

Reliability approach in mechanics

- In mechanics, the term reliability describes the ability of a system to accomplish a required function
- Mechanical materials or structures are considered as systems comprising an input, a state and an output
- The classical point of view

▶ The success of a design (or serviceability) is seen in the verification of the inequality

$$g_{R,S}(R,S)=R-S\geq 0$$

- The quantity $g_{R,S}(R,S) = R S$ is called the (safety) margin
- ▶ *g*_{*R*,*S*} is called the limit-state function.

		< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 の Q @
E. Vazquez	Extreme events modeling II	Summer School CEA-EDF-INRIA, 2011 3 / 43

Probability of failure In practice, the load applied on a system is unknown, and the design parameters are subjected to dispersions → the parameter vector x is uncertain, and can be modeled by a random vector X ~ P_X

Limit-state functions

- Then, R = r(X) and S = s(X) are also random variables
- Let $f_{R,S}$ be the joint pdf of (R, S) (wrt to the Lebesgue measure)

Structural reliability

The probability of failure of the system corresponds to

$$\alpha = \mathsf{P}\{R - S < 0\} = \int_{r-s<0} f_{R,S}(r,s) dr ds$$

• Reliability is defined as $1 - \alpha$

Reliability indexes in structural reliability

- In the domain of structural reliability, the serviceability of a design is often quantified using the notion of a reliability index
- When the resistance and the stress are deterministic, the notion of reliability index may be defined arbitrarily as the numbers

$$\frac{R}{S}$$
 or $R-S$

▶ When *R* and *S* are viewed as independent random variables, a notion reliability index may be defined as the number

$$\beta_{C} = \frac{\mathsf{E}(g_{R,S}(R,S))}{\mathsf{var}(g_{R,S}(R,S))^{1/2}} = \frac{m_{R} - m_{S}}{\sqrt{\sigma_{R}^{2} + \sigma_{S}^{2}}}$$

• However, the interpretation of β_C is not simple and, above all, β_C is generally not related to the probability of failure of the system

Extreme events modeling II

Structural reliability Limit-state function defined on the factor space

Probability of failure expressed in terms of the uncertain factors

- Note that the point of view of structural reliability is not different from that presented in Part I
- In practice, f_R and f_S cannot be determined directly by the user → only the distribution P_X of the vector of uncertain factors can
- Thus, it is generally easier to express a limit-state function g_X in the factor space:

$$g_X: x \mapsto g_{R,S}(r(x), s(x))$$

so that the probability of failure can be expressed as

$$\alpha = \mathsf{P}\{g_X(X) < \mathsf{0}\}, \quad X \sim \mathsf{P}_{\mathbb{X}}$$

or

$$\alpha = \mathsf{P}_{\mathbb{X}}\{x \in \mathbb{X}; g_X(x) < 0\} = \mathsf{P}_{\mathbb{X}}\{g_X < 0\}$$

(The probability of failure is the volume of excursion of g above zero.)

 Probability of failure for Gaussian random factors and affine limit-state function

- Assume $X \sim \mathrm{N}(0, \mathbb{I}_d) \in \mathbb{R}^d$
- Assume moreover that g_X is affine: $\forall x \in \mathbb{R}^d$

$$g_X(x) = a_0 + a_1 x_{[1]} + \cdots + a_d x_{[d]} = a_0 + (a, x)$$

• Then, the limit-state $\partial \Gamma$ is the hyperplane defined by $a_0 + (a, x) = 0$

Structural reliability Affine limit-state functions

Probability of failure for Gaussian random factors and affine limit-state function

- Let x^{*} be the nearest point of the hyperplane ∂Γ = {x ∈ ℝ^d; a₀ + (a, x) = 0} to the origin
- $x \in \partial \Gamma \iff (x x^*, x^*) = (x^*, x) ||x^*||^2 = 0$
- Thus, for $a_0 \neq 0$,

$$\frac{\mathbf{a}}{\mathbf{a}_0} = -\frac{\mathbf{x}^{\star}}{\|\mathbf{x}^{\star}\|^2} \implies \beta := \|\mathbf{x}^{\star}\| = \frac{|\mathbf{a}_0|}{\|\mathbf{a}\|}$$

Note that U = (X, η), with X ~ N(0, I_d) and η = x^{*}/β, is a random variable with distribution N(0, 1)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ <

Probability of failure for Gaussian random factors and affine limit-state function

• A failure corresponds to the event $\{U > \beta\} = \{(X, x^*) > \beta^2\}$, which has probability

$$\alpha = 1 - \mathsf{P}\{U \le \beta\} = 1 - \Phi(\beta) = \Phi(-\beta)$$

Therefore, to compute a probability of failure in the case of standard normal factors and affine limit-state function g_X:

1. Solve

$$egin{aligned} &x^{\star} = \arg\min_{x\in\mathbb{R}^d} \|x\| \ & ext{subject to } g_X(x) = 0 \end{aligned}$$

- 2. The probability of failure is $\alpha = \Phi(-\beta)$, with $\beta = ||x^*||$
- In the literature of structural reliability, x* is called a design point, or most central failure point

Extreme events modeling II

Structural reliability Affine limit-state functions

Probability of failure for Gaussian random factors and affine limit-state function

- Consider again an affine limit-state function $g_X : x \mapsto a_0 + (a, x)$
- Define the margin as the random variable $Z = g_X(X)$
- Note that

$$E(Z) = a_0$$

and

$$var(Z) = a_1^2 + \cdots + a_d^2 = ||a||^2$$

Thus,

$$\beta = \frac{|a_0|}{\|a\|} = \frac{|E(Z)|}{\operatorname{var}(Z)^{1/2}}$$

- ► In the literature of structural reliability, the ratio $\frac{E(Z)}{var(Z)^{1/2}}$ is interpreted as a reliability index
- β is called the Hasofer-Lind reliability index

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 13 / 43

Measure of the importance of the factors with respect to a failure

- The sensitivity of the probability of failure with respect to changes in the factors is an important information for the design of a system (makes it possible to understand which factor are most important to control)
- One possibility to define a notion of sensitivity is to look at the variation of the margin $z = g_X(x)$ as a function of x;
- We have

$$abla g_X(x) = a = -rac{a_0}{eta}\eta$$

with $\eta = \frac{1}{\beta} x^{\star}$

- Thus, if the ith component η_[i] of the unit vector η is large, the margin will vary rapidly as we move along the ith direction
 - \twoheadrightarrow $\eta_{[i]}$ accounts for the importance of the ith factor

		・ロ・・西・・川・・田・・日・
E. Vazquez	Extreme events modeling II	Summer School CEA-EDF-INRIA, 2011 15 / 43
Structural reliability First-order reliability method		

Extensions	
At this point, several extensions can be considered:	
Non-affine limit-state functions	
 Gaussian non-standard random factors 	
Non-Gaussian independent random factors	
Non-Gaussian non-independent factors	
ightarrow first-order reliability method (and related methods)	
	 < ロ > < 目 > < (1)

In some applications, it may be reasonable to approximate the limit state ∂Γ by a geometric shape such as a hyperplane

- Therefore, to approximate a probability of failure in the case of standard normal factors and a non-affine limit-state function g_X:
 - 1. Solve

$$x^{\star} = \arg\min_{x \in \mathbb{R}^d} \|x\|$$

subject to
$$g_X(x) = 0$$

2. An approximation of the probability of failure is $\widehat{\alpha} = \Phi(-\beta)$, with $\beta = ||x^*||$ E. Vazquez Extreme events modeling II Summer School CEA-EDF-INRIA, 2011 17 / 43

			$\mathcal{O}(\mathbf{v})$
E. Vazquez	Extreme events modeling II	Summer School CEA-EDF-INRIA, 2011	19 / 43

Structural reliability First-order reliability method

How much can go wrong with FORM?

- For some applications, finding x^* can be done with only a few evaluations of $g_X \rightarrow$ interesting when g_X is expensive to evaluate
- However, having found x^* does not tell if the approximation $\alpha \approx \Phi(-\beta)$ is good or not
- The probability of failure can be overestimated or underestimated
- Consider, for instance the following domain of failure:

$$\Gamma = \{x \in \mathbb{R}^d; \|x\| > \beta_0\}$$

- Let $V = X_{[1]}^2 + \cdots X_{[d]}^2$, so that $V \sim \chi^2(d)$. The failure event is $\{V > \beta_0^2\}$.
- Hence, we have $\alpha = 1 F_V(\beta_0^2)$ and $\widehat{\alpha} = 1 \Phi(\beta_0)$
- Example: suppose d = 20 and $\beta_0 = 5$, we obtain $\hat{\alpha} \approx 2.9 \cdot 10^{-7}$ but $\alpha \approx 0.2!$
- The FORM approximation should be used only when prior knowledge about the shape of $\partial \Gamma$ is available

Quadratic approximation: SORM

Instead of using a first-order approximation, one could think of using a second-order approximation

Non-standard Gaussian random factors

- Assume $X \sim N(m, K) \in \mathbb{R}^d$, with $m \in \mathbb{R}^d$ and K a $d \times d$ symmetric definite positive (SDP) matrix
- To apply the framework above, the idea is to search for a one-to-one whitening transformation T : ℝ^d → ℝ^d such that U = T(X) is a standard Gaussian random vector
- Consider the eigendecomposition of K such that K = QΛQ^T, where Λ is the diagonal matrix of the eigenvalues of K, and Q is orthogonal
- ► Then, $T: X \mapsto \Lambda^{-1/2}Q^{\mathsf{T}}(X-m)$ is such that $U = T(X) \sim \mathrm{N}(0, \mathbb{I}_d)$
- ▶ Note that if g_X is affine, then $g_U = g_X \circ T^{-1}$ is also affine in the standardized space

Structural reliability First-order reliability method

Non-Gaussian independent random factors

- When the components of X are independent but non Gaussian, the idea is to search for one-to-one transformations T_i : ℝ^d → ℝ^d such that for each i = 1,..., d, U_[i] = T_i(X_[i]) is a standard Gaussian random vector
- Assume that the cdf F_i of $X_{[i]}$ is continuous and strictly increasing, then

$$U_{[i]} = \Phi^{-1}(F_i(X_{[i]})) \sim \operatorname{N}(0, 1),$$

where Φ^{-1} stands for the inverse (reciprocal) function of Φ Indeed,

$$P\{U_{[i]} \le u\} = P\{\Phi^{-1}(F_i(X_{[i]})) \le u\}$$

= $P\{X_{[i]} \le F_i^{-1}(\Phi(u))\}$
= $\Phi(u)$

▶ Thus, if the components of *X* are independent but non Gaussian, the random vector

$$U = \mathcal{T}(X) = (\Phi^{-1} \circ F_i(X_{[1]}), \ldots, \Phi^{-1} \circ F_d(X_{[d]})) \sim \mathcal{N}(0, \mathbb{I}_d)$$

E. Vazquez

э

500

・ロト ・四ト ・ヨト ・ヨト

Structural reliability First-order reliability method			
A personal perspective on the geometrical approximation approaches			
 If g_X is not expensive to evaluate: Monte Carlo should be preferred over any geometrical approximation If g_X is expensive: a simple MC approach cannot be used what can be the use of a geometrical approximation? It can be very wrong to approximate the limit state with a geometrical shape can only be justified when it is known in advance that a given geometrical approximation is correct 			
SORM can be though as a correction of FORM, but from a mathematical perspective, it is not → using SORM over FORM can only be justified when it is known in advance that g _X is almost quadratic			
 A multi-FORM approach seems preferable, but using it is to admit that the shape of the limit state is unknown, which is dangerous for a geometrical approximation approach 			
Fortunately, in a large number of applications, the limit-state function is almost affine, which explains why FORM remains a very popular method			
E. Vazquez Extreme events modeling II Summer School CE	▶ ◀ Ē ▶ Ē ∽ ᠺ ᠿ A-EDF-INRIA, 2011 27 / 43		
Structural reliability Reliability of systems			
Reliability of systems			

- Until now, we have implicitly considered the case of the failure of a unique component
- In a real system, a failure can happen due to the failure of just one of its (possibly many) components
- The designer can also choose to have redundancy on critical components; in this case the failure of the system happens when all redundant components fail
- To deal with these issues, the domain of structural reliability generally introduces the notions of parallel and series systems

э

SQA

・ロン ・四 と ・ ヨ と ・ ヨ と

Reliability of systems: series systems

- Let x denotes the state of a system, and let Γ be a domain of failure
- In structural reliability, a system is called a *series system* if the occurrence of one single failure event brings a failure on the whole system
- > The classical example is that of a chain whose failure is related to any of its links
- In other words, it means that we can write

$$\Gamma = \bigcup_{i=1}^{l} \Gamma^{(i)}$$

- Assume that each domain of failure $\Gamma^{(i)}$ is characterized by a limit-state function $g_X^{(i)}$, so that the failure of the *i*th component corresponds to the event $\{g_X^{(i)}(X) < 0\}$
- Then the failure event for the whole system can be characterized by the limit-state function

$$g_X: x \mapsto g_X^{(1)}(x) \wedge \cdots \wedge g_X^{(l)}(x)$$

 Conclusion: the case of series systems can be dealt with using the framework we have exposed previously

Reliability of systems: parallel systems

- In structural reliability, a system is called a *parallel system* if the failure of all events is necessary for the failure of the whole system
- A parallel system is a principle a redundancy
- Using the notations above, the domain of failure for a parallel system corresponds to

$$\Gamma = \bigcap_i \Gamma_i$$

 Again, the failure event for the whole system can be characterized by a single limit-state function

$$g_X: x \mapsto g_X^{(1)}(x) \vee \cdots \vee g_X^{(l)}(x)$$

 Conclusion: parallel systems can also be dealt with using the framework we have exposed previously

- The process of choosing a distribution for the factors is called elicitation¹ in the literature of decision analysis
- Elicitation is particularly difficult when doing risk analysis about new and untried technologies, for which little data are available
- Very often, risk analysis relies on expert judgment
- Elicitation of subjective probability distributions is often subject to a number of serious biases, such as overconfidence in the ability to quantify uncertainty

Elicitation of subjective probability distributions

- Assume that we are given an approximation of the mean and the standard deviation of a random variable
- An experiment:

 \rightarrow it is probably more important to characterize the tail behavior of the factors than the central behavior (EVT can help)

		< (四)< (四)< (四)< (四)< (四)< (四)< (四)< (四)	590
E. Vazquez	Extreme events modeling II	Summer School CEA-EDF-INRIA, 2011	33 / 43

Copulas

Consider a random vector X = (X₁,...,X_d) ∈ ℝ^d. The dependence between the component random variables X₁,...,X_d is completely described by the joint cdf

$$F(x_1,\ldots,x_d) = \mathsf{P}\{X_1 \leq x_1,\ldots,X_d \leq x_d\}$$

- ► For simplicity, assume that the components X_i, i = 1,..., d, have continuous, strictly increasing, marginal cdfs F_i
- The concept of copula: separate F into a part that describes the dependence structure and parts which describe the marginal behavior only
- Transform X component-wise to obtain standard-uniform marginal distributions U([0, 1])

$$\begin{array}{rccc} T: & \mathrm{dom}\, F & \to & [0,1]^d \\ & & (x_1,\ldots,x_d) & \mapsto & (F_1(x_1),\ldots,F_d(x_d)) \end{array}$$

- The joint cdf of U = T(X) is called the copula of the random vector X
- It follows that for $x \in \operatorname{dom} F$

$$F(x_1,\ldots,x_d)=C(F_1(x_1),\ldots,F_d(x_d))$$

and for $u \in [0, 1]^d$

$$C(u_1, \ldots, u_d) = F(F_1^{-1}(u_1), \ldots, F_d^{-1}(u_d))$$

Extreme events modeling II

```
E. Vazquez
```

Elicitation of subjective probability distributions Copulas

Copulas

- Some copulas/dependence structures:
 - The independent copula: $C_{ind}(u) = u_1 u_2 \cdots u_d$
 - The Gaussian copula

$$C_{g,R}(u_1,\ldots,u_d) = \int_{-\infty}^{\Phi^{-1}(u_1)} \cdots \int_{-\infty}^{\Phi^{-1}(u_d)} (2\pi)^{-d/2} (\det R)^{-1/2} \exp\left(-\frac{1}{2}u^{\mathsf{T}}R^{-1}u\right) du_1 \cdots du_d$$

• The bivariate Gumbel copula $C_{\mathrm{Gu},\beta}(u,v) = \exp\left[-\left\{(-\log u)^{1/\beta} + (-\log v)^{1/\beta}\right\}^{\beta}\right]$

Realizations from two distributions with identical Gamma(3, 1) marginal distributions and identical correlation $\rho = 0.7$, but different dependence structures.

B b

Summer School CEA-EDF-INRIA, 2011 35 / 43

э

Sac

Summer School CEA-EDF-INRIA, 2011 36 / 43

Elicitation of subjective probability distributions Linear correlation

Nataf transformation

- The Nataf transformation T_{Nataf} is a one-to-one function which maps a random vector X with a Gaussian copula to a random vector U with standard Gaussian distribution
- Makes it possible to apply FORM for non-Gaussian non-independent random vectors
- ► Conversely, the Nataf transformation makes it possible to define implicitly the distribution F of a random vector X = (X₁,..., X_d) with
 - 1. Gaussian copula
 - 2. prescribed continuous, strictly increasing, marginals F_1, \ldots, F_d
 - 3. prescribed correlation matrix $R_X = (\rho(X_i, X_j))_{i,j}$
- Considering a Gaussian copula for the dependence structure of X should not be considered as a canonical choice → a comprehensive risk analysis procedure should assess the consequences of this particular choice

Inverse Nataf transformation

- Let $U \sim N(0, \mathbb{I}_d)$
- ► Given continuous strictly increasing marginals cdfs F₁,..., F_d, and a d × d correlation matrix R_X, the inverse Nataf transformation is defined as X = T⁻¹_{Nataf}(U) = T₃ ∘ T₂ ∘ T₁(U), with

$$T_{1}: \mathbb{R}^{d} \xrightarrow{\rightarrow} \mathbb{R}^{d}$$
$$u = (u_{1}, \dots, u_{d}) \xrightarrow{\rightarrow} Cu$$
$$T_{2}: \mathbb{R}^{d} \xrightarrow{\rightarrow} [0, 1]^{d}$$
$$v = (v_{1}, \dots, v_{d}) \xrightarrow{\rightarrow} (\Phi(v_{1}), \dots, \Phi(v_{d}))$$
$$T_{3}: [0, 1]^{d} \xrightarrow{\rightarrow} \mathbb{R}^{d}$$
$$w = (w_{1}, \dots, w_{d}) \xrightarrow{\rightarrow} (F_{1}^{-1}(w_{1}), \dots, F_{d}^{-1}(w_{d}))$$

where C is a $d \times d$ matrix which is computed in such a way that X has correlation matrix R_X

- Note that $V = T_1(U)$ is a Gaussian vector. Thus, it has a Gaussian copula. Since T_2 and T_3 are component-wise monotonic transformations, T_2 and T_3 are copula-invariant
- Note that the correlation matrix of $V = T_1(U)$ is $R_V = CC^{\mathsf{T}}$. In general, $R_V \neq R_X$.

Elicitation of subjective probability distributions

 Note also that it is not always possible to prescribe any correlation coefficient (depending on the choice of the marginals)

			୬୯୯
E. Vazquez	Extreme events modeling II	Summer School CEA-EDF-INRIA, 2011	39 / 43

Linear correlation

Dependence measures
As mentioned above, considering a Gaussian copula for the dependence structure of X should not be considered as a canonical choice
Moreover, measuring dependence based on correlation coefficients can be misleading

in linear dependence should not be taken as a canonical dependence measure

Realizations from seven bi-variate distributions with zero correlation

Other measures of the dependence?

- ロ > - 4 同 > - 4 回 > - 4 回 >

Dependence measures

- Non-linear dependence measures have been proposed in the literature
- In particular, rank correlation coefficients, such as Spearman's rank correlation coefficient ρ, and Kendall's rank correlation coefficient τ measure the extent to which two variables increase or decrease simultaneously
- For instance, Spearman's ρ is defined as the Pearson's correlation coefficient between the ranked variables

Elicitation of subjective probability distributions Dependence measures

Tail dependence

- In the context of risk analysis, it might be relevant to study the dependence between extreme values
- Let X = (X₁, X₂) be a vector of continuous random variables with marginals F₁ and F₂. The coefficient of upper tail dependence of (X₁, X₂) is

$$\lambda_U = \lim_{u \to 1} \mathsf{P}\{X_2 > F_2^{-1}(u) \mid X_1 > F_1^{-1}(u)\}$$

provided that the limit exists. If λ_U is well-defined, $\lambda_U \in [0, 1]$

- The value of λ_U is a property of the copula of X only
- Examples:
 - Consider the Gaussian bi-variate copula, with correlation $\rho < 1$. Then, $\lambda_U = 0$; that is, a Gaussian copula with $\rho < 1$ does not have tail dependence
 - ▶ The Gumbel bi-variate copula, with parameter $\beta > 1$, has tail dependence $\lambda_U = 2 2^{1/\beta}$
- Choosing a copula with tail-dependence over the Gaussian copula can modify the probability of failure by several orders of magnitude—see, for instance, Dutfoy and Lebrun, Congrès Français de Mécanique (2007)

Elicitation of subjective prob	ability distributions References	
Some references		
 Embrechts P., McNeil A., S management: properties and Embrechts P., Lindskog F., and Applications to Risk Ma Lebrun R. and Dutfoy A. (2 distributions with elliptical of 	trautmann D. (1999), C d pitfalls McNeil A. (2001), Mod anagement 009), A generalization o copula	Correlation and dependence in risk lelling Dependence with Copulas of the Nataf transformation to
E. Vazquez	Extreme events modeling II	Summer School CEA-EDF-INRIA, 2011 43 / 43
i	0	