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Structural reliability Limit-state functions

Reliability approach in mechanics

◮ In mechanics, the term reliability describes the ability of a system to accomplish a
required function

◮ Mechanical materials or structures are considered as systems comprising an input, a
state and an output

◮ The classical point of view

Stress Model

Resistance Model
Parameters

Design

Load

R = r(x)

S = s(x)

gR,S(R,S)x

◮ The success of a design (or serviceability) is seen in the verification of the inequality

gR,S(R,S) = R − S ≥ 0

◮ The quantity gR,S(R,S) = R − S is called the (safety) margin

◮ gR,S is called the limit-state function.
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Structural reliability Limit-state functions

Example: deformation of a rod
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∆L = F·L

A·E
(m)

load F (N)

cross section A (m2)

◮ The yield point of a material is defined as the stress
at which a material begins to deform plastically
(prior to the yield point the material will deform
elastically and will return to its original shape when
the applied stress is removed)

◮ Stress: σ = F/A (Pa)

◮ Yield limit: σy (Pa)

◮ Design rule: F/A ≤ σy

◮ Set

x = (F ,A, σy) ∈ R
3

r(x) = Aσy

s(x) = F

◮ Define gR,S : (R,S) 7→ R − S . The design must
verify

gR,S (r(x), s(x)) = Aσy − F ≥ 0
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Structural reliability Limit-state functions

Failure region, Limit-state function

◮ The operating scenario is the availability of a resistance R greater than the stress S ,
such that

gR,S(R,S) = R − S ≥ 0

◮ The failure scenario is
gR,S(R,S) = R − S < 0

and the failure region is defined as the region of R2
+

Γ = {(r , s) ∈ R
2
+; gR,S(r , s) < 0}

◮ The limit state is defined as the region of R2
+

∂Γ = {(r , s) ∈ R
2
+; gR,S(r , s) = 0}

(hence, the name limit-state function for gR,S)
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Structural reliability Limit-state functions

Probability of failure

◮ In practice, the load applied on a system is unknown, and the design parameters are
subjected to dispersions

→ the parameter vector x is uncertain, and can be modeled by a random vector

X ∼ PX

◮ Then, R = r(X ) and S = s(X ) are also random variables

◮ Let fR,S be the joint pdf of (R,S) (wrt to the Lebesgue measure)

◮ The probability of failure of the system corresponds to

α = P{R − S < 0} =

∫

r−s<0

fR,S(r , s)drds

◮ Reliability is defined as 1− α
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Structural reliability Limit-state functions

Probability of failure

◮ Usually, R and S assumed to be independent

◮ Then,

α =

∫

r−s<0

fS(s)fR(r)drds

=

∫

s∈[0,∞[

fS(s)

(∫

r∈[0,s]

fR(r)dr

)

ds

=

∫

s∈[0,∞[

fS(s)FR(s)ds

where fS and fR are the pdf of S and R, and FR is the cdf of R
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Structural reliability Limit-state functions

Probability of failure: case of a known resistance

◮ When the resistance is deterministic: R = r0 =⇒ FR(r) = 1r0,∞[(r)

◮ Then α = P{S > r0} = P{s(X ) > r0}
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Structural reliability Reliability indexes

Reliability indexes in structural reliability

◮ In the domain of structural reliability, the serviceability of a design is often quantified
using the notion of a reliability index

◮ When the resistance and the stress are deterministic, the notion of reliability index
may be defined arbitrarily as the numbers

R

S
or R − S

◮ When R and S are viewed as independent random variables, a notion reliability index
may be defined as the number

βC =
E(gR,S(R,S))

var(gR,S(R,S))1/2
=

mR −mS√
σ2
R + σ2

S

◮ However, the interpretation of βC is not simple and, above all, βC is generally not
related to the probability of failure of the system
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Structural reliability Limit-state function defined on the factor space

Probability of failure expressed in terms of the uncertain factors

◮ Note that the point of view of structural reliability is not different from that
presented in Part I

◮ In practice, fR and fS cannot be determined directly by the user → only the
distribution PX of the vector of uncertain factors can

◮ Thus, it is generally easier to express a limit-state function gX in the factor space:

gX : x 7→ gR,S(r(x), s(x))

so that the probability of failure can be expressed as

α = P{gX (X ) < 0} , X ∼ PX

or
α = PX{x ∈ X; gX (x) < 0} = PX{gX < 0}

(The probability of failure is the volume of excursion of g above zero.)
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Structural reliability Affine limit-state functions

Probability of failure for Gaussian random factors and affine limit-state
function

◮ Assume X ∼ N(0, Id) ∈ R
d

◮ Assume moreover that gX is affine: ∀x ∈ R
d

gX (x) = a0 + a1x[1] + · · ·+ adx[d ] = a0 + (a, x)

◮ Then, the limit-state ∂Γ is the hyperplane defined by a0 + (a, x) = 0

fX = cst

gX = 0

β

x⋆
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Structural reliability Affine limit-state functions

Probability of failure for Gaussian random factors and affine limit-state
function

fX = cst

gX = 0

β

x⋆

◮ Let x⋆ be the nearest point of the hyperplane ∂Γ = {x ∈ R
d ; a0 + (a, x) = 0} to

the origin

◮ x ∈ ∂Γ ⇐⇒ (x − x⋆, x⋆) = (x⋆, x)− ‖x⋆‖2 = 0

◮ Thus, for a0 6= 0,
a

a0
= −

x⋆

‖x⋆‖2
=⇒ β := ‖x⋆‖ =

|a0|

‖a‖

◮ Note that U = (X , η), with X ∼ N(0, Id) and η = x⋆/β, is a random variable with
distribution N(0, 1)
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Structural reliability Affine limit-state functions

Probability of failure for Gaussian random factors and affine limit-state
function

◮ A failure corresponds to the event {U > β} = {(X , x⋆) > β2}, which has probability

α = 1− P{U ≤ β} = 1− Φ(β) = Φ(−β)

◮ Therefore, to compute a probability of failure in the case of standard normal factors
and affine limit-state function gX :
1. Solve

x⋆ =arg min
x∈Rd

‖x‖

subject to gX (x) = 0

2. The probability of failure is α = Φ(−β), with β = ‖x⋆‖

◮ In the literature of structural reliability, x⋆ is called a design point, or most central
failure point
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Structural reliability Affine limit-state functions

Probability of failure for Gaussian random factors and affine limit-state
function

◮ Consider again an affine limit-state function gX : x 7→ a0 + (a, x)

◮ Define the margin as the random variable Z = gX (X )

◮ Note that
E (Z ) = a0

and
var(Z ) = a

2
1 + · · ·+ a

2
d = ‖a‖2

◮ Thus,

β =
|a0|

‖a‖
=

|E (Z )|

var(Z )1/2

◮ In the literature of structural reliability, the ratio E(Z)

var(Z)1/2
is interpreted as a reliability

index

◮ β is called the Hasofer-Lind reliability index
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Structural reliability Affine limit-state functions

Measure of the importance of the factors with respect to a failure

◮ The sensitivity of the probability of failure with respect to changes in the factors is
an important information for the design of a system (makes it possible to understand
which factor are most important to control)

◮ One possibility to define a notion of sensitivity is to look at the variation of the
margin z = gX (x) as a function of x ;

◮ We have
∇gX (x) = a = −

a0

β
η

with η = 1
β
x⋆

◮ Thus, if the i th component η[i ] of the unit vector η is large, the margin will vary
rapidly as we move along the i th direction

➟ η[i ] accounts for the importance of the ith factor
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Structural reliability First-order reliability method

Extensions

At this point, several extensions can be considered:

◮ Non-affine limit-state functions

◮ Gaussian non-standard random factors

◮ Non-Gaussian independent random factors

◮ Non-Gaussian non-independent factors

→ first-order reliability method (and related methods)

E. Vazquez Extreme events modeling II Summer School CEA-EDF-INRIA, 2011 16 / 43



Structural reliability First-order reliability method

Non-affine limit-state functions

◮ In some applications, it may be reasonable to approximate the limit state ∂Γ by a
geometric shape such as a hyperplane

fX = cst

gX = 0

β

x⋆

◮ Therefore, to approximate a probability of failure in the case of standard normal
factors and a non-affine limit-state function gX :
1. Solve

x⋆ =arg min
x∈Rd

‖x‖

subject to gX (x) = 0

2. An approximation of the probability of failure is α̂ = Φ(−β), with β = ‖x⋆‖
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Structural reliability First-order reliability method

Non-affine limit-state functions: FORM

fX = cst

gX = 0

β

x⋆

◮ If gX is smooth, note that ∇gX |x=x⋆ ∝ η, with η = x⋆/β

◮ Thus the equation of the approximating hyperplane is

(∇gX |x=x⋆ , x − x⋆) = 0

◮ Note that x 7→ (∇gX |x=x⋆ , x − x⋆) is the first-order approximation of gX in the
neighborhood of x⋆

◮ In structural reliability, using a first-order approximation of gX at x⋆ in a standard Gaussian
factor space is called First-Order Reliability Method (FORM)
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Structural reliability First-order reliability method

Finding the most central failure point

◮ Solving

x
⋆ =arg min

x∈Rd
‖x‖

subject to gX (x) = 0

is a constrained optimization problem, for which many algorithms has been proposed
in the literature:

◮ Penalty methods
◮ Augmented Lagrangian
◮ Projected gradient
◮ BFGS
◮ SQP
◮ ...

(they all are local optimization algorithms)

◮ In general, finding a good approximation of x⋆ can be done with a moderate number
of evaluations of gX

◮ However: gX generally need to be convex and differentiable
➟ If there exist (even small) numerical instabilities when computing gX , as may be
the case in models based on the numerical solution of some partial differential
equations, then the optimization of gX using standard techniques can fail direly
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Structural reliability First-order reliability method

How much can go wrong with FORM?

◮ For some applications, finding x⋆ can be done with only a few evaluations of gX →
interesting when gX is expensive to evaluate

◮ However, having found x⋆ does not tell if the approximation α ≈ Φ(−β) is good or
not

◮ The probability of failure can be overestimated or underestimated

◮ Consider, for instance the following domain of failure:

Γ = {x ∈ R
d ; ‖x‖ > β0}

◮ Let V = X 2
[1] + · · ·X 2

[d ], so that V ∼ χ2(d). The failure event is {V > β2
0}.

◮ Hence, we have α = 1− FV (β
2
0) and α̂ = 1− Φ(β0)

◮ Example: suppose d = 20 and β0 = 5, we obtain α̂ ≈ 2.9 · 10−7 but α ≈ 0.2!

◮ The FORM approximation should be used only when prior knowledge about the
shape of ∂Γ is available
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Structural reliability First-order reliability method

Quadratic approximation: SORM

◮ Instead of using a first-order approximation, one could think of using a second-order
approximation

fX = cst

gX = 0

β

x⋆

→ Second-Order Reliability Method (SORM)

◮ Such an approximation requires the approximation of x⋆ and the estimation of the curvature
of the limit-state at x⋆

◮ A quadratic approximation is more expensive to obtain, but there is, in general, no
guarantee that the approximation of the probability of failure will be better than the
first-order approximation

◮ In fact, we can have
α > α̂FORM > α̂SORM
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Structural reliability First-order reliability method

Multiple local first-order approximations: multi-FORM

◮ Another possibility proposed in the literature: compute several design points, that is,
several local minimizers of ‖x‖ subject to the constraint gX (x) = 0

fX = cst

gX = 0

β1

β2

x⋆1

x⋆2

◮ Finding several local minimizers can be
a difficult task

◮ Consider again the domain of failure:

Γ = {x ∈ R
d ; ‖x‖ > β0}

and the approximation

Γ̂ = {x ∈ R
d ; max

i
|x[i ]| > β0}

(obtained with 2d design points)

◮ Then,
α̂ = P{X ∈ Γ̂} = 1−

∏
i (Φ(β0)− Φ(−β0)) = 1− (1− 2Φ(−β0))

d ≈ 2dΦ(−β0)

=⇒ for d >> 1, α >> α̂
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Structural reliability First-order reliability method

Non-standard Gaussian random factors

◮ Assume X ∼ N(m,K) ∈ R
d , with m ∈ R

d and K a d × d symmetric definite positive (SDP)
matrix

◮ To apply the framework above, the idea is to search for a one-to-one whitening
transformation T : Rd → R

d such that U = T (X ) is a standard Gaussian random vector

◮ Consider the eigendecomposition of K such that K = QΛQT, where Λ is the diagonal
matrix of the eigenvalues of K , and Q is orthogonal

◮ Then, T : X 7→ Λ−1/2QT(X −m) is such that U = T (X ) ∼ N(0, Id )

◮ Note that if gX is affine, then gU = gX ◦ T−1 is also affine in the standardized space
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Structural reliability First-order reliability method

Non-Gaussian independent random factors

◮ When the components of X are independent but non Gaussian, the idea is to search
for one-to-one transformations Ti : R

d → R
d such that for each i = 1, . . . , d ,

U[i ] = Ti (X[i ]) is a standard Gaussian random vector

◮ Assume that the cdf Fi of X[i ] is continuous and strictly increasing, then

U[i ] = Φ−1(Fi(X[i ])) ∼ N(0, 1),

where Φ−1 stands for the inverse (reciprocal) function of Φ
Indeed,

P{U[i ] ≤ u} = P{Φ−1(Fi (X[i ])) ≤ u}

= P{X[i ] ≤ F
−1
i (Φ(u))}

= Φ(u)

◮ Thus, if the components of X are independent but non Gaussian, the random vector

U = T (X ) = (Φ−1◦ Fi (X[1]), . . . ,Φ
−1◦ Fd(X[d ])) ∼ N(0, Id)
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Structural reliability First-order reliability method

Non-Gaussian non-independent random factors

◮ As above, the idea is to transform the random vector of factors

◮ This case will be examined separately: in fact it raises two difficult issues:

◮ how to specify the distribution of a random vector in the case of non-independent
components?

◮ what is the influence of the input distribution on the probability of failure?
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Structural reliability First-order reliability method

FORM and related methods: summing up

◮ Very popular methods in the domain of structural reliability

◮ FORM is easy to understand and to implement

◮ When a first-order approximation is relevant, a good approximation of the
probability of failure can be found with a small number of function evaluations

◮ A major pitfall: the approximation of the probability of failure can be significantly
wrong
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Structural reliability First-order reliability method

A personal perspective on the geometrical approximation approaches

◮ If gX is not expensive to evaluate:
◮ Monte Carlo should be preferred over any geometrical approximation

◮ If gX is expensive:
◮ a simple MC approach cannot be used
◮ what can be the use of a geometrical approximation?

◮ It can be very wrong to approximate the limit state with a geometrical shape

◮ can only be justified when it is known in advance that a given geometrical
approximation is correct

◮ SORM can be though as a correction of FORM, but from a mathematical
perspective, it is not → using SORM over FORM can only be justified when it is
known in advance that gX is almost quadratic

◮ A multi-FORM approach seems preferable, but using it is to admit that the shape of
the limit state is unknown, which is dangerous for a geometrical approximation
approach

◮ Fortunately, in a large number of applications, the limit-state function is almost
affine, which explains why FORM remains a very popular method
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Structural reliability Reliability of systems

Reliability of systems

◮ Until now, we have implicitly considered the case of the failure of a unique
component

◮ In a real system, a failure can happen due to the failure of just one of its (possibly
many) components

◮ The designer can also choose to have redundancy on critical components; in this
case the failure of the system happens when all redundant components fail

◮ To deal with these issues, the domain of structural reliability generally introduces the
notions of parallel and series systems
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Structural reliability Reliability of systems

Reliability of systems: series systems

◮ Let x denotes the state of a system, and let Γ be a domain of failure

◮ In structural reliability, a system is called a series system if the occurrence of one
single failure event brings a failure on the whole system

◮ The classical example is that of a chain whose failure is related to any of its links

◮ In other words, it means that we can write

Γ =

I⋃

i=1

Γ(i)

◮ Assume that each domain of failure Γ(i) is characterized by a limit-state function
g
(i)
X , so that the failure of the i th component corresponds to the event {g

(i)
X (X ) < 0}

◮ Then the failure event for the whole system can be characterized by the limit-state
function

gX : x 7→ g
(1)
X (x) ∧ · · · ∧ g

(I )
X (x)

◮ Conclusion: the case of series systems can be dealt with using the framework we
have exposed previously
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Structural reliability Reliability of systems

Reliability of systems: parallel systems

◮ In structural reliability, a system is called a parallel system if the failure of all events
is necessary for the failure of the whole system

◮ A parallel system is a principle a redundancy

◮ Using the notations above, the domain of failure for a parallel system corresponds to

Γ =
⋂

i

Γi

◮ Again, the failure event for the whole system can be characterized by a single
limit-state function

gX : x 7→ g
(1)
X (x) ∨ · · · ∨ g

(I )
X (x)

◮ Conclusion: parallel systems can also be dealt with using the framework we have
exposed previously
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Structural reliability References

Some references

◮ Ditlevsen O. and Madsen H.O. (1996), Structural reliability methods, Wiley

◮ Lemaire M., Chateauneuf A., and Mitteau J.C., (2009) Structural Reliability, Wiley
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Elicitation of subjective probability distributions Definition

Elicitation of subjective probability distributions

◮ A very difficult issue: to choose a probability distribution for modeling the uncertain
factors of a system

◮ The process of choosing a distribution for the factors is called elicitation1 in the
literature of decision analysis

◮ Elicitation is particularly difficult when doing risk analysis about new and untried
technologies, for which little data are available

◮ Very often, risk analysis relies on expert judgment

◮ Elicitation of subjective probability distributions is often subject to a number of
serious biases, such as overconfidence in the ability to quantify uncertainty

1from Latin elicere: draw forth, bring out
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Elicitation of subjective probability distributions Definition

Elicitation of subjective probability distributions

◮ Assume that we are given an approximation of the mean and the standard deviation of a
random variable

◮ An experiment:

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

◮ X ∼ N(µ, σ2)

◮ Y ∼ logN(m, s2), with s2 = log(σ
2

µ2 + 1)

and m = logµ− s2/2.

◮ Then, E[X ] = E[Y ] = µ and
var[X ] = var[Y ] = σ2.

◮ Assume µ = 3 and σ2 = 1. Then,
P(X > 7) = 3.1 · 10−5 and
P(Y > 7) = 2.8 · 10−3

◮ For risk analysis, “knowing”only the mean and the standard deviation of a random variable
is a very poor information

◮ In fact, in many applications, the occurrence of a failure is likely to be related to an extreme
event in the factor space

→ it is probably more important to characterize the tail behavior of the factors than the
central behavior (EVT can help)
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Elicitation of subjective probability distributions Definition

Elicitation of subjective probability distributions

◮ Elicitation gets even more complicated if we want to introduce dependence
information between random variables. In fact, the question is: “how to measure
dependence?”

◮ In probability theory and statistics, the dependence between random variables is
described by the concept of copula (from Latin co-apere“join together”)
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Elicitation of subjective probability distributions Copulas

Copulas

◮ Consider a random vector X = (X1, . . . ,Xd) ∈ R
d . The dependence between the

component random variables X1, . . . ,Xd is completely described by the joint cdf

F (x1, . . . , xd) = P{X1 ≤ x1, . . . ,Xd ≤ xd}

◮ For simplicity, assume that the components Xi , i = 1, . . . , d , have continuous,
strictly increasing, marginal cdfs Fi

◮ The concept of copula: separate F into a part that describes the dependence
structure and parts which describe the marginal behavior only

◮ Transform X component-wise to obtain standard-uniform marginal
distributions U([0, 1])

T : domF → [0, 1]d

(x1, . . . , xd) 7→ (F1(x1), . . . ,Fd(xd))

◮ The joint cdf of U = T (X ) is called the copula of the random vector X

◮ It follows that for x ∈ domF

F (x1, . . . , xd) = C(F1(x1), . . . ,Fd(xd))

and for u ∈ [0, 1]d

C(u1, . . . , ud) = F (F−1
1 (u1), . . . ,F

−1
d (ud))
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Elicitation of subjective probability distributions Copulas

Copulas
◮ Some copulas/dependence structures:

◮ The independent copula: Cind(u) = u1u2 · · · ud
◮ The Gaussian copula

Cg,R(u1, . . . , ud ) =

∫ Φ−1(u1)

−∞
· · ·

∫ Φ−1(ud )

−∞
(2π)−d/2(detR)−1/2 exp

(
−
1

2
uTR−1u

)
du1 · · · dud

◮ The bivariate Gumbel copula CGu,β(u, v) = exp
[
−

{
(− log u)1/β + (− log v)1/β

}β
]

from Embrechts et al. (1999)

Realizations from two
distributions with identical
Gamma(3, 1) marginal
distributions and identical
correlation ρ = 0.7, but
different dependence
structures.
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Elicitation of subjective probability distributions Linear correlation

Linear correlation (or Pearson’s correlation)

◮ In some applications, choosing independent random factors is irrelevant

◮ However, choosing a dependence structure can be a difficult task because
information may be scarce (e.g., no data available)

◮ Very often, the dependence structure of a random vector is summarized through
(linear) correlations between components

Recall that for (X ,Y ) ∈ R
2, a second-order random vector, the linear correlation

coefficient is

ρ(X ,Y ) =
cov(X ,Y )√
var(X ) var(Y )

If |ρ(X ,Y )| = 1, then there is a perfect linear dependence between X and Y , i.e.,
Y = aX + b, for some a, b ∈ R
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Nataf transformation

◮ The Nataf transformation TNataf is a one-to-one function which maps a random
vector X with a Gaussian copula to a random vector U with standard Gaussian
distribution

◮ Makes it possible to apply FORM for non-Gaussian non-independent random vectors

◮ Conversely, the Nataf transformation makes it possible to define implicitly the
distribution F of a random vector X = (X1, . . . ,Xd) with

1. Gaussian copula

2. prescribed continuous, strictly increasing, marginals F1, . . . ,Fd

3. prescribed correlation matrix RX = (ρ(Xi ,Xj ))i,j

◮ Considering a Gaussian copula for the dependence structure of X should not be
considered as a canonical choice → a comprehensive risk analysis procedure should
assess the consequences of this particular choice
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Inverse Nataf transformation

◮ Let U ∼ N(0, Id )

◮ Given continuous strictly increasing marginals cdfs F1, . . . ,Fd , and a d × d correlation
matrix RX , the inverse Nataf transformation is defined as
X = T−1

Nataf
(U) = T3 ◦ T2 ◦ T1(U), with

T1 : R
d → R

d

u = (u1, . . . , ud ) 7→ Cu

T2 : R
d → [0, 1]d

v = (v1, . . . , vd ) 7→ (Φ(v1), . . . ,Φ(vd ))

T3 : [0, 1]d → R
d

w = (w1, . . . ,wd ) 7→ (F−1
1 (w1), . . . ,F

−1
d

(wd ))

where C is a d × d matrix which is computed in such a way that X has correlation
matrix RX

◮ Note that V = T1(U) is a Gaussian vector. Thus, it has a Gaussian copula. Since T2 and
T3 are component-wise monotonic transformations, T2 and T3 are copula-invariant

◮ Note that the correlation matrix of V = T1(U) is RV = CCT. In general, RV 6= RX .

◮ Note also that it is not always possible to prescribe any correlation coefficient (depending on
the choice of the marginals)
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Dependence measures

◮ As mentioned above, considering a Gaussian copula for the dependence structure of
X should not be considered as a canonical choice

◮ Moreover, measuring dependence based on correlation coefficients can be misleading
→ linear dependence should not be taken as a canonical dependence measure

Realizations from seven bi-variate distributions with zero correlation

◮ Other measures of the dependence?
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Dependence measures

◮ Non-linear dependence measures have been proposed in the literature

◮ In particular, rank correlation coefficients, such as Spearman’s rank correlation
coefficient ρ, and Kendall’s rank correlation coefficient τ measure the extent to
which two variables increase or decrease simultaneously

◮ For instance, Spearman’s ρ is defined as the Pearson’s correlation coefficient
between the ranked variables

from Wikipedia: article on Spearman’s rank correlation coefficient
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Tail dependence

◮ In the context of risk analysis, it might be relevant to study the dependence between
extreme values

◮ Let X = (X1,X2) be a vector of continuous random variables with marginals F1

and F2. The coefficient of upper tail dependence of (X1,X2) is

λU = lim
u→1

P{X2 > F
−1
2 (u) | X1 > F

−1
1 (u)}

provided that the limit exists. If λU is well-defined, λU ∈ [0, 1]

◮ The value of λU is a property of the copula of X only
◮ Examples:

◮ Consider the Gaussian bi-variate copula, with correlation ρ < 1. Then, λU = 0; that is,
a Gaussian copula with ρ < 1 does not have tail dependence

◮ The Gumbel bi-variate copula, with parameter β > 1, has tail dependence
λU = 2− 21/β

◮ Choosing a copula with tail-dependence over the Gaussian copula can modify the
probability of failure by several orders of magnitude—see, for instance, Dutfoy and
Lebrun, Congrès Français de Mécanique (2007)
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