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Introduction

1. Introduction

Modeling extreme events from computer simulations:
formalization of the issues at stake
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Introduction Computer experiments in engineering

1.1 Context overview: computer experiments in engineering

unknown
dispersions

design
X0 —44->—<}>—44->
parameters MOd? of a outputs . performance or
system —®| processing |—#= o
M loss criterion
control X @4» (x0,x1) o
variables

or excitation

unknown
perturbations

*

Model implemented under the form of a computer program (e.g., a finite element model).
A single run of the program may be time- and resource-consuming.
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Introduction Computer experiments in engineering

Example 1/2 — Risk analysis

» Computer simulations to assess the probability of undesirable events

> A serious accident: loss of coolant in a pressurized
water nuclear reactor

» Under these conditions, temperature of fuel rods
can be described by ~ 50 dimensioning factors,
which are not known accurately

» Peak temperature can be estimated using complex
and time-consuming simulations

> f: X — R peak temp. as a function of the factors

» Objective: estimate a probability of exceeding a
critical value

1300
---Lower bound a = Px{f > u}
1200 Upper bound -
—Experimental .
1100k — Reforence or a quantile
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(Courtesy of CEA)
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Introduction Computer experiments in engineering

Example 2/2 — Design optimization

» Computer simulations to design a product or a process, in particular

> to find the best feasible values for design parameters (optimization problem)
> to minimize the probability of failure of a product

» To comply with European emissions
standards, the design parameters of
combustion engines have to be carefully
optimized

» The shape of intake ports controls airflow
characteristics, which have direct impact on

> the performances of the engine
» emissions of NO, and CO

» f:X C RY — R performance as a function
of design parameters (d = 20 ~ 100)

> Computing f(x) takes 5 ~ 20 hours

> Objective: estimate x* = argmax, f(x), or
x* = argmax, f(x) subject to
P{pollutant emissions < threshold} > ~

Simulation of an intake port (Navier-Stokes equations)
(courtesy of Renault)
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Introduction Computer experiments in engineering

Uses of computer models in engineering

» X C RY: input domain of the system, or factor (from Latin, “which acts”) space

» f:X — R: a performance or cost function (function of the outputs of the system)
» Main classes of problems

1. Optimization of the performances of a system, cost minimization...

x* = argmax f(x)
xeX

2. In presence of uncertain factors: minimize a probability of failure, i.e.,

X = Xo X X1
xg = argmina(xo)
X0€XO
a(x) = Px {x €X;:f(x,x) > u}

where Py, is some probability distribution on (X1, B(X1))

3. Performance assessment: estimation of a quantile
d~(x0) = inf{u € R; Px; {x1 € X1 : f(x0,x) < u} >~}

(This is a simplified view. Most real problems have several performance functions, and mix
different objectives.)
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Introduction Computer experiments in engineering

Distinct properties of computer experiments

» The performance/cost function f : X C RY — R is only known through pointwise evaluations

> Most often, an evaluation of f is a deterministic experiment — one computer experiment
consists in

» choosing an x € X
> running one or several deterministic computer programs to obtain the value f(x)

> Stochastic computer programs can also be used (noisy evaluations)
» In rare cases, Vf may also be known
» The factor space X may be high-dimensional (typically 10 ~ 100)

» Evaluation of f may be expensive (e.g., several hours) = budget of experiments is limited
(typically < 1000)

» f may have several local optima
» Some factors may have little influence

» f is smooth (a small number of localized discontinuities possible)

» Experts can provide a rough approximation of f (prior knowledge may be available)
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Introduction Probability of failure, quantiles: basic concepts

1.2 Probability of failure, quantiles: basic concepts

U Assume given

» a domain X C R? (a factor space)

> a function f : X — R (a loss function)

> a distribution Px on X (Px models our uncertainty about the value of the factors)
> a threshold u € R (a critical value for the loss)

Q The probability of failure of a system is the number

a'(f) = Px{xeX:f(x)>u}
= Px{f > u}

= / 1> ,dPx
X

= E(]lf>u)

Q To simplify our notations: a = a(f) = a(f)
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Introduction Probability of failure, quantiles: basic concepts

> a(f) is the volume of the excursion set ' = {x € X; f(x) > u} of f above the threshold u
» 1D illustration

%,{x)“

» If uis high, « is small
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Introduction Probability of failure, quantiles: basic concepts

Quantile

> Let (2, B, P) be a probability space, and consider the real-valued random variable Y = f(X).

The quantile g1—o of Y is the number

3%,
gi—a = influeRP{Y<u}>1-a} M
= influeR;Fy(u) >1-—a} //\
/"/' >
ot ;/// 1
777N
] - # //// // " _'_IJ—_1
JLE, ‘?H—n(_ %P
_D_-I-_._'_“_’ = ’._/ i ?‘
RIS ¥
> g1_o can be expressed directly in terms of Px
gi—a(f) = inf{lueR; Px{xeX:f(x)<u}>1-a}

= inf{lueR; a"(f) < a}

» How to compute a quantile? = finding the largest threshold u such that the probability of
failure a¥(f) is smaller than «, is an optimization problem

» Computing a quantile might be more difficult than computing a probability of failure
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Introduction What makes computing a probability of failure difficult

1.3 How to compute a probability of failure?

Q The computation of a = fx 1¢~,dPx is a multidimensional integration problem

Q f does not have a closed-form expression = the objective is to obtain a numerical
approximation of a(f)

Q Given ¢ : X — R € L(X, Px), how to obtain a numerical approximation of an integral

Q_S:/qudPX?

Q Any numerical approximation of ¢ will be constructed from a set of numerical evaluations

of ¢
» Choose x1,x2,...,xn € X — get ¢(x1), d(x2),...p(xn) €ER
» Compute an approximation of ¢ as a function of the evaluation results:

¢n = h(Xl, ¢(X1)’ <oy Xn, ¢(X’7))
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Introduction What makes computing a probability of failure difficult

QO What makes the problem of computing « difficult?
» The case of a probability of failure corresponds to ¢ = 1¢~, € {0,1}

» Whatever the integration technique, the difficulty is to choose evaluation points
X1,...,Xn in such a way that there is at least some points x; for which ¢(x;) = 1 (why?)

» In practice, the volume of excursion a(f) = |I'| is small, e.g. a(f) < 10~*

Sf-uppc-\\r og 7 "

» [ small, unknown set " a large number of function evaluations may be needed before

finding at least one point in '
» If f is expensive to evaluate = getting an approximation of a(f) ~ 1073 is already a

challenging problem
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Monte Carlo estimation of a probability of failure

2. Estimating a probability of failure by Monte Carlo
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Monte Carlo estimation of a probability of failure Importance sampling

2.1 Monte Carlo integration with importance sampling

U Assume that Px has a density p with respect to the Lebesgue measure ).

Q Let ¢ € L1(X,Px)

Q Let Qx be another probability distribution on X, with density g with respect to A, and

assume that supp g D supp p

Proposition
Let X1,...,Xp id Qx be a random sample of size n > 1.
Then

Fn= 13 (xR

n
is an unbiased estimator of ¢. Moreover,
varg, = O(n™1)

(does not depend on d)

Q ¢, is a weighted average (with weights %)

O NB: Qx is called an instrumental distribution
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Monte Carlo estimation of a probability of failure Importance sampling

Proof:
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Monte Carlo estimation of a probability of failure Importance sampling

Application to the estimation of a probability of failure

> Set Qx = Px
i.i.d
> Let X1, X5,..., Xn '~ Px
» Then
1< #{X;; £(X;) > u}
an=—> Lrpx)>u =
n “ n
i=1
is an unbiased estimator of «.
» In practice:
1. Generate points xj, x2, . . . , X, from Px
2. Evaluate f at xi, x2, . .. (may be resource- and time-consuming)

3. Count the number of x;s such that f(x;) > u and divide by n to get an estimate of «.
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Monte Carlo

Example: MC estimation
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Monte Carlo estimation of a probability of failure Importance sampling
Example: MC estimation of o = 1073
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Monte Carlo estimation of a probability of failure Importance sampling

Example: MC estimation of o = 1073
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Monte Carlo estimation of a probability of failure Importance sampling

How many function evaluations are needed in practice?

Consider the MC estimator of «a:

v

n

1
an == Trx)>u)

n
i=1

v

The random variable Z; = 1¢(x,), has distribution Bernoulli(c), that is,

{0 with probability 1 — «
Z =

1 ” ” a

» Thus, na, ~ Binomial(n,a) = the variance of na, is na(l — «)
Thus

v

ol-a) «
vara, = —— ~ — for a small enough

n n
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Monte Carlo estimation of a probability of failure  Coefficient of variation

U Define a notion of coefficient of variation ¢ as

std ap

B E(a,,)

Q To achieve a given standard deviation da thus requires approximately 1/(5%c) evaluations

U Examples:

» Suppose o =2 x 1073 and § = 0.1: we need n = 50000 evaluations.
If one evaluation of f takes, say, one minute, then the entire estimation procedure will
take about 35 days to complete!

» Suppose & = 1072 and § = 0.1: we need n = 10" evaluations.
If one evaluation of f takes, say, one second, then the entire estimation procedure will
take about 115 days to complete!

U When « is small, the computational cost of a MC estimation can be prohibitively high!
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Monte Carlo estimation of a probability of failure Optimal instrumental distribution

» Of course, we have chosen Qx = Px, and we can ask the question: what can be expected if
one chooses the optimal instrumental distribution, that is, the distribution that will minimize
var ap

» What is the optimal instrumental distribution?

Proposition
The variance of the estimator
- 1 p(Xi)
én = —¢(Xi) ===
n q(X;)
is minimum for g = g*, with g* such that
o(x)| p(x
) = 12001p()
Jxlo()lp(y)dy
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Monte Carlo estimation of a probability of failure Optimal instrumental distribution

Proof:
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Monte Carlo estimation of a probability of failure Optimal instrumental distribution

> In the case of the estimation of a probability of failure, this gives

P(x) - Le(x)y>u
(6%

q*(x) =

» NB: the normalizing constant of g* is what we want to estimate " this may not be a
problem in practice (there exist sampling techniques that do not require to know the
normalizing constant)

> The difficult part of the problem: supp g* C I', which is unknown and maybe small
= sampling from g¢* can be a very difficult task

U Tentative conclusion:

» MC techniques to estimate a probability of failure are straightforward to implement but
are generally very expensive whenever « is small

> (We shall see later that there do exist MC techniques that can still be considered, even
if o is small)
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Introduction to extreme value theory

3. Introduction to extreme value theory
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Introduction to extreme value theory Estimation of the tail of a distribution
The problem of estimation of a probability of failure revisited
> Let X ~ Px and Z = f(X).
» We have
a'(f)=Px{xeX;f(x)>u}=1— Fz(u)
with F7 the cdf of Z.
» We might want to find an approximation /I—:Z of Fz, and use the plug-in estimator
a=1-Fz(u)
» However, since « is small, we are only interested in constructing an approximation of
u+— Fz(u) for high values of u, that is, when Fz(u) ~ 1
» The idea is to construct an approximation of the tail of the distribution of Z
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Introduction to extreme value theory

Example: X ~ LN(1,1/2)

Estimation of the tail

of a distribution
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Introduction to extreme value theory

Example: X ~ LN(1,1/2)

Estimation of the tail

of a distribution

0.9
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Introduction to extreme value theory

Example: X ~ LN(1,1/2)

Estimation of the tail of a distribution
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Introduction to extreme value theory Estimation of the tail of a distribution
Example: X ~ LN(1,1/2)
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Introduction to extreme value theory Estimation of the tail of a distribution

Example: X ~ LN(1,1/2)
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Introduction to extreme value theory Estimation of the tail of a distribution

Modeling the tail of a distribution from experimental data

0 How to construct a model of the tail of the distribution of a real-valued random variable?
w Extreme Value Theory (EVT)

U EVT was formulated initially by Gumbel in the 50's

U EVT is a well-established branch in statistical modeling

Q Applied to many fields

hydrology (Coles and Tawn 1996),

oceanography (Dawson 2000),

climatology (Carter and Chalenor 1981),

finance, insurance (Embrechts, Kluppelberg and Mikosch 1997)

vyvyVvyYyvyy

QO General texts on the subject include (Resnick 1987), (Embrechts, Kluppelberg and Mikosch
1997), (Kotz and Nadarajah 2000), (Reiss and Thomas 2001), and (S. Coles 2001)
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Introduction to extreme value theory Fundamentals of EVT

Fundamentals of EVT

O Let X, X1, Xo,... be a sequence of i.i.d random variables from a distribution F

Q Two main results:
» Limit laws for maxima: for a large class of distributions F, the maximum
M, = max Xy, ..., X,

converges, after proper renormalization, to a non-degenerate parametrized distribution
called the Generalized Extreme Value distribution (Fisher—Tippett theorem)

> Limit laws for excesses over a high threshold: for a large class of distributions F, the
distribution of
X—u|X>u

can be approximated, for u large enough, by a parametrized distribution called the
Generalized Pareto Distribution (Pickands—Balkema—de Hann theorem)

O The Fisher-Tippett theorem is the fundamental result of EVT, and can be considered as
having the same status in EVT as the central limit theorem in the study of random sums

U Here, in the context of the estimation of a probability of failure, we are interested in the
second result, which makes it possible to fitting a model to excesses over a threshold
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Introduction to extreme value theory Fundamentals of EVT

Excess distribution function, mean excess function

> Excesses over thresholds play a fundamental role in EVT

Definition
Let X be a rv with cdf F and right endpoint xg.
For u < xg,
Fi:xeRy —»P(X—u<x|X>u),

is called the excess cdf of X over the threshold u.
Definition

The function
e:u—E[X—u|X>u

is called the mean excess function of X
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Introduction to extreme value theory Fundamentals of EVT

Example: calculation of a mean excess function

» Let X ~ Exp(1)
» Excess cdf, u >0, x > 0,

Plu< X <u+x)

Fu(x) = PX—-u<x|X>u)= POX > )

exp(—u) — exp(—u — x))
exp(—u)

=1 — exp(—x)

(does not depend on u " memorylessness property)

» Mean excess function, u > 0,
e(u) = EX—-u|X>u
=[x udPxxsu) = [ xdPx ()

= /XFU'(X)dx =1
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Introduction to extreme value theory Fundamentals of EVT

The Generalized Pareto Distribution

Q The cdf of the GPD with shape parameter £ € R, location parameter i € R and
scale parameter o > 0, is defined as

1—(1+5X;)_é, £#0
o
1—exp<—X_'u>, E=0

g

Ge .o (X) =

Q For £ > 0, the support of G¢ ,, » is u < x < 00

Q For £ <0, the support of G¢ ,, » is [0, xF], with xp = p — o /¢
Q The GPD corresponds to the Pareto distribution for £ > 0

Q The probability density function is

e T

o
X) =
gg’.u‘ao—( ) 1 X — M
— exp ( — ) £E=0
ag g
Q The quantile function is
g —
p—s(1-a™) ¢#£0
ql—a = 3
u—ologa £E=0
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Introduction to extreme value theory Fundamentals of EVT

The two-parameter GPD

Q In what follows, we will also consider the two-parameter GPD G¢ ,: = G¢ o,

Q Let X ~ G o
Foré <1, Xell
g

EX] = 17

For £ < 1/2, X € L?

0.2

(1—-¢)2(1 -2

var[X] =

Q £ high = heavy tail
Q £ low/negative = light tail
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Introduction to extreme value theory Fundamentals of EVT

GPD for different shape parameters £ and o =1

—0.2 | | | | | | |
-1 0 1 2 3 4 5 6 7 8
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Introduction to extreme value theory Fundamentals of EVT

Densities of the GPD for different shape parameters £ and 0 =1

0.8

0.4

0.2r
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Introduction to extreme value theory Fundamentals of EVT

Densities of the GPD for different shape parameters £ <0 and o =1
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Introduction to extreme value theory Fundamentals of EVT

Properties of the GPD

Q Log-transform:
Let X ~ GPD(¢&,0), then

Y = %Iog(l + gx)

has a standard exponential distribution

Q Stability with respect to excess-over-threshold operations

X ~GPD(,0) = Y=X—-u|X>u~GPD(& 0o+ &u)

It is important to notice that the operation does not affect the shape parameter; it only
alters the scale parameter of the distribution.

U the mean-excess function of the GPD
If X ~ GPD(&,0), with £ < 1, the mean excess function e(u) = E(X — u | X > u) is given
by

e(u):1i£+ulf€, u < x

(The mean excess function is affine. Note that e is decreasing if £ < 0, constant if £ =0,
and increasing if £ > 0)
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Introduction to extreme value theory Tail approximation

Tail approximation

Q GPD fitting is one of the most useful concept of EVT

O The Pickands—Balkema—de Haan theorem:
For a large class of distributions, the conditional cdf F, of the excesses over u can be
approximated by the GPD, as u — xg

lim sup  |Fu(x) — G¢ o) (X)| =0

U= XF 0<x<xg—u

with
F(u+y)— F(u)
1— F(u)

O Recall that raising the threshold of the GPD only changes the scale parameter of the GPD

Fuy)=P(X—u<y|X>u)= 0<y<xF—u

Q By setting y = x — u, we obtain, for u < x < xg,
F(x) =[1 = F(u)]Fu(x — u) + F(u)
Q Since F, converges to the GPD, for sufficiently large u, we obtain the approximation

F(x) ~ [1 — F(u)]G¢ g(u)(x —u) + F(u), for u < x < xg
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Introduction to extreme value theory Tail approximation

O We want to take advantage of the approximation
F(x) = [1 = F(u)]Gg¢ guy(x —u) + F(u), for u < x < xg
U The EVT methodology:
» choose an appropriate value of the high threshold u
» replace F(u) by an empirical estimator

> estimate the parameters £ and o(u) of the GPD

» use the approximation of the distribution tail to estimate a small probability of failure,
or a high quantile
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Introduction to extreme value theory Choice of a threshold

Choice of high threshold

» How to select an adequate threshold above which it is appropriate to use the GPD?

» The choice of has been extensively addressed in the extremes literature = see, e.g., de Haan
(1990) and Beirlant, Teugels and Vynckier (1996)

» A difficult issue:

> threshold too low generally increases the bias of the parameter estimators
> threshold too high increases the variance of the parameter estimators, due to the reduced size of the

corresponding sample of excesses.

» The MEF can assist a user in the search for an adequate threshold
Recall that for a GPD

e(w) = T Furto, u<x

u )
3 1-¢
Idea: compute an empirical estimate e,, and check a region where the graph of e, becomes
roughly affine

» For a random sample of size n, the empirical MEF may be written as

27:1()(:' - U)]lX,->u
Ny

en(u) ==
with Ny = 37 Tx 5
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Introduction to extreme value theory

Example: X ~ Exp(1)

Choice of a threshold
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Introduction to extreme value theory

Choice of a threshold

Choice of a threshold

The statistical properties of e, can be derived by using empirical process theory

>

> e, is a useful tool to distinguish between light- and heavy-tailed models

» However, caution is called for when using such plots: due to the sparseness of the data
available for large values of u, the plots are very sensitive to changes in the data towards the
end of the range

» In choosing a threshold such that e, is approximately affine, the key difficulty lies in the
interpretation of “approximately”
« the user should never expect a unique choice of u to appear

» More robust versions like median excess plots have been suggested
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Introduction to extreme value theory Choice of a threshold

Example: case of truncated normal X ~ \/gexp(—xz/2), x>0,

The mean excess function is e(u) ‘<> u=1(1 + o(1))

Mean Excess

-02F o

2
Threshold

X belongs to the maximal domain of attraction of the Gumbel distribution (¢ = 0)
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Introduction to extreme value theory GPD fitting

GPD fitting

» Having chosen a sufficiently large threshold u, we have the approximation
F(x) ~ [1 — F(u)]G¢ g(uy)(x —u) + F(u), for u < x < xg
» F(u) can be estimated by the empirical estimator
(n— Ny)/n

where N, is the number of observations above u, and n is the sample size

» An estimator of the tail of the cdf is therefore given by

=

- N X — U\ —
F(x):1——u<1+£XAu) , foru<x<xf
n o

where £ and & are estimates of £ and o

» How to estimate £ and o7
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Maximum likelihood estimation of £ and o

» Let Xi,..., X, be a random sample of size n from a GPD(¢, o).

» The logarithm of the likelihood can be expressed as

_nloga—(%-l-l)ZIog(l—l-gX;), EF£0

E(&,U;X): 1. =1

—nIoga——ZX;, E=0
7=

» ML estimators exist only for £ > —1 (for £ < —1, the log-likelihood tends to oo as the
maximum observed value X(,) approaches —o/£)
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Introduction to extreme value theory GPD fitting

Maximum likelihood estimation of £ and o

» Analytical maximization of the log-likelihood is not possible (numerical techniques are
required, taking care to avoid numerical instabilities for £ =~ 0)

» Asymptotic properties of the ML estimators of the GPD parameters, such as consistency,
normality and efficiency, can be established for £ > —1/2
» For & > —1/2,
n1/2(En _e, I 1) %4 N(0,%), n— oo
o
. 1+¢ -1
r—a+o ("5 )

» The ML estimation of the GPD parameters can be a quite difficult task, even for £ > —1/2

with

» Indeed, the algorithms used for computing the ML estimates can exhibit convergence
problems, even for large sample sizes

» Note that other estimators of the parameters of the GPD are available in the literature
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Threshold choice revisited

» We saw that choosing a high threshold based on the mean excess function can be difficult

» A complementary technique consists in fitting the GPD for different thresholds u, and to
look for stability of parameter estimates

» The argument is based on the fact that if a GPD is a reasonable model for excesses of a
threshold ug, then excesses of a higher threshold u; should also follow a GPD, with the same
shape parameter £

» However, denoting by o(u) the value of the scale parameter for a threshold u > ug

o(u) = o(uo) + &(u — uo)

so that the scale parameter changes with u unless £ =0

» The idea is then to plot o and o* = o(u) — {u with respect to u
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Threshold choice revisited

Example: case of truncated normal X ~ \/gexp(—x2/2), x>0

Mean Excess

. . . . . . . N 1 12 14 16 18 2 22 24 26 28 3
0 0.5 1 15 2 25 3 35 u
Threshold
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Estimation of a probability of failure

» Consider again the problem of the estimation of a probability of failure: let X ~ Px
and Z = f(X)

» Given a threshold u, our objective is to estimate
a’(f)=1— Fz(u)

by substituting Fz(u) with the approximation

. N o — gy — L
Frlu)=1- =2 (146—=) ¢,

where ug is a high threshold chosen such that up < u, Ny, is the number of observations
above ug, and o and £ are estimates of the parameters of a GPD
» We obtain

av(r) = Mo (14 g t0) 7

o
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Introduction to extreme value theory Estimation of a probability of failure

Confidence intervals

» Asymptotic standard errors, or asymptotic confidence intervals for &@“(f) can be derived from
the delta method or bootstrap

» Delta method: Let T, be an estimator of # € RY, and let ¢: R? — R be a differentiable
function. If

Vn(Tp —0) —4 N(0,X)
then
V(¢(Th) = ¢(6)) =4 N(0, [Vo(0)]" Z [V(6)])-
» The asymptotic distribution of (2, o) has been given above

» The random variable N, follows the binomial distribution Binomial(n,1 — F(u)), so that the
estimator N, /n of [1 — F(u)] has variance F(u)(1 — F(u))/n

» Thus the complete asymptotic variance-covariance matrix for (Nu/n,g, o) is %Z, with

F(u)(1 — F(u)) 0 0
Y = 0 (14+¢8)?  —o(1+4¢)
0 —o(1+€) 20%(1+€)

_1
» The gradient of ¢(n,&,0) = 77(1 + {”%‘”0> ¢ can be easily expressed in closed form
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Quantile estimation

» Similarly, an estimator of the quantile g1, is given by

G La((n =y
_ = u —= —Q —
dli—«o E Nu

» Furthermore, for §A< 0, an estimator of the right endpoint of F is given by

E. Vazquez Extreme events modeling | Summer School CEA-EDF-INRIA, 2011 51 / 54
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Model checking

» We have seen that EVT allows us to extrapolate outside the range of available data

» In some sense, EVT is making the best use of available data for making inference about
extreme values

» However, always be reluctant when it comes to estimate very small probabilities — the
statistical reliability of these estimates are very difficult to judge in general

» Careful model checking, using cross-validation for instance, is always necessary to check the
stability of the estimates

» Questions about the influence of single of few observations and model-robustness can be
analyzed using simulations
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Summing up

Summing up

» The estimation of small probabilities of failure is a difficult task

» If the evaluation of the performance function f is time-consuming, estimating a probability of
failure & ~ 1073 is already challenging

» EVT is a useful tool: makes the best use of available data for analyzing extreme events
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