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Synopsis
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formalization of the issues at stake
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Part II ◮ Introduction to structural reliability
◮ Elicitation of probability distributions

Part III ◮ Advanced Monte Carlo methods

Part IV ◮ Sequential strategies
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Introduction

1. Introduction

Modeling extreme events from computer simulations:
formalization of the issues at stake
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Introduction Computer experiments in engineering

1.1 Context overview: computer experiments in engineering
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Model implemented under the form of a computer program (e.g., a finite element model).
A single run of the program may be time- and resource-consuming.
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Introduction Computer experiments in engineering

Example 1/2 – Risk analysis
◮ Computer simulations to assess the probability of undesirable events
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◮ A serious accident: loss of coolant in a pressurized
water nuclear reactor

◮ Under these conditions, temperature of fuel rods
can be described by ∼ 50 dimensioning factors,
which are not known accurately

◮ Peak temperature can be estimated using complex
and time-consuming simulations

◮ f : X → R peak temp. as a function of the factors

◮ Objective: estimate a probability of exceeding a
critical value

α = PX{f ≥ u}

or a quantile

qγ = inf{u ∈ R; PX{f ≤ u} ≥ γ}

or a worst-case

M = sup
x∈X

f (x)
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Introduction Computer experiments in engineering

Example 2/2 – Design optimization

◮ Computer simulations to design a product or a process, in particular

◮ to find the best feasible values for design parameters (optimization problem)
◮ to minimize the probability of failure of a product

◮ To comply with European emissions
standards, the design parameters of
combustion engines have to be carefully
optimized

◮ The shape of intake ports controls airflow
characteristics, which have direct impact on

◮ the performances of the engine
◮ emissions of NOx and CO

◮ f : X ⊂ R
d → R performance as a function

of design parameters (d = 20 ∼ 100)

◮ Computing f (x) takes 5 ∼ 20 hours

◮ Objective: estimate x⋆ = argmaxx f (x), or
x⋆ = argmaxx f (x) subject to
P{pollutant emissions ≤ threshold} > γ

Simulation of an intake port (Navier-Stokes equations)
(courtesy of Renault)
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Introduction Computer experiments in engineering

Uses of computer models in engineering

◮ X ⊆ R
d : input domain of the system, or factor (from Latin, “which acts”) space

◮ f : X → R: a performance or cost function (function of the outputs of the system)
◮ Main classes of problems

1. Optimization of the performances of a system, cost minimization...

x
⋆
= argmax

x∈X

f (x)

2. In presence of uncertain factors: minimize a probability of failure, i.e.,

X = X0 × X1

x
⋆
0 = argmin

x0∈X0

α(x0)

α(x0) := PX1
{x1 ∈ X1 : f (x0, x1) > u}

where PX1
is some probability distribution on (X1,B(X1))

3. Performance assessment: estimation of a quantile

qγ(x0) = inf{u ∈ R; PX1
{x1 ∈ X1 : f (x0, x1) ≤ u} ≥ γ}

(This is a simplified view. Most real problems have several performance functions, and mix
different objectives.)
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Introduction Computer experiments in engineering

Distinct properties of computer experiments

◮ The performance/cost function f : X ⊆ R
d → R is only known through pointwise evaluations

◮ Most often, an evaluation of f is a deterministic experiment → one computer experiment
consists in

◮ choosing an x ∈ X

◮ running one or several deterministic computer programs to obtain the value f (x)

◮ Stochastic computer programs can also be used (noisy evaluations)

◮ In rare cases, ∇f may also be known

◮ The factor space X may be high-dimensional (typically 10 ∼ 100)

◮ Evaluation of f may be expensive (e.g., several hours) ➟ budget of experiments is limited
(typically < 1000)

◮ f may have several local optima

◮ Some factors may have little influence

◮ f is smooth (a small number of localized discontinuities possible)

◮ Experts can provide a rough approximation of f (prior knowledge may be available)
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Introduction Probability of failure, quantiles: basic concepts

1.2 Probability of failure, quantiles: basic concepts

❑ Assume given

◮ a domain X ⊆ R
d (a factor space)

◮ a function f : X → R (a loss function)
◮ a distribution PX on X (PX models our uncertainty about the value of the factors)
◮ a threshold u ∈ R (a critical value for the loss)

❑ The probability of failure of a system is the number

αu(f ) = PX{x ∈ X : f (x) > u}
= PX{f > u}

=

∫

X

1f>udPX

= E(1f>u)

❑ To simplify our notations: α = α(f ) = αu(f )
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Introduction Probability of failure, quantiles: basic concepts

◮ α(f ) is the volume of the excursion set Γ = {x ∈ X; f (x) > u} of f above the threshold u

◮ 1D illustration

◮ If u is high, α is small
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Introduction Probability of failure, quantiles: basic concepts

Quantile
◮ Let (Ω,B,P) be a probability space, and consider the real-valued random variable Y = f (X ).

The quantile q1−α of Y is the number

q1−α = inf{u ∈ R; P{Y ≤ u} ≥ 1− α}
= inf{u ∈ R;FY (u) ≥ 1− α}

◮ q1−α can be expressed directly in terms of PX

q1−α(f ) = inf{u ∈ R; PX{x ∈ X : f (x) ≤ u} ≥ 1− α}
= inf{u ∈ R; αu(f ) ≤ α}

◮ How to compute a quantile? ➟ finding the largest threshold u such that the probability of
failure αu(f ) is smaller than α, is an optimization problem

◮ Computing a quantile might be more difficult than computing a probability of failure
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Introduction What makes computing a probability of failure difficult

1.3 How to compute a probability of failure?

❑ The computation of α =
∫
X
1f>udPX is a multidimensional integration problem

❑ f does not have a closed-form expression ➟ the objective is to obtain a numerical
approximation of α(f )

❑ Given φ : X → R ∈ L1(X,PX), how to obtain a numerical approximation of an integral

φ̄ =

∫

X

φdPX?

❑ Any numerical approximation of φ̄ will be constructed from a set of numerical evaluations
of φ

◮ Choose x1, x2, . . . , xn ∈ X → get φ(x1), φ(x2), . . . φ(xn) ∈ R

◮ Compute an approximation of φ̄ as a function of the evaluation results:

φ̄n = h(x1, φ(x1), . . . , xn, φ(xn))
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Introduction What makes computing a probability of failure difficult

❑ What makes the problem of computing α difficult?

◮ The case of a probability of failure corresponds to φ = 1f>u ∈ {0, 1}
◮ Whatever the integration technique, the difficulty is to choose evaluation points

x1, . . . , xn in such a way that there is at least some points xi for which φ(xi ) = 1 (why?)

◮ In practice, the volume of excursion α(f ) = |Γ| is small, e.g. α(f ) < 10−4

◮ Γ small, unknown set ➟ a large number of function evaluations may be needed before
finding at least one point in Γ

◮ If f is expensive to evaluate ➟ getting an approximation of α(f ) ≈ 10−3 is already a
challenging problem
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Monte Carlo estimation of a probability of failure

2. Estimating a probability of failure by Monte Carlo
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Monte Carlo estimation of a probability of failure Importance sampling

2.1 Monte Carlo integration with importance sampling

❑ Assume that PX has a density p with respect to the Lebesgue measure λ.

❑ Let φ ∈ L1(X,PX)

❑ Let QX be another probability distribution on X, with density q with respect to λ, and
assume that supp q ⊃ supp p

Proposition

Let X1, . . . ,Xn
i.i.d∼ QX be a random sample of size n ≥ 1.

Then

φ̄n =
1

n

n∑

i=1

φ(Xi )
p(Xi )

q(Xi )
,

is an unbiased estimator of φ̄. Moreover,

var φ̄n = O(n−1)

(does not depend on d)

❑ φ̄n is a weighted average (with weights
p(Xi )
q(Xi )

)

❑ NB: QX is called an instrumental distribution
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Monte Carlo estimation of a probability of failure Importance sampling

Proof:
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Monte Carlo estimation of a probability of failure Importance sampling

Application to the estimation of a probability of failure

◮ Set QX = PX

◮ Let X1,X2, . . . ,Xn
i.i.d∼ PX

◮ Then

αn =
1

n

n∑

i=1

1f (Xi )>u =
#{Xi ; f (Xi ) > u}

n

is an unbiased estimator of α.

◮ In practice:

1. Generate points x1, x2, . . . , xn from PX

2. Evaluate f at x1, x2, . . . (may be resource- and time-consuming)

3. Count the number of xi s such that f (xi ) > u and divide by n to get an estimate of α.
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Monte Carlo estimation of a probability of failure Importance sampling

Example: MC estimation of α = 10−3
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Monte Carlo estimation of a probability of failure Importance sampling

Example: MC estimation of α = 10−3
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Monte Carlo estimation of a probability of failure Importance sampling

Example: MC estimation of α = 10−3
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Monte Carlo estimation of a probability of failure Importance sampling

How many function evaluations are needed in practice?

◮ Consider the MC estimator of α:

αn =
1

n

n∑

i=1

1f (Xi )>u)

◮ The random variable Zi = 1f (Xi )>u has distribution Bernoulli(α), that is,

Zi =

{
0 with probability 1− α

1 ” ” α

◮ Thus, nαn ∼ Binomial(n, α) =⇒ the variance of nαn is nα(1− α)

◮ Thus

varαn =
α(1− α)

n
≈ α

n
for α small enough
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Monte Carlo estimation of a probability of failure Coefficient of variation

❑ Define a notion of coefficient of variation δ as

δ =
stdαn

E(αn)

❑ To achieve a given standard deviation δα thus requires approximately 1/(δ2α) evaluations

❑ Examples:

◮ Suppose α = 2× 10−3 and δ = 0.1: we need n = 50000 evaluations.
If one evaluation of f takes, say, one minute, then the entire estimation procedure will
take about 35 days to complete!

◮ Suppose α = 10−5 and δ = 0.1: we need n = 107 evaluations.
If one evaluation of f takes, say, one second, then the entire estimation procedure will
take about 115 days to complete!

❑ When α is small, the computational cost of a MC estimation can be prohibitively high!
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Monte Carlo estimation of a probability of failure Optimal instrumental distribution

◮ Of course, we have chosen QX = PX, and we can ask the question: what can be expected if
one chooses the optimal instrumental distribution, that is, the distribution that will minimize
varαn

◮ What is the optimal instrumental distribution?

Proposition
The variance of the estimator

φ̄n =
1

n
φ(Xi )

p(Xi )

q(Xi )

is minimum for q = q⋆, with q⋆ such that

q⋆(x) =
|φ(x)|p(x)∫

X
|φ(y)|p(y)dy
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Monte Carlo estimation of a probability of failure Optimal instrumental distribution

Proof:
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Monte Carlo estimation of a probability of failure Optimal instrumental distribution

◮ In the case of the estimation of a probability of failure, this gives

q⋆(x) =
p(x) · 1f (x)>u

α

◮ NB: the normalizing constant of q⋆ is what we want to estimate ➟ this may not be a
problem in practice (there exist sampling techniques that do not require to know the
normalizing constant)

◮ The difficult part of the problem: supp q⋆ ⊂ Γ, which is unknown and maybe small
=⇒ sampling from q⋆ can be a very difficult task

❑ Tentative conclusion:

◮ MC techniques to estimate a probability of failure are straightforward to implement but
are generally very expensive whenever α is small

◮ (We shall see later that there do exist MC techniques that can still be considered, even
if α is small)
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Introduction to extreme value theory

3. Introduction to extreme value theory
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Introduction to extreme value theory Estimation of the tail of a distribution

The problem of estimation of a probability of failure revisited

◮ Let X ∼ PX and Z = f (X ).

◮ We have
αu(f ) = PX{x ∈ X; f (x) > u} = 1− FZ (u)

with FZ the cdf of Z .

◮ We might want to find an approximation F̂Z of FZ , and use the plug-in estimator

α̂ = 1− F̂Z (u)

◮ However, since α is small, we are only interested in constructing an approximation of
u 7→ FZ (u) for high values of u, that is, when FZ (u) ≈ 1

◮ The idea is to construct an approximation of the tail of the distribution of Z
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Introduction to extreme value theory Estimation of the tail of a distribution

Example: X ∼ LN(1, 1/2)
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Introduction to extreme value theory Estimation of the tail of a distribution
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Introduction to extreme value theory Estimation of the tail of a distribution

Example: X ∼ LN(1, 1/2)
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Introduction to extreme value theory Estimation of the tail of a distribution

Example: X ∼ LN(1, 1/2)
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Introduction to extreme value theory Estimation of the tail of a distribution
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Introduction to extreme value theory Estimation of the tail of a distribution

Modeling the tail of a distribution from experimental data

❑ How to construct a model of the tail of the distribution of a real-valued random variable?
➟ Extreme Value Theory (EVT)

❑ EVT was formulated initially by Gumbel in the 50’s

❑ EVT is a well-established branch in statistical modeling

❑ Applied to many fields

◮ hydrology (Coles and Tawn 1996),
◮ oceanography (Dawson 2000),
◮ climatology (Carter and Chalenor 1981),
◮ finance, insurance (Embrechts, Kluppelberg and Mikosch 1997)
◮ . . .

❑ General texts on the subject include (Resnick 1987), (Embrechts, Kluppelberg and Mikosch
1997), (Kotz and Nadarajah 2000), (Reiss and Thomas 2001), and (S. Coles 2001)
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Introduction to extreme value theory Fundamentals of EVT

Fundamentals of EVT

❑ Let X ,X1,X2, . . . be a sequence of i.i.d random variables from a distribution F

❑ Two main results:

◮ Limit laws for maxima: for a large class of distributions F , the maximum

Mn = maxX1, . . . ,Xn

converges, after proper renormalization, to a non-degenerate parametrized distribution
called the Generalized Extreme Value distribution (Fisher–Tippett theorem)

◮ Limit laws for excesses over a high threshold: for a large class of distributions F , the
distribution of

X − u | X > u

can be approximated, for u large enough, by a parametrized distribution called the
Generalized Pareto Distribution (Pickands–Balkema–de Hann theorem)

❑ The Fisher-Tippett theorem is the fundamental result of EVT, and can be considered as
having the same status in EVT as the central limit theorem in the study of random sums

❑ Here, in the context of the estimation of a probability of failure, we are interested in the
second result, which makes it possible to fitting a model to excesses over a threshold
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Introduction to extreme value theory Fundamentals of EVT

Excess distribution function, mean excess function

◮ Excesses over thresholds play a fundamental role in EVT

Definition
Let X be a rv with cdf F and right endpoint xF .
For u < xF ,

Fu : x ∈ R+ 7→ P(X − u ≤ x | X > u) ,

is called the excess cdf of X over the threshold u.

Definition
The function

e : u 7→ E[X − u | X > u]

is called the mean excess function of X
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Introduction to extreme value theory Fundamentals of EVT

Example: calculation of a mean excess function

◮ Let X ∼ Exp(1)

◮ Excess cdf, u > 0, x ≥ 0,

Fu(x) = P(X − u ≤ x | X > u) =
P(u < X ≤ u + x)

P(X > u)

=
exp(−u)− exp(−u − x))

exp(−u)
= 1− exp(−x)

(does not depend on u ➟ memorylessness property)

◮ Mean excess function, u > 0,

e(u) = E[X − u | X > u]

=

∫
(x − u)dPX |X>u(x) =

∫
xdPX−u|X>u(x)

=

∫
xFu

′(x)dx = 1
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Introduction to extreme value theory Fundamentals of EVT

The Generalized Pareto Distribution

❑ The cdf of the GPD with shape parameter ξ ∈ R, location parameter µ ∈ R and
scale parameter σ > 0, is defined as

Gξ,µ,σ(x) =






1−
(
1 + ξ

x − µ

σ

)− 1
ξ
, ξ 6= 0

1− exp
(
− x − µ

σ

)
, ξ = 0

❑ For ξ ≥ 0, the support of Gξ,µ,σ is µ ≤ x < ∞
❑ For ξ < 0, the support of Gξ,µ,σ is [0, xF ], with xF = µ− σ/ξ

❑ The GPD corresponds to the Pareto distribution for ξ > 0

❑ The probability density function is

gξ,µ,σ(x) =






1

σ

(
1 + ξ

x − µ

σ

)− 1
ξ
−1

, ξ 6= 0

1

σ
exp

(
− x − µ

σ

)
ξ = 0

❑ The quantile function is

q1−α =





µ− σ

ξ

(
1− α−ξ

)
ξ 6= 0

µ− σ logα ξ = 0
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Introduction to extreme value theory Fundamentals of EVT

The two-parameter GPD

❑ In what follows, we will also consider the two-parameter GPD Gξ,σ : = Gξ,0,σ

❑ Let X ∼ Gξ,σ

For ξ < 1, X ∈ L1

E[X ] =
σ

1− ξ

For ξ < 1/2, X ∈ L2

var[X ] =
σ2

(1− ξ)2(1− 2ξ)

❑ ξ high ➟ heavy tail

❑ ξ low/negative ➟ light tail
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Introduction to extreme value theory Fundamentals of EVT

GPD for different shape parameters ξ and σ = 1
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Introduction to extreme value theory Fundamentals of EVT

Densities of the GPD for different shape parameters ξ and σ = 1
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Introduction to extreme value theory Fundamentals of EVT

Densities of the GPD for different shape parameters ξ < 0 and σ = 1
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Introduction to extreme value theory Fundamentals of EVT

Properties of the GPD

❑ Log-transform:
Let X ∼ GPD(ξ, σ), then

Y =
1

ξ
log
(
1 +

ξ

σ
X
)

has a standard exponential distribution

❑ Stability with respect to excess-over-threshold operations

X ∼ GPD(ξ, σ) =⇒ Y = X − u | X > u ∼ GPD(ξ, σ + ξu)

It is important to notice that the operation does not affect the shape parameter; it only
alters the scale parameter of the distribution.

❑ the mean-excess function of the GPD
If X ∼ GPD(ξ, σ), with ξ < 1, the mean excess function e(u) = E(X − u | X > u) is given
by

e(u) =
σ

1− ξ
+ u

ξ

1− ξ
, u ≤ xF

(The mean excess function is affine. Note that e is decreasing if ξ < 0, constant if ξ = 0,
and increasing if ξ > 0)
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Introduction to extreme value theory Tail approximation

Tail approximation

❑ GPD fitting is one of the most useful concept of EVT

❑ The Pickands–Balkema–de Haan theorem:
For a large class of distributions, the conditional cdf Fu of the excesses over u can be
approximated by the GPD, as u → xF

lim
u→xF

sup
0<x<xF−u

|Fu(x)− Gξ,σ(u)(x)| = 0

with

Fu(y) = P(X − u ≤ y | X > u) =
F (u + y)− F (u)

1− F (u)
, 0 ≤ y ≤ xF − u

❑ Recall that raising the threshold of the GPD only changes the scale parameter of the GPD

❑ By setting y = x − u, we obtain, for u ≤ x ≤ xF ,

F (x) = [1− F (u)]Fu(x − u) + F (u)

❑ Since Fu converges to the GPD, for sufficiently large u, we obtain the approximation

F (x) ≈ [1− F (u)]Gξ,σ(u)(x − u) + F (u) , for u ≤ x ≤ xF
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❑ We want to take advantage of the approximation

F (x) ≈ [1− F (u)]Gξ,σ(u)(x − u) + F (u) , for u ≤ x ≤ xF

❑ The EVT methodology:

◮ choose an appropriate value of the high threshold u

◮ replace F (u) by an empirical estimator

◮ estimate the parameters ξ and σ(u) of the GPD

◮ use the approximation of the distribution tail to estimate a small probability of failure,
or a high quantile
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Choice of high threshold

◮ How to select an adequate threshold above which it is appropriate to use the GPD?

◮ The choice of has been extensively addressed in the extremes literature ➟ see, e.g., de Haan
(1990) and Beirlant, Teugels and Vynckier (1996)

◮ A difficult issue:

◮ threshold too low generally increases the bias of the parameter estimators

◮ threshold too high increases the variance of the parameter estimators, due to the reduced size of the
corresponding sample of excesses.

◮ The MEF can assist a user in the search for an adequate threshold
Recall that for a GPD

e(u) =
σ

1− ξ
+ u

ξ

1− ξ
, u ≤ xF

Idea: compute an empirical estimate en, and check a region where the graph of en becomes
roughly affine

◮ For a random sample of size n, the empirical MEF may be written as

en(u) =

∑n
i=1(Xi − u)1Xi>u

Nu

with Nu =
∑n

i=1 1Xi>u
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Example: X ∼ Exp(1)
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Choice of a threshold

◮ The statistical properties of en can be derived by using empirical process theory

◮ en is a useful tool to distinguish between light- and heavy-tailed models

◮ However, caution is called for when using such plots: due to the sparseness of the data
available for large values of u, the plots are very sensitive to changes in the data towards the
end of the range

◮ In choosing a threshold such that en is approximately affine, the key difficulty lies in the
interpretation of “approximately”

➟ the user should never expect a unique choice of u to appear

◮ More robust versions like median excess plots have been suggested
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Example: case of truncated normal X ∼
√

2
π
exp(−x2/2), x ≥ 0,

The mean excess function is e(u)
u→∞∼ u−1(1 + o(1))
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X belongs to the maximal domain of attraction of the Gumbel distribution (ξ = 0)
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GPD fitting

◮ Having chosen a sufficiently large threshold u, we have the approximation

F (x) ≈ [1− F (u)]Gξ,σ(u)(x − u) + F (u) , for u ≤ x ≤ xF

◮ F (u) can be estimated by the empirical estimator

(n − Nu)/n

where Nu is the number of observations above u, and n is the sample size

◮ An estimator of the tail of the cdf is therefore given by

F̂ (x) = 1− Nu

n

(
1 + ξ̂

x − u

σ̂

)− 1
ξ̂ , for u ≤ x ≤ xF

where ξ̂ and σ̂ are estimates of ξ and σ

◮ How to estimate ξ and σ?
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Maximum likelihood estimation of ξ and σ

◮ Let X1, . . . ,Xn be a random sample of size n from a GPD(ξ, σ).

◮ The logarithm of the likelihood can be expressed as

ℓ(ξ, σ;X ) =






−n log σ −
(1
ξ
+ 1
) n∑

i=1

log
(
1 +

ξ

σ
Xi

)
, ξ 6= 0

−n log σ − 1

σ

n∑

i=1

Xi , ξ = 0

◮ ML estimators exist only for ξ ≥ −1 (for ξ < −1, the log-likelihood tends to ∞ as the
maximum observed value X(n) approaches −σ/ξ)
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Maximum likelihood estimation of ξ and σ

◮ Analytical maximization of the log-likelihood is not possible (numerical techniques are
required, taking care to avoid numerical instabilities for ξ ≈ 0)

◮ Asymptotic properties of the ML estimators of the GPD parameters, such as consistency,
normality and efficiency, can be established for ξ > −1/2

◮ For ξ > −1/2,

n1/2
(
ξ̂n − ξ,

σ̂n

σ
− 1
)

d→ N(0,Σ) , n → ∞

with

Σ = (1 + ξ)

(
1 + ξ −1
−1 2

)

◮ The ML estimation of the GPD parameters can be a quite difficult task, even for ξ ≥ −1/2

◮ Indeed, the algorithms used for computing the ML estimates can exhibit convergence
problems, even for large sample sizes

◮ Note that other estimators of the parameters of the GPD are available in the literature
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Threshold choice revisited

◮ We saw that choosing a high threshold based on the mean excess function can be difficult

◮ A complementary technique consists in fitting the GPD for different thresholds u, and to
look for stability of parameter estimates

◮ The argument is based on the fact that if a GPD is a reasonable model for excesses of a
threshold u0, then excesses of a higher threshold u1 should also follow a GPD, with the same
shape parameter ξ

◮ However, denoting by σ(u) the value of the scale parameter for a threshold u > u0

σ(u) = σ(u0) + ξ(u − u0)

so that the scale parameter changes with u unless ξ = 0

◮ The idea is then to plot σ and σ⋆ = σ(u)− ξu with respect to u
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Threshold choice revisited

Example: case of truncated normal X ∼
√

2
π
exp(−x2/2), x ≥ 0
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Estimation of a probability of failure

◮ Consider again the problem of the estimation of a probability of failure: let X ∼ PX

and Z = f (X )

◮ Given a threshold u, our objective is to estimate

αu(f ) = 1− FZ (u)

by substituting FZ (u) with the approximation

F̂Z (u) = 1− Nu0

n

(
1 + ξ̂

u − u0

σ̂

)− 1
ξ̂ ,

where u0 is a high threshold chosen such that u0 < u, Nu0 is the number of observations

above u0, and σ̂ and ξ̂ are estimates of the parameters of a GPD

◮ We obtain

α̂u(f ) =
Nu0

n

(
1 + ξ̂

u − u0

σ̂

)− 1
ξ̂
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Confidence intervals

◮ Asymptotic standard errors, or asymptotic confidence intervals for α̂u(f ) can be derived from
the delta method or bootstrap

◮ Delta method: Let Tn be an estimator of θ ∈ R
d , and let φ : Rd → R be a differentiable

function. If √
n(Tn − θ) →d N(0,Σ)

then √
n(φ(Tn)− φ(θ)) →d N(0, [∇φ(θ)]T Σ [∇φ(θ)]) .

◮ The asymptotic distribution of (ξ̂, σ̂) has been given above

◮ The random variable Nu follows the binomial distribution Binomial(n, 1− F (u)), so that the
estimator Nu/n of [1− F (u)] has variance F (u)(1− F (u))/n

◮ Thus the complete asymptotic variance-covariance matrix for (Nu/n, ξ̂, σ̂) is 1
n
Σ, with

Σ =




F (u)(1− F (u)) 0 0

0 (1 + ξ)2 −σ(1 + ξ)
0 −σ(1 + ξ) 2σ2(1 + ξ)





◮ The gradient of φ(η, ξ, σ) = η
(
1 + ξ u−u0

σ

)− 1
ξ
can be easily expressed in closed form
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Quantile estimation

◮ Similarly, an estimator of the quantile q1−α is given by

q̂1−α = u +
σ̂

ξ̂

((
n

Nu
α

)−ξ̂

− 1

)

◮ Furthermore, for ξ̂ < 0, an estimator of the right endpoint of F is given by

x̂F = u − σ̂

ξ̂
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Model checking

◮ We have seen that EVT allows us to extrapolate outside the range of available data

◮ In some sense, EVT is making the best use of available data for making inference about
extreme values

◮ However, always be reluctant when it comes to estimate very small probabilities → the
statistical reliability of these estimates are very difficult to judge in general

◮ Careful model checking, using cross-validation for instance, is always necessary to check the
stability of the estimates

◮ Questions about the influence of single of few observations and model-robustness can be
analyzed using simulations
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Summing up

◮ The estimation of small probabilities of failure is a difficult task

◮ If the evaluation of the performance function f is time-consuming, estimating a probability of
failure α ≈ 10−3 is already challenging

◮ EVT is a useful tool: makes the best use of available data for analyzing extreme events
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