuning

Full likelihood function

◮ Negative Full log likelihood is proportional to

λB(τ , ψ) = nB log σ̂2B + log | VB |

where
1

σ2Z
VB =

[
RCC RCE

REC REE

]
+

[
γC I 0
0 γE I

]
, (8)

◮

σ̂2B =
1

nB
(yB − FB β̂B)

tVB
−1(yB − FB β̂B), (9)

◮ Note that FE in FB , REC ,REE are function of τ

◮ It fails to decouple the tuning parameters and the GP parameters
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Some statistical methods for code tuning

Conditional likelihood approach

◮ Cox, Singer and Park (2001) proposed another one

◮ Maximizing the Conditional likelihood of (τ , ψE ) for E-data given
that C-data and ψ̂C .

◮ Conditional distribution of yE given yC is a normal with mean and
covariance

µE |C = FEβE + V t
CEV

−1
CC (yC − FCβC )

VE |C = VEE − V t
CEV

−1
CC VCE
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Some statistical methods for code tuning

Conditional likelihood approach

◮ Negative conditional likelihood is proportional to

λE |C (τ , ψE | ψ̂C ) = nE log σ̂2E |C + log | VE |C |

where σ̂2E |C = 1
nE
(yE − µE |C )

tVE |C
−1(yE − µE |C )

◮ Names of two versions: SMLE and PMLE, according to how to
estimate ψE

◮ Based on the toy-model study, they suggested to use PMLE

◮ Advantage: It decouples two parameters. Statistical inference based
on the likelihood such as confidence region of τ and testing
hypothesis on τ are available after code tuning
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Some statistical methods for code tuning

Maximum a posterior approach

◮ If there are some prior information on τ , the objective function for
maximization is changed to

Likelihood × p(τ )

◮ One may take two stages:

1. Estimates ψ from the C-data only by MLE without considering the
prior information on τ

2. Plug the MLE into the posterior, that is, the objective function is

Likelihood(τ , ψE |ψ̂C )× p(τ )
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Some statistical methods for code tuning

Discussion: Issues on Code tuning

◮ Design issue: A careful selection of input points is required, which is a
statistical design problem for tuning a complex simulation code

◮ Good Latin-hypercube designs are usually used

◮ Data-adaptive Sequential (optimal) design strategy might be useful,
specially in practice: After estimating the tuning parameters, use the
information to construct an efficient design for the next stage
computer experiments and code tuning
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Some statistical methods for code tuning

Discussion: Model selection issue

◮ A good representative metamodel among many GP models should be
selected: see Marrel et al (2007) for a systematic way of selecting a
GP model

◮ In my study, two models were considered:

◮ Model 1: y(x) = β0 + β1x1 + ... + βdxd + Z (x), with one
common θ in the covariance function

◮ Model 2: Same as Model 1 but with different θ’s
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Some statistical methods for code tuning
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Iteratively re-estimation approaches

Generalized ANLS

◮ Lee and Park (2014) considered some generalized ANLS methods:

◮ Minimizing

GRSSp(τ ) = [ yE − Ŷ (τ , xE )]
tW−1[ yE − Ŷ (τ , xE )]

wrt τ , where W is the covariance matrix of residual vector

◮ A special case is minimizing

WRSSp(τ ) =

nE∑

i=1

wi [ yE i − Ŷ (τ , xE i )]
2

where wi are weights.

◮ These criterion may be useful when the residuals have some patterns
like correlated or non-constant variance
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Iteratively re-estimation approaches

Iteratively re-estimation algorithm

◮ In WRSSp, one can get the weights wi by using an iteratively
re-weighted method as sometimes done in regression analysis

◮ Our idea of Iteratively re-estimation algorithm was inspired by this
iteratively re-weighted LS algorithm

◮ Two methods we recently proposed are : Iteratively re-estimated
ANLS, and EM algorithm
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Iteratively re-estimation approaches

Iteratively re-estimated ANLS

◮ Step 1: It starts with ANLS, and get τ̂

◮ Step 2 (maximization): Then find the MLE of GP parameters using
the B-data in which τ̂ were plugged into the E-data

◮ Step 3 (minimization): Using the new GP parameter estimates,
minimize RSSp to get a new τ̂ .

◮ Do this iterations (Step 2 and 3) until convergence.
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Iteratively re-estimation approaches

Iteratively re-estimated ANLS

◮ The key point is that we estimate GP parameters in Step 2 using the
B-data

◮ The likelihood is similar to the Full likelihood but τ̂ is given

λ(ψB ; yB ,XB |τ̂ )

◮ We also use the B-data for prediction in computing RSSp in Step 3

RSSp(τ ) = [ yE − ŶB(τ , xE )]
t [ yE − ŶB(τ , xE )]

where ŶB(w0) = f t0 β̂B + r t0B V̂−1
B (y

B
− FB β̂B) where w0 = (τ , xE ).

◮ One can use the E-data only for this prediction
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Iteratively re-estimation approaches

Iteratively re-estimated ANLS

◮ Advantage: Uses more data than ANLS, takes account of correlation
between E-data and C-data, and updates the estimates of the GP and
tuning parameters

◮ We gave a new name: Min-Max algorithm because it uses
minimization and maximization iteratively (and, because IRANLS is
too long and hard to pronounce)
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Iteratively re-estimation approaches

another iterative algorithm

Expectation-Maximization (EM) algorithm:

◮ E-Step: Set τ̂ be the conditional expectation of τ given the MLE of
the GP parameters and the B-data (= expectation of the posterior of
τ given the MLE (ψ̂) and the B-data)

◮ M-Step: Maximize likelihood of the GP parameters ψ from the
B-data with the E-data in which τ̂ are plugged-in (same as the Step 2
in Min-max algorithm)

◮ Iterate E and M steps until convergence
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Iteratively re-estimation approaches

EM algorithm for code tuning

◮ Formula for the conditional expectation of τ in E-Step on k-th
iteration

E (τ |y
B
; xB , ψ̂

(k)) =

∫
τ

A p(τ ; xB , ψ̂
(k))∫

A p(τ ; xB , ψ̂
(k)) dτ

dτ

= τ (k+1) (10)

Here A = f (y
B
|τ ; xB , ψ̂

(k)) = pdf of MN(FB β̂
(k), σ̂2(k)VB

(k)),

p(τ ; xB , ψ̂
(k)) = U(a, b) , ψ(k) = (θ(k), β(k), σ2(k), γ

2(k)
E )

◮ Note that FB and VB are functions of τ .

◮ A numerical integration method by Genz and Malik (1980) in R
package ”cubature” (Steven; 2009) was used.

◮ Prior information on τ is easily incoperated
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Iteratively re-estimation approaches
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Convergence of Min−Max Algorithm

Figure: Convergence of Min-Max algorithm based on 10 trials for test function 1
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Iteratively re-estimation approaches

Convergence of EM algorithm

Based on 10 trials for test function 1
EM algorithm stops at
Q1: 6 iterations
Median: 10 iterations
Q3: 28 iterations
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Iteratively re-estimation approaches

Uncertainty of the estimates of tuning parameters

◮ To get the standard error of τ , one can appeal to the usual
(increasing domain) asymptotic normality of the MLE. We can use
the inverse of the observed Fisher information matrix (FIM) for the
negative ”unconcentrated” log-likelihood function at τ̂ .

◮ For the approximate 100(1− α)% confidence region of τ ,

{τ : (τ − τ̂ )tH−1
(τ̂ )(τ − τ̂ ) ≤ χk

2(1− α)}, (11)

where H(τ̂ ) is the principal major (corresponding to τ̂ ) of the inverse
of the FIM at τ = τ̂ (k is the number of parameters in τ ).
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Iteratively re-estimation approaches

Uncertainty of the estimates of tuning parameters

◮ When using the ANLS method, we rely on the asymptotic theory for
nonlinear least squares estimator (Draper and Smith, 1980). The
approximate 100(1− α)% confidence region of τ is obtained by

{τ : RSSP(τ ) ≤ RSSP(τ̂ )[1 +
k

nE − k
Fα(k , nE − k)]}, (12)

◮ For any tuning methods, One can use a resampling technique such as
a parametric bootstrap, by using random sampling from the GP
models

J.S. Park (Chonnam Natl Univ, Korea) Algorithms for Code Tuning April 9, 2015 38 / 55



Iteratively re-estimation approaches

A classification of code tuning algorithms

Method τ estimation Model building Outer iteration

NLS NLS(E) Sim Code 1
ANLS ANLS(E) MLE(C) 1
FMLE MLE(C, E) 1
SMLE MLE(E|C) MLE(C) 1
EM Cond Expect(C, E) MLE(C, E) several times

KOH BC Cond Expect(E) MLE(C) 1
Min-Max ANLS(C, E) MLE(C, E) several times

EM algorithm here can be viewed as an iteratively re-estimated version of
KOH BC.
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Iteratively re-estimation approaches

Toy model study

Test functions to compare the performance of methods

◮ 5 test functions are tried

◮ One example: test function 1

Y (τ, x) = τ1 exp(τ2 + x1) + τ1x
2
2 − τ2x

2
3 (13)

yE = Y (τ, x) + e, nE = nC = 30
E-Data: τ1 = 2, τ2 = 2, x1 ∼ U(−3, 3), x2 ∼ U(−3, 3),

x3 ∼ U(0, 6), e ∼ N(0, 1)
C-Data: T1 ∼ U(0, 5),T2 ∼ U(0, 4), x1, x2, x3: same as E-Data

◮ Other 4 test functions are omitted

◮ For each test function, 30 Latin-hypercube designs were tried to get
30 estimates so that we can check the variations of the methods
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Iteratively re-estimation approaches

MSE comparison from 5 test functions

Table: MSE of tuning methods for 5 test functions

method Test1 Test2 Test3 Test4 Test5

ANLSE 1 0.381 0.615 1.866 2.460 0.222
ANLSE 2 0.746 0.606 3.591 2.721 0.208
SMLE 1 0.349 0.528 2.291 2.453 0.190
SMLE 2 0.733 0.781 4.191 4.154 0.447
EM 1 0.163 0.235 1.060 0.707 0.065
EM 2 0.152 0.267 1.014 0.952 0.057

Min-max1 0.211 0.577 1.591 1.818 0.265
Min-max2 1.005 0.493 3.013 2.280 0.190
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Iteratively re-estimation approaches

Figure: Box plot of distance to the true value in test function 1.
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Iteratively re-estimation approaches

Figure: Box plot of distance to the true value in test function 2.
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Iteratively re-estimation approaches

Figure: Box plot of distance to the true value in test function 3.
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Iteratively re-estimation approaches

Figure: Box plot of distance to the true value in test function 4.
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Iteratively re-estimation approaches

Figure: Box plot of distance to the true value in test function 5.
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Iteratively re-estimation approaches

Result of the test function study

◮ EM algorithm works better than other methods

◮ Min-max works better than ANLS

◮ Why EM algorithm works better than others, specially than the
Min-max?

◮ My answer: 1. EM uses the combined data, and iteratively updates
the GP and tuning parameters.
2. Numerical integration in computing the conditional expectation
may be more stable than the numerical minimization routine in least
squares method
3. what else? EM algorithm here is viewed as an iteratively
re-estimated version of KOH BC

J.S. Park (Chonnam Natl Univ, Korea) Algorithms for Code Tuning April 9, 2015 47 / 55



Iteratively re-estimation approaches

Computing time for tuning methods

Table: Averaged computing time in second for tuning methods, for nE = nC = 30,
(from 30 trials for each test function)

(unit: sec)

function No. of τ No. of X ANLS SMLE Min-max EM

Test 2 3 4 149 150 661 471
Test 4 4 6 185 295 1207 1300
Test 5 2 6 23 117 435 320
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Iteratively re-estimation approaches

Discussion: Limitation and future study

◮ We had a limitation of extending our test function study to higher
dimensional τ , because of heavy computing time in Min-max and EM
algorithm

◮ Numerical integration for more than 5 (or 10) dimensions in EM
algorithm may not be practical. Monte Carlo approach may be useful.

◮ We may need to study more in quantifying the uncertainty of the
estimates of tuning parameters which take account of the uncertainty
of the estimated GP models
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Iteratively re-estimation approaches

Discussion: Limitation and future study

◮ Some tuning methods are heavily dependent on the performance of
numerical optimization algorithm. We need better practice in using
the optimization routine.

◮ Performance study of the code tuning methods is very dependent on
the form of test functions. The building of a test bed (a set of test
functions) for code tuning purpose is demanded for future research
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Iteratively re-estimation approaches

Discussion: future study

Iteratively re-estimated version of the conditional MLE is possible:

◮ Step 1: Get τ̂ by maximizing the Cond Likelihood of τ on the E-data
given (yC , ψ̂C )

◮ Step 2: (maximization) Get ψ̂B from the B-data in which τ̂ are
plugged-in the E-data

◮ Step 3: (maximization) Get τ̂ by maximizing the Cond Likelihood of
τ on the E-data given (yC , ψ̂B)

◮ Iterate Step 2 and 3 until convergence: “Max-Max algorithm”
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Iteratively re-estimation approaches

Discussion: future study

I think that KOH BC may be extended to an iteratively re-estimated
version in a different way, or similar way, to ours.
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Iteratively re-estimation approaches

Discussion: future study

◮ Sequential (optimal) designs for efficient code tuning is important and
be a topic of future study

◮ Stage 1: Good design, computer experiments, model building and
code tuning

◮ Stage 2: Using the information in Stage 1, construct a good updating
design which may minimizes the uncertainty of τ . For example, find a
design that minimizes the entropy of τ given (D1, τ̂ 1). The design
region is reduced by knowing τ̂ .

◮ Stage 3: Continue until stopping rule is satisfied. The Max MSEP
can be used for the Stopping rule.
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Summary

◮ Algorithms for code tuning methods are briefly reviewed

◮ Iteratively re-estimated algorithms are considered

◮ EM algorithm turns out to be the best in toy model study

◮ Statistical issues for code tuning are discussed
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Thank You
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