

 Outline of Lecture 1 Introduction Computer experiments in engineering Probability of failure, quantiles: basic concepts What makes computing a probability of failure difficult Monte Carlo estimation of a probability of failure Importance sampling Coefficient of variation Optimal instrumental distribution 							
					 Introduction to extreme value theo Estimation of the tail of a distribution Fundamentals of EVT Tail approximation Choice of a threshold GPD fitting Estimation of a probability of fail Quantile estimation References 	ry pution lure	
					4 Summing up		
E. Vazquez	Extreme events modeling I	 ▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ♥ ♥ ♥ Summer School CEA-EDF-INRIA, 2011 3 / 54 					
	Introduction						
	1. Introduction						
Modeling e fc	extreme events from comput ormalization of the issues at	er simulations: stake					
E. Vazquez	Extreme events modeling I	< □ ▶ < 冊 ▶ < 壹 ▶ < ≧ ▶ < ≧ ▶ Summer School CEA-EDF-INRIA, 2011 4 / 54					

Example 1/2 – Risk analysis

Computer simulations to assess the probability of undesirable events

- A serious accident: loss of coolant in a pressurized water nuclear reactor
- Under these conditions, temperature of fuel rods can be described by ~ 50 dimensioning factors, which are not known accurately
- Peak temperature can be estimated using complex and time-consuming simulations
- $f : \mathbb{X} \to \mathbb{R}$ peak temp. as a function of the factors
- Objective: estimate a probability of exceeding a critical value

$$\alpha = \mathsf{P}_{\mathbb{X}}\{f \ge u\}$$

or a quantile

$$q_{\gamma} = \inf\{u \in \mathbb{R}; \mathsf{P}_{\mathbb{X}}\{f \leq u\} \geq \gamma\}$$

or a worst-case

$$M = \sup_{x \in \mathbb{X}} f(x)$$

・ロット (雪) (日) (日)

Э

Summer School CEA-EDF-INRIA, 2011 6 / 54

500

Uses of computer models in engineering

• $\mathbb{X} \subseteq \mathbb{R}^d$: input domain of the system, or *factor* (from Latin, "which acts") space

Introduction

- $f : \mathbb{X} \to \mathbb{R}$: a performance or cost function (function of the outputs of the system)
- Main classes of problems
 - 1. Optimization of the performances of a system, cost minimization...

$$x^* = \operatorname*{argmax}_{x \in \mathbb{X}} f(x)$$

Computer experiments in engineering

2. In presence of uncertain factors: minimize a probability of failure, i.e.,

$$\begin{split} \mathbb{X} &= \mathbb{X}_0 \times \mathbb{X}_1 \\ x_0^{\star} &= \operatorname*{argmin}_{x_0 \in \mathbb{X}_0} \alpha(x_0) \\ \alpha(x_0) &:= \mathsf{P}_{\mathbb{X}_1} \{ x_1 \in \mathbb{X}_1 : f(x_0, x_1) > u \} \end{split}$$

where $\mathsf{P}_{\mathbb{X}_1}$ is some probability distribution on $(\mathbb{X}_1, \mathcal{B}(\mathbb{X}_1))$

3. Performance assessment: estimation of a quantile

$$q_{\gamma}(x_0) = \inf\{u \in \mathbb{R}; \mathsf{P}_{\mathbb{X}_1}\{x_1 \in \mathbb{X}_1 : f(x_0, x_1) \le u\} \ge \gamma\}$$

(This is a simplified view. Most real problems have several performance functions, and mix different objectives.)

1.2 Probability of failure, quantiles: basic concepts
1.3 Assume given

a domain X ⊆ R^d (a factor space)
a function f : X → R (a loss function)
a distribution P_x on X (P_x models our uncertainty about the value of the factors)
b a threshold u ∈ R (a critical value for the loss)

The probability of failure of a system is the number

a^u(f) = P_x{x ∈ X : f(x) > u}
= P_x{f > u}
= f_x 1_{f>u}dP_x
= E(1_{f>u})

To simplify our notations: α = α(f) = α^u(f)

- $\alpha(f)$ is the volume of the excursion set $\Gamma = \{x \in \mathbb{X}; f(x) > u\}$ of f above the threshold u
- 1D illustration

Quantile

• Let $(\Omega, \mathcal{B}, \mathsf{P})$ be a probability space, and consider the real-valued random variable Y = f(X).

Introduction

The quantile $q_{1-\alpha}$ of Y is the number

$$q_{1-\alpha} = \inf\{u \in \mathbb{R}; P\{Y \le u\} \ge 1-\alpha\}$$

= $\inf\{u \in \mathbb{R}; F_Y(u) \ge 1-\alpha\}$

Probability of failure, quantiles: basic concepts

• $q_{1-\alpha}$ can be expressed directly in terms of P_X

$$q_{1-\alpha}(f) = \inf\{u \in \mathbb{R}; \mathsf{P}_{\mathbb{X}}\{x \in \mathbb{X} : f(x) \le u\} \ge 1-\alpha\}$$

= $\inf\{u \in \mathbb{R}; \alpha^{u}(f) \le \alpha\}$

- ▶ How to compute a quantile? → finding the largest threshold *u* such that the probability of failure $\alpha^{u}(f)$ is smaller than α , is an optimization problem
- Computing a quantile might be more difficult than computing a probability of failure 500

Introduction What makes computing a probability of failure difficult

 \Box What makes the problem of computing α difficult?

- ▶ The case of a probability of failure corresponds to $\phi = \mathbb{1}_{f>u} \in \{0, 1\}$
- ▶ Whatever the integration technique, the difficulty is to choose evaluation points x₁,..., x_n in such a way that there is at least some points x_i for which φ(x_i) = 1 (why?)
- ▶ In practice, the volume of excursion $\alpha(f) = |\Gamma|$ is small, e.g. $\alpha(f) < 10^{-4}$

- Γ small, unknown set → a large number of function evaluations may be needed before finding at least one point in Γ
- ▶ If f is expensive to evaluate → getting an approximation of $\alpha(f) \approx 10^{-3}$ is already a challenging problem

2.1 Monte Carlo integration with importance sampling

- \Box Assume that P_X has a density *p* with respect to the Lebesgue measure λ .
- \Box Let $\phi \in L^1(\mathbb{X}, \mathsf{P}_{\mathbb{X}})$
- \Box Let Q_X be another probability distribution on X, with density q with respect to λ , and assume that $\operatorname{supp} q \supset \operatorname{supp} p$

Proposition

Let $X_1, \ldots, X_n \stackrel{\rm i.i.d}{\sim} Q_X$ be a random sample of size $n \ge 1$. Then

$$\bar{\phi}_n = \frac{1}{n} \sum_{i=1}^n \phi(X_i) \frac{p(X_i)}{q(X_i)},$$

is an unbiased estimator of $\bar{\phi}$. Moreover,

 $\mathop{\mathsf{var}}\bar\phi_n=O(n^{-1})$

(does not depend on d)

- $\Box \ \bar{\phi}_n$ is a weighted average (with weights $\frac{p(X_i)}{q(X_i)}$)
- $\square\ NB:\ Q_{\mathbb{X}}$ is called an instrumental distribution

Monte Carlo estimation of a probability of failure Importance sampling

Application to the estimation of a probability of failure

- $\blacktriangleright \ Set \ Q_{\mathbb{X}} = \mathsf{P}_{\mathbb{X}}$
- Let $X_1, X_2, \ldots, X_n \stackrel{\text{i.i.d}}{\sim} \mathsf{P}_{\mathbb{X}}$
- Then

$$\alpha_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{f(X_i) > u} = \frac{\#\{X_i; f(X_i) > u\}}{n}$$

is an unbiased estimator of α .

- In practice:
 - 1. Generate points x_1, x_2, \ldots, x_n from P_X
 - 2. Evaluate f at x_1, x_2, \ldots (may be resource- and time-consuming)
 - 3. Count the number of x_i s such that $f(x_i) > u$ and divide by n to get an estimate of α .

How many function evaluations are needed in practice? • Consider the MC estimator of α : $\alpha_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{f(X_i) > u}$ • The random variable $Z_i = \mathbb{1}_{f(X_i) > u}$ has distribution Bernoulli(α), that is, $Z_i = \begin{cases} 0 & \text{with probability } 1 - \alpha \\ 1 & n & \alpha \end{cases}$ • Thus, $n\alpha_n \sim \text{Binomial}(n, \alpha) \implies$ the variance of $n\alpha_n$ is $n\alpha(1 - \alpha)$ • Thus $\operatorname{var} \alpha_n = \frac{\alpha(1 - \alpha)}{n} \approx \frac{\alpha}{n}$ for α small enough

Monte Carlo estimation of a probability of failure Importance sampling

500

 \Box Define a notion of coefficient of variation δ as

$$\delta = \frac{\operatorname{std} \alpha_n}{\mathsf{E}(\alpha_n)}$$

□ To achieve a given standard deviation $\delta \alpha$ thus requires approximately $1/(\delta^2 \alpha)$ evaluations □ Examples:

- Suppose α = 2 × 10⁻³ and δ = 0.1: we need n = 50000 evaluations. If one evaluation of f takes, say, one minute, then the entire estimation procedure will take about 35 days to complete!
- Suppose α = 10⁻⁵ and δ = 0.1: we need n = 10⁷ evaluations. If one evaluation of f takes, say, one second, then the entire estimation procedure will take about 115 days to complete!

 \Box When α is small, the computational cost of a MC estimation can be prohibitively high!

Extreme events modeling I

E. Vazquez

Monte Carlo estimation of a probability of failure Optimal instrumental distribution

- Of course, we have chosen Q_X = P_X, and we can ask the question: what can be expected if one chooses the optimal instrumental distribution, that is, the distribution that will minimize var α_n
- What is the optimal instrumental distribution?

Proposition

The variance of the estimator

$$\bar{\phi}_n = \frac{1}{n} \phi(X_i) \frac{p(X_i)}{q(X_i)}$$

is minimum for $q = q^*$, with q^* such that

$$q^{\star}(x) = \frac{|\phi(x)|\rho(x)}{\int_{\mathbb{X}} |\phi(y)|\rho(y) \mathrm{d}y}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ <

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 21 / 54

Sac

Э

・ロト ・四ト ・ヨト ・ヨト

Introduction to extreme value theory
The problem of estimation of a probability of failure revisited
Let X ~ P_X and Z = f(X).
We have

α^u(f) = P_X{x ∈ X; f(x) > u} = 1 - F_Z(u)
with F_Z the cdf of Z.

We might want to find an approximation F̂_Z of F_Z, and use the plug-in estimator

â = 1 - F̂_Z(u)

However, since α is small, we are only interested in constructing an approximation of u → F_Z(u) for high values of u, that is, when F_Z(u) ≈ 1
The idea is to construct an approximation of the tail of the distribution of Z

æ

500

Introduction to extreme value theory Estimation of the tail of a distribution Example: $X \sim LN(1, 1/2)$ 0.9 0.8 0.7 0.6 × 40.5 ₩0.4 0.3 0.2 0.1 0 0 6 10 12 2 4 8 14 x ・ロ・・ 日・ ・ 日・ ・ 日・ æ. 500 E. Vazquez Summer School CEA-EDF-INRIA, 2011 27 / 54 Extreme events modeling ${\sf I}$

is called the mean excess function of X

Summer School CEA-EDF-INRIA, 2011 30 / 54

æ

500

<ロ > < 同 > < 回 > < 回 >

Introduction to extreme value theory Fundamentals of EVT

The Generalized Pareto Distribution

□ The cdf of the GPD with shape parameter $\xi \in \mathbb{R}$, location parameter $\mu \in \mathbb{R}$ and scale parameter $\sigma > 0$, is defined as

$$G_{\xi,\mu,\sigma}(x) = \begin{cases} 1 - \left(1 + \xi \frac{x - \mu}{\sigma}\right)^{-\frac{1}{\xi}}, & \xi \neq 0\\ 1 - \exp\left(-\frac{x - \mu}{\sigma}\right), & \xi = 0 \end{cases}$$

 $\label{eq:constraint} \Box \mbox{ For } \xi \geq 0 \mbox{, the support of } {\cal G}_{\xi,\mu,\sigma} \mbox{ is } \mu \leq x < \infty$

- \Box For $\xi < 0$, the support of $G_{\xi,\mu,\sigma}$ is $[0,x_F]$, with $x_F = \mu \sigma/\xi$
- **\Box** The GPD corresponds to the Pareto distribution for $\xi > 0$
- $\hfill\square$ The probability density function is

$$g_{\xi,\mu,\sigma}(x) = \begin{cases} \frac{1}{\sigma} \left(1 + \xi \frac{x-\mu}{\sigma} \right)^{-\frac{1}{\xi}-1}, & \xi \neq 0\\ \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma} \right) & \xi = 0 \end{cases}$$

 $\hfill\square$ The quantile function is

$$q_{1-lpha} = egin{cases} \mu - rac{\sigma}{\xi} ig(1-lpha^{-\xi}ig) & \xi
eq 0 \ \mu - \sigma \log lpha & \xi = 0 \end{cases}$$

Summer School CEA-EDF-INRIA, 2011 32 / 54

500

æ

ヘロト ヘヨト ヘヨト

Introduction to extreme value theory Fundamentals of EVT

Properties of the GPD

□ Log-transform: Let $X \sim \text{GPD}(\xi, \sigma)$, then

$$\mathsf{Y} = \frac{1}{\xi} \log \Bigl(1 + \frac{\xi}{\sigma} X \Bigr)$$

has a standard exponential distribution

□ Stability with respect to excess-over-threshold operations

 $X \sim \operatorname{GPD}(\xi, \sigma) \implies Y = X - u \mid X > u \sim \operatorname{GPD}(\xi, \sigma + \xi u)$

It is important to notice that the operation does not affect the shape parameter; it only alters the scale parameter of the distribution.

 $\hfill\square$ the mean-excess function of the GPD

If $X \sim \text{GPD}(\xi, \sigma)$, with $\xi < 1$, the mean excess function $e(u) = E(X - u \mid X > u)$ is given by

$$e(u) = rac{\sigma}{1-\xi} + urac{\xi}{1-\xi}, \quad u \leq x_F$$

(The mean excess function is affine. Note that e is decreasing if $\xi < 0$, constant if $\xi = 0$, and increasing if $\xi > 0$)

Extreme events modeling I

E. Vazquez

Introduction to extreme value theory Tail approximation

Tail approximation

□ GPD fitting is one of the most useful concept of EVT

□ The Pickands–Balkema–de Haan theorem: For a large class of distributions, the conditional cdf F_u of the excesses over u can be approximated by the GPD, as $u \to x_F$

$$\lim_{u\to x_F} \sup_{0< x< x_F-u} |F_u(x) - G_{\xi,\sigma(u)}(x)| = 0$$

with

$$F_u(y) = P(X - u \le y \mid X > u) = \frac{F(u + y) - F(u)}{1 - F(u)}, 0 \le y \le x_F - u$$

□ Recall that raising the threshold of the GPD only changes the scale parameter of the GPD □ By setting y = x - u, we obtain, for $u \le x \le x_F$,

$$F(x) = [1 - F(u)]F_u(x - u) + F(u)$$

 \Box Since F_u converges to the GPD, for sufficiently large u, we obtain the approximation

$$F(x) \approx [1 - F(u)]G_{\xi,\sigma(u)}(x - u) + F(u)$$
, for $u \le x \le x_F$

E. Vazquez

< □ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ Q (~ Summer School CEA-EDF-INRIA, 2011 37 / 54

Introduction to extreme value theory Choice of a threshold

Choice of high threshold

- ▶ How to select an adequate threshold above which it is appropriate to use the GPD?
- ► The choice of has been extensively addressed in the extremes literature → see, e.g., de Haan (1990) and Beirlant, Teugels and Vynckier (1996)
- A difficult issue:
 - threshold too low generally increases the bias of the parameter estimators
 - threshold too high increases the variance of the parameter estimators, due to the reduced size of the corresponding sample of excesses.
- The MEF can assist a user in the search for an adequate threshold Recall that for a GPD

$$e(u) = \frac{\sigma}{1-\xi} + u\frac{\xi}{1-\xi}, \quad u \leq x_F$$

Idea: compute an empirical estimate e_n , and check a region where the graph of e_n becomes roughly affine

▶ For a random sample of size *n*, the empirical MEF may be written as

$$e_n(u) = \frac{\sum_{i=1}^n (X_i - u) \mathbbm{1}_{X_i > u}}{N_u}$$

with $N_u = \sum_{i=1}^n \mathbb{1}_{X_i > u}$

E. Vazquez

Example: case of truncated normal $X \sim \sqrt{rac{2}{\pi}} \exp(-x^2/2)$, $x \geq 0$, The mean excess function is $e(u) \stackrel{u \to \infty}{\sim} u^{-1}(1+o(1))$ 0.8 0.6 0.4 Mean Excess 0.2 0 -0.2 0.5 2.5 3 3.5 0 1 1.5 2 Threshold X belongs to the maximal domain of attraction of the Gumbel distribution ($\xi = 0$) - ロ > - 4 日 > - 4 日 > - 4 日 > æ 590 E. Vazquez Summer School CEA-EDF-INRIA, 2011 43 / 54 Extreme events modeling I

Introduction to extreme value theory GPD fitting

GPD fitting

• Having chosen a sufficiently large threshold u, we have the approximation

$$F(x) \approx [1 - F(u)]G_{\xi,\sigma(u)}(x - u) + F(u)$$
, for $u \le x \le x_F$

• F(u) can be estimated by the empirical estimator

$$(n - N_u)/n$$

where N_u is the number of observations above u, and n is the sample size

An estimator of the tail of the cdf is therefore given by

$$\widehat{F}(x) = 1 - rac{N_u}{n} \left(1 + \widehat{\xi} rac{x-u}{\widehat{\sigma}}
ight)^{-rac{1}{\widehat{\xi}}}, \quad ext{for } u \leq x \leq x_F$$

where $\widehat{\xi}$ and $\widehat{\sigma}$ are estimates of ξ and σ

• How to estimate ξ and σ ?

Maximum likelihood estimation of ξ and σ

- Analytical maximization of the log-likelihood is not possible (numerical techniques are required, taking care to avoid numerical instabilities for ξ ≈ 0)
- ► Asymptotic properties of the ML estimators of the GPD parameters, such as consistency, normality and efficiency, can be established for ξ > −1/2
- For $\xi > -1/2$,

$$n^{1/2} \Big(\widehat{\xi}_n - \xi, \frac{\widehat{\sigma}_n}{\sigma} - 1 \Big) \stackrel{d}{\to} \mathrm{N}(0, \Sigma) \,, \quad n \to \infty$$

with

$$\Sigma = (1+\xi) egin{pmatrix} 1+\xi & -1 \ -1 & 2 \end{pmatrix}$$

- The ML estimation of the GPD parameters can be a quite difficult task, even for $\xi \ge -1/2$
- Indeed, the algorithms used for computing the ML estimates can exhibit convergence problems, even for large sample sizes
- ▶ Note that other estimators of the parameters of the GPD are available in the literature

Estimation of a probability of failure • Consider again the problem of the estimation of a probability of failure: let $X \sim P_X$ and Z = f(X)• Given a threshold u, our objective is to estimate $\alpha^u(f) = 1 - F_Z(u)$ by substituting $F_Z(u)$ with the approximation $\widehat{F}_Z(u) = 1 - \frac{N_{u_0}}{n} \left(1 + \widehat{\xi} \frac{u - u_0}{\widehat{\sigma}}\right)^{-\frac{1}{\xi}}$, where u_0 is a high threshold chosen such that $u_0 < u$, N_{u_0} is the number of observations above u_0 , and $\widehat{\sigma}$ and $\widehat{\xi}$ are estimates of the parameters of a GPD • We obtain $\widehat{\alpha}^u(f) = \frac{N_{u_0}}{n} \left(1 + \widehat{\xi} \frac{u - u_0}{\widehat{\sigma}}\right)^{-\frac{1}{\xi}}$

Introduction to extreme value theory Estimation of a probability of failure

Confidence intervals

- ► Asymptotic standard errors, or asymptotic confidence intervals for \(\hat{\alpha}^u(f)\) can be derived from the delta method or bootstrap
- ▶ Delta method: Let T_n be an estimator of $\theta \in \mathbb{R}^d$, and let $\phi : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. If

$$\sqrt{n}(T_n - \theta) \rightarrow_d \mathrm{N}(0, \Sigma)$$

then

$$\sqrt{n}(\phi(T_n) - \phi(\theta)) \rightarrow_d \mathrm{N}(0, [\nabla \phi(\theta)]^{\mathsf{T}} \Sigma [\nabla \phi(\theta)])$$

- The asymptotic distribution of $(\hat{\xi}, \hat{\sigma})$ has been given above
- ▶ The random variable N_u follows the binomial distribution Binomial(n, 1 F(u)), so that the estimator N_u/n of [1 F(u)] has variance F(u)(1 F(u))/n
- Thus the complete asymptotic variance-covariance matrix for $(N_u/n, \hat{\xi}, \hat{\sigma})$ is $\frac{1}{n}\Sigma$, with

$$\Sigma = egin{pmatrix} {\sf F}(u)(1-{\sf F}(u)) & 0 & 0 \ 0 & (1+\xi)^2 & -\sigma(1+\xi) \ 0 & -\sigma(1+\xi) & 2\sigma^2(1+\xi) \end{pmatrix}$$

• The gradient of $\phi(\eta, \xi, \sigma) = \eta \left(1 + \xi \frac{u - u_0}{\sigma}\right)^{-\frac{1}{\xi}}$ can be easily expressed in closed form

Some references

- Beirlant, J., Teugels J.L., and Vynckier P. (1996). "Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics" Journal of the American Statistical Association 91: 1659-1667
- Carter, D.J.T., and Chalenor, P.G. (1981) "Estimating return values of environmental parameters" Quarterly Journal of the Royal Meteorological Society 107: 259-266
- Coles, S.G, and Tawn, J.A (1996). "Modelling extremes of the areal rainfall process" Journal of the Royal Statistical Society B 58: 329-347
- Coles, S.G. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer
- Dawson, T.H. (2000) "Maximum wave crests in heavy seas" Journal of Offshore Mechanics and Artic Engineering - Transactions of the AMSE 122: 222-224
- ▶ de Haan, L. (1990) "Fighting the arch-enemy with mathematics." Statistica Neerlandica 44: 45-68
- Embrechts, P., Kluppelberg C., and Mikosch T. (1997). Modelling Extremal Events for Insurance and Finance. Springer-Verlag
- ▶ Gumbel, E.J. (1958) Statistics of Extremes. Columbia University Press
- Kotz, S. and Nadarajah S. (2000) Extreme Value Distributions: Theory and Applications. World Scientific Publishing Company
- Pickands, J. (1975) "Statistical inference using extreme order statistics" Annals of Statistics 3: 119-131
- Reiss, R.D., and Thomas M. (2001) Statistical analysis of extreme values from insurance, finance, hydrology and other fields. Birkhäuser
- Resnick, S.I. (1987) Extreme Values, Regular Variation and Point Processes. Springer Verlag

Summing up

		 < □ > < □ > < □ > < Ξ > < Ξ > < Ξ 	9 Q (?
E. Vazquez	Extreme events modeling I	Summer School CEA-EDF-INRIA, 2011	53 / 54

Summing up			
The estimation of small p	robabilities of failure is a difficul	lt task	
• If the evaluation of the performance function f is time-consuming, estimating a probability of failure $\alpha \approx 10^{-3}$ is already challenging			
EVT is a useful tool: makes the best use of available data for analyzing extreme events			
E. Vazquez	Extreme events modeling I	▲ □ ▶ ▲ 🗇 ▶ ▲ Ξ ▶ ▲ Ξ ▶ Ξ → ♀ (~ Summer School CEA-EDF-INRIA, 2011 54 / 54	