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Monte Carlo estimation of a probability of failure

1. Estimating a probability of failure by Monte Carlo
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Monte Carlo estimation of a probability of failure

Monte Carlo integration with importance sampling

Recall the importance-sampling estimator of a probability of failure

» Assume given a probability Px with density p, on a factor space X, a function f : X — R,
and a threshold v € R

» Choose an instrumental distribution Qx on X, with density g

> Let X1, Xo, ..., Xn =0 Qx

» Then

1 n
an =22 wilf(x)>o
i=1

_ p(Xi)
— a(X)

> The random variable Z; = 1¢(x,)>, has a Bernoulli distribution B(&), with & = Qx(f > v)
» Thus,

with w; , i =1...n,is an unbiased estimator of a = [ L>,.

L w
var(ap) = ”; La(l —a)
n
which is minimum if g = g*, with
1 X
q*(x) _ f(x)>au P( )
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Monte Carlo estimation of a probability of failure

Monte Carlo integration with importance sampling

» What makes the problem of computing « difficult?

» The difficulty is to choose Qx in such a way that there is a high proportion of points
Xi,...,Xn in the domain of failure I' = {x; f(x) > u}

» [ small, unknown set = it is not possible to find a good instrumental density Qx before any
evaluation is made

» This observation being made, the idea is then to consider an adaptive strategy: after having
made some evaluations of f, and if f is reasonably smooth, we may have an idea of regions
of X that are interesting to explore in order to find I

» Two main routes have been proposed in the literature

> sequential importance sampling

» control variate sampling
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Sequential Monte Carlo for estimating a probability of failure

2. Sequential Monte Carlo for estimating a probability of failure
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Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Some reminders about MCMC

MCMC: given a probability Px on a measurable space (X, X'), construct a Markov chain (X,)sen in such a way
that p is an invariant density of the chain

Markov transitions
> A Markov transition (or Markov kernel) on X is a set of probability distributions
{K(x,-)ix € X}

such that for any measurable subset A € X, x — K(x, A) is measurable application.
= K(x, A) is “the probability to go to A starting from x".

> Given a kernel K, we can define two integral operations

1. If f : X — R is a measurable and bounded function, define Kf : X — R by
(KA)() = [ F0)K(dy), xex
2. If u is a probability on (X, X’), define a measure uK by

(uK)(A) = [ K, Aduty), A€ x
> Given two kernels K; and K3, define a composite kernel Ki K, by
(K1K2)(x, A) = (Ki(x, ) K2)(A) = /Kl(x,dy)Kz(y, A, (xAeXxXx
(K1K2)(x, A) is the probability to from x to A using a first transition K; and a second transition K>

> Given a kernel K, the iterated kernel K", n > 1, is defined by induction using the composition rule
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Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Some reminders about MCMC

Markov chains
A random process (X,)nen is a Markov chain if there exists a sequence of Markov transitions (Kj,),>1 such that
for all measurable and bounded function f : X — R

E[f(Xn1) | Xn, - - -, Xo] = (Kny1f)(Xn) a.s

(X») is said to be stationary or homogeneous if for all n, K, = K for some K

Invariant measures
Let (X,) be a homogeneous Markov Chain. A probability measure 7 is an invariant measure of (X,) if

™K =m

Foundation of MCMC for the estimation of a probability of failure

Let (X,) be a w-invariant Markov Chain. Under certain conditions, given ¢ € Ll,

1 n
;§¢(x,-)—>/x¢d7r as

In particular, if Px is invariant for (X,),

1 n
- Z]lf(xi)>“ — a"(f) as
3
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Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Some reminders about MCMC

Given a probability distribution Px, how to construct a kernel K such that (X,) is Px-invariant?

(NB: of course we can choose K(x, -) := Px)

Metropolis-Hastings algorithm

> Given a probability distribution Px, with density p, the Metropolis-Hastings algorithm makes it possible to

construct a Px-invariant Markov chain (Xj)
> Consider a kernel Q such that Vx € X, Q(x, ) has a density g(- | x)
> Given X, = x

1. Generate Y ~ Q(x, )

2. Take
X . Y  with probability p(x, Y)
"ML Y % with probability 1 — p(x, Y)
with
o {p(y) q(x | y) }
px,y)=ming — ——=1
p(x) q(y | x)

> The transition kernel of the chain (X,) is
K(x,dz) = p(x, z)Q(x,dz) + (1 — r(x))dx(dz)

with r(x) = [ p(x,y)Q(x, dy)
» We have Px = PxK
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Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Sequential Monte Carlo

» With MCMC methods, it is often difficult to assess when the Markov chain has reached its

stationary regime

» Moreover, MCMC methods are designed to sample from a fixed distribution

> Sequential Monte Carlo methods address these limitations by running several Markov chains

in parallel: X() = (x)), i=1,...,N
(i)

» At time n, each chain X s given a weight w,’, which is determined so that, for a

distribution 7, and a function ¢ € L1(7r,,), we have
N . .
S wo(x) = /¢d7r,, as.
i=1

> A pair (w,(,i),X,Si)) is called a particle

» Depending on the application, several methods have been proposed in the literature to

determine the weights and the transition kernels

» Here, we shall focus only on the problem of the estimation of a probability of failure

E. Vazquez Extreme events modeling |1l Summer School CEA-EDF-INRIA, 2011

10 /22




Sequential Monte Carlo for estimating a probability of failure Estimation of a probability of failure

Estimation of a probability of failure by subset simulation

» The idea of subset simulation is the following:
w when u is a high threshold, it may be difficult to deal with the problem of estimating oV,
but we can try to decompose the problem into a series of easier problems

» If u is not too high, then we can get a good approximation of o with only a few evaluations
of f

» Consider a finite sequence of increasing thresholds
—co=uw < up <up---<us=u
and define the corresponding sequence of nested subsets
My ={xeX;f(x)>u}, k=0,...,5

» We can write
s S—1 5-1
ol = Px(N)=Px (ﬂ rk> = Py <r5 ’ N rk> Px (ﬂ rk>
k=1 k=1 k=1
5-1
= Px(s|Tls-1)Px <ﬂ rk>
k=1

s
= JIPx(Te|Tkz1)
k=1
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Sequential Monte Carlo for estimating a probability of failure Estimation of a probability of failure

Estimation of a probability of failure by subset simulation

» Thus, a” can be computed as a product of the probabilities Px(Iky1 | k)
» How to compute/estimate a probability Px(Ix | Tx—1)?
» For k > 0, denote by py the normalized restriction of Px to the domain [y

1
pi(dx) = 5——=1r, (x)Px(dx)
Px(lk) k
» In particular, we have
1o = Px

and
ps(dx) = = T (x)Px (),

which is the optimal instrumental distribution for estimating «(!)

» We have Px(Iki1 | Tk) = pi(Mkr1)

» Thus, to estimate Px(I k11 | Tk), we could use a MC approach, using p as the sampling
distribution (provided py is known, or at least, we know how to sample from )

> If puk(Fkr1) is not too small, we could get a good MC estimate of this probability with a
moderate effort
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Sequential Monte Carlo for estimating a probability of failure Estimation of a probability of failure

Estimation of a probability of failure by subset simulation

» An example:

> Recall that the number of MC evaluations needed to estimate a with a given standard deviation d«
is approximately 1/(8%«)

> Suppose o &~ 10~*

> Setting § = 0.1, we need approximately 10° evaluations to estimate o by a simple MC approach

»> Now, suppose that the thresholds uy, i = 1,...,S — 1, are chosen in such a way that
tk(Tk+1) =~ 0.1. We need approximately 1000 evaluations to estimate p(lMk+1). Since
1074 = (0.1)4, we need, in principle, a total of 4 X 1000 = 4000 evaluations to estimate o by
subset sampling

» So, the questions that need to be addressed are:

1. How to sample from p?

2. How to choose the wugs so that px(lMk+1) is not too small?
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Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Subset sampling algorithms

Several versions of the subset sampling algorithm have been proposed

v

» The most popular version of subset sampling algorithm is that proposed by Au and Beck
(2001)

> Here, we shall present the recent version of Cérou et al. (2011)

» We begin with a fixed-threshold algorithm
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Sequential Monte Carlo for estimating a probability of failure ~ Subset sampling algorithms

Fixed-threshold algorithm

Assume given a set of thresholds
—o0o=u<u<u---<us=u

and a transition kernel K which is Px-invariant (a MH kernel will do, for instance)

1. Initialization. Generate an N-sample Xéj) A o =Px,1<j<n
2. For k=0to S—1.

21 Let fpy = {j: XU € Tpya}. Set @pyy = 2k
22 Forj=1to N,
> take

I

v XY ifj € o
Xk) with | randomly chosen in /)1 if j & ljyq

P then, generate

Z~K(Y, )
> Take
) _ Z ifZelgy
k1771 Y if not

3. Set a = [[;_, ax
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Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Fixed-threshold algorithm

» Cérou et al. (2011) show that a simplified version of the fixed-threshold algorithm produced
an unbiased estimator & of a“

» Cérou et al. (2011) also show that the variance of & is minimized if the thresholds are set in
such a way that

po(F) = ... = ps_1(Fs) = po = o/

— this is a difficult issue in practice

> Instead of determining the thresholds uy, we can try to prescribe a number Ny of particles
that will be kept at each stage k. Then, at stage k, the threshold uy is defined implicitly by

the (N — Np)th-order statistic of the N-sample f(X,Ej)), Jj=1,...,N.
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Sequential Monte Carlo for estimating a probability of failure ~ Subset sampling algorithms

Adaptive algorithm

Assume given a transition kernel K. Prescribe Ny < N a fixed number of “succeeding particles”.

1. Initialization. Generate an N-sample Xéj) bid wo =Px, 1 <j<n.
Set

ur = [FXIN v ny)

where [f(XOU))](N_NO) stands for the (N — Np)-th order statistic of the
N-sample f(Xéj)), j=1...,N
2. Set kK = 1. While u, < u.

2.1 Starting from an Np-sample with distribution p, draw an i.i.d. N-sample X,Ej), 1 <j < N with the
same distribution
2.2 Set

uerr = [FX)v—ng)
23 Set k=k+1

i ) ~ N, (N KT
3. Let N, be the number of particles such that f(X,;) > u. Set & = J (
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Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Adaptive algorithm

> Step 2.1 of the adaptive algorithm is obviously the main difficulty of the algorithm — use
Step 2.2 of the fixed-threshold algorithm

» For this, we need a Px-invariant kernel K with good mixing properties — in practice, K
should be a parametrized kernel, whose parameter is tuned to keep the acceptance rate in a
reasonable range

» Cérou et al. provides an analysis of the properties of the adaptive algorithm. They show that
@ has a bias that decreases at rate 1/N, but the mean square error is actually smaller than
that of the fixed-threshold algorithm

» In applications, subset sampling algorithms perform very well — more expensive that
geometrical methods, but much cheaper than simple MC
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Sequential Monte Carlo for estimating a probability of failure References

Some references
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» Cérou F., Del Moral P., Furon T. and Guyader A. (2011), “Sequential Monte Carlo for Rare
Event Estimation”, Technical Report
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Control-variate sampling Principle

Control-variate sampling

» The idea of control-variate sampling for the estimation of a probability of failure is to make
use of a cheap approximation g of f so that the random variable Z = f(X) can be predicted
by W = g(X).

» W will be our control variate

» Control variates method are standard variance reduction techniques used in Monte Carlo
methods

> Let ap(f) be the MC estimator of a(f):

1< ii.d.
an(f) = - Z]lf(X,-)>u» X; "R Py
i—1

» Consider the estimator

an = an(f) +v[an(g) —alg)l, ~€R

» We have
E(dn) = a(f)

and
var(&n) = var(an(f)) + 7> var(an(g)) + 2 cov(an(f), an(g))
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Control-variate sampling Principle

Control-variate sampling

» For the optimal choice
* COV(OL,,(f), Oz,,(g))
var(an(g))

we have
var(&n) = (1 — p?) var(an(f))
where p is the correlation coefficient between a,(f) and an(g)

» If g is close to f, we expect p to be high, so the control variate estimator &, will have a
small variance wrt ap

» How to choose g7

» An idea is to use the framework of FORM: in the standardized Gaussian space, compute a
first-order approximation of f at the design point x* = this yields an affine approximation g
of f, for which we can compute a(g) exactly, using the formula a(g) = ®(—5)

» How to compute/estimate the optimal v*?

» An idea is to use the approximation

1 n
cov(an(f),an(g)) = E ? Z ]lf(X,-)>u]lg(Xj)>u —a(f)a(g)
ij=1

= e (Lelyooes) + T La(Fale) - alfale)

n n

Q

1 < 1
n2 Z ]lf(Xi)>U]lg(X,')>u - ;O‘n(f)an(g)
i=1
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Control-variate sampling References

Some references
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Annals of Applied Statistics
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estimation. Management Science
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