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Monte Carlo estimation of a probability of failure

1. Estimating a probability of failure by Monte Carlo
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Monte Carlo estimation of a probability of failure

Monte Carlo integration with importance sampling

Recall the importance-sampling estimator of a probability of failure

◮ Assume given a probability PX with density p, on a factor space X, a function f : X → R,
and a threshold u ∈ R

◮ Choose an instrumental distribution QX on X, with density q

◮ Let X1,X2, . . . ,Xn
i.i.d
∼ QX

◮ Then

αn =
1

n

n∑

i=1

wi1f (Xi )>u

with wi =
p(Xi )
q(Xi )

, i = 1 . . . n, is an unbiased estimator of α =
∫
1f>u .

◮ The random variable Zi = 1f (Xi )>u has a Bernoulli distribution B(α̃), with α̃ = QX(f > u)

◮ Thus,

var(αn) =

∑n
i=1 w

2
i

n2
α̃(1− α̃)

which is minimum if q = q⋆, with

q⋆(x) =
1f (x)>u p(x)

α
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Monte Carlo estimation of a probability of failure

Monte Carlo integration with importance sampling

◮ What makes the problem of computing α difficult?

◮ The difficulty is to choose QX in such a way that there is a high proportion of points
X1, . . . ,Xn in the domain of failure Γ = {x ; f (x) > u}

◮ Γ small, unknown set ➟ it is not possible to find a good instrumental density QX before any
evaluation is made

◮ This observation being made, the idea is then to consider an adaptive strategy: after having
made some evaluations of f , and if f is reasonably smooth, we may have an idea of regions
of X that are interesting to explore in order to find Γ

◮ Two main routes have been proposed in the literature

◮ sequential importance sampling

◮ control variate sampling
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Sequential Monte Carlo for estimating a probability of failure

2. Sequential Monte Carlo for estimating a probability of failure
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Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Some reminders about MCMC
MCMC: given a probability PX on a measurable space (X,X ), construct a Markov chain (Xn)n∈N in such a way
that p is an invariant density of the chain

Markov transitions

◮ A Markov transition (or Markov kernel) on X is a set of probability distributions

{K(x, ·) ; x ∈ X}

such that for any measurable subset A ∈ X , x 7→ K(x,A) is measurable application.

➟ K(x,A) is “the probability to go to A starting from x”.

◮ Given a kernel K , we can define two integral operations

1. If f : X → R is a measurable and bounded function, define Kf : X → R by

(Kf )(x) =

∫
f (y)K(x, dy) , x ∈ X

2. If µ is a probability on (X,X ), define a measure µK by

(µK)(A) =

∫
K(y ,A)dµ(y) , A ∈ X

◮ Given two kernels K1 and K2, define a composite kernel K1K2 by

(K1K2)(x,A) = (K1(x, ·)K2)(A) =

∫
K1(x, dy)K2(y ,A) , (x,A) ∈ X × X

(K1K2)(x,A) is the probability to from x to A using a first transition K1 and a second transition K2

◮ Given a kernel K , the iterated kernel K n, n ≥ 1, is defined by induction using the composition rule
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Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Some reminders about MCMC

Markov chains
A random process (Xn)n∈N is a Markov chain if there exists a sequence of Markov transitions (Kn)n≥1 such that
for all measurable and bounded function f : X → R

E[f (Xn+1) | Xn, . . . ,X0] = (Kn+1f )(Xn) a.s

(Xn) is said to be stationary or homogeneous if for all n, Kn = K for some K

Invariant measures
Let (Xn) be a homogeneous Markov Chain. A probability measure π is an invariant measure of (Xn) if

πK = π

Foundation of MCMC for the estimation of a probability of failure
Let (Xn) be a π-invariant Markov Chain. Under certain conditions, given φ ∈ L1,

1

n

n∑

i=1

φ(Xi ) →

∫

X

φdπ a.s

In particular, if PX is invariant for (Xn),

1

n

n∑

i=1

1f (Xi )>u → α
u
(f ) a.s
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Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Some reminders about MCMC

Given a probability distribution PX, how to construct a kernel K such that (Xn) is PX-invariant?

(NB: of course we can choose K(x, ·) := PX)

Metropolis-Hastings algorithm

◮ Given a probability distribution PX, with density p, the Metropolis-Hastings algorithm makes it possible to
construct a PX-invariant Markov chain (Xn)

◮ Consider a kernel Q such that ∀x ∈ X, Q(x, ·) has a density q(· | x)

◮ Given Xn = x

1. Generate Y ∼ Q(x, ·)
2. Take

Xn+1 =

{
Y with probability ρ(x,Y )

x with probability 1 − ρ(x,Y )

with

ρ(x, y) = min

{
p(y)

p(x)

q(x | y)

q(y | x)
, 1

}

◮ The transition kernel of the chain (Xn) is

K(x, dz) = ρ(x, z)Q(x, dz) + (1 − r(x))δx (dz)

with r(x) =
∫
ρ(x, y)Q(x, dy)

◮ We have PX = PXK
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Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Sequential Monte Carlo

◮ With MCMC methods, it is often difficult to assess when the Markov chain has reached its
stationary regime

◮ Moreover, MCMC methods are designed to sample from a fixed distribution π

◮ Sequential Monte Carlo methods address these limitations by running several Markov chains

in parallel: X (i) = (X
(i)
n ), i = 1, . . . ,N

◮ At time n, each chain X (i) is given a weight w
(i)
n , which is determined so that, for a

distribution πn, and a function φ ∈ L1(πn), we have

N∑

i=1

w
(i)
n φ(X

(i)
n ) →N

∫
φdπn a.s.

◮ A pair (w
(i)
n ,X

(i)
n ) is called a particle

◮ Depending on the application, several methods have been proposed in the literature to
determine the weights and the transition kernels

◮ Here, we shall focus only on the problem of the estimation of a probability of failure
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Sequential Monte Carlo for estimating a probability of failure Estimation of a probability of failure

Estimation of a probability of failure by subset simulation

◮ The idea of subset simulation is the following:
➟ when u is a high threshold, it may be difficult to deal with the problem of estimating αu ,
but we can try to decompose the problem into a series of easier problems

◮ If u is not too high, then we can get a good approximation of αu with only a few evaluations
of f

◮ Consider a finite sequence of increasing thresholds

−∞ = u0 < u1 < u2 · · · < uS = u

and define the corresponding sequence of nested subsets

Γk = {x ∈ X; f (x) > uk}, k = 0, . . . , S

◮ We can write

αu = PX(Γ) = PX

(
S⋂

k=1

Γk

)

= PX

(

ΓS

∣∣∣
S−1⋂

k=1

Γk

)

PX

(
S−1⋂

k=1

Γk

)

= PX (ΓS | ΓS−1) PX

(
S−1⋂

k=1

Γk

)

=

S∏

k=1

PX(Γk | Γk−1)
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Sequential Monte Carlo for estimating a probability of failure Estimation of a probability of failure

Estimation of a probability of failure by subset simulation

◮ Thus, αu can be computed as a product of the probabilities PX(Γk+1 | Γk)

◮ How to compute/estimate a probability PX(Γk | Γk−1)?

◮ For k ≥ 0, denote by µk the normalized restriction of PX to the domain Γk

µk(dx) =
1

PX(Γk)
1Γk (x)PX(dx)

◮ In particular, we have
µ0 = PX

and

µS (dx) =
1

α
1Γ(x)PX(dx),

which is the optimal instrumental distribution for estimating α(!)

◮ We have PX(Γk+1 | Γk) = µk(Γk+1)

◮ Thus, to estimate PX(Γk+1 | Γk ), we could use a MC approach, using µk as the sampling
distribution (provided µk is known, or at least, we know how to sample from µk)

◮ If µk (Γk+1) is not too small, we could get a good MC estimate of this probability with a
moderate effort
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Sequential Monte Carlo for estimating a probability of failure Estimation of a probability of failure

Estimation of a probability of failure by subset simulation

◮ An example:

◮ Recall that the number of MC evaluations needed to estimate α with a given standard deviation δα
is approximately 1/(δ2α)

◮ Suppose α ≈ 10−4

◮ Setting δ = 0.1, we need approximately 106 evaluations to estimate α by a simple MC approach
◮ Now, suppose that the thresholds uk , i = 1, . . . , S − 1, are chosen in such a way that

µk (Γk+1) ≈ 0.1. We need approximately 1000 evaluations to estimate µk (Γk+1). Since

10−4 = (0.1)4, we need, in principle, a total of 4 × 1000 = 4000 evaluations to estimate α by
subset sampling

◮ So, the questions that need to be addressed are:

1. How to sample from µk?

2. How to choose the uk s so that µk (Γk+1) is not too small?
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Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Subset sampling algorithms

◮ Several versions of the subset sampling algorithm have been proposed

◮ The most popular version of subset sampling algorithm is that proposed by Au and Beck
(2001)

◮ Here, we shall present the recent version of Cérou et al. (2011)

◮ We begin with a fixed-threshold algorithm
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Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Fixed-threshold algorithm

Assume given a set of thresholds

−∞ = u0 < u1 < u2 · · · < uS = u

and a transition kernel K which is PX-invariant (a MH kernel will do, for instance)

1. Initialization. Generate an N-sample X
(j)
0

i.i.d
∼ µ0 = PX, 1 ≤ j ≤ n

2. For k = 0 to S − 1.

2.1 Let Ik+1 = {j : X
(j)
k

∈ Γk+1}. Set α̂k+1 =
#Ik
N

2.2 For j = 1 to N,
◮ take

Y =

{
X

(j)
k

if j ∈ Ik+1

X
(l)
k

with l randomly chosen in Ik+1 if j 6∈ Ik+1

◮ then, generate
Z ∼ K(Y , ·)

◮ Take

X
(j)
k+1

=

{
Z if Z ∈ Γk+1

Y if not

3. Set α̂ =
∏S

k=1 α̂k
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Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Fixed-threshold algorithm

◮ Cérou et al. (2011) show that a simplified version of the fixed-threshold algorithm produced
an unbiased estimator α̂ of αu

◮ Cérou et al. (2011) also show that the variance of α̂ is minimized if the thresholds are set in
such a way that

µ0(Γ1) = . . . = µS−1(ΓS ) = p0 = α1/S

→ this is a difficult issue in practice

◮ Instead of determining the thresholds uk , we can try to prescribe a number N0 of particles
that will be kept at each stage k. Then, at stage k, the threshold uk is defined implicitly by

the (N − N0)th-order statistic of the N-sample f (X
(j)
k

), j = 1, . . . ,N.
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Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Adaptive algorithm

Assume given a transition kernel K . Prescribe N0 < N a fixed number of “succeeding particles”.

1. Initialization. Generate an N-sample X
(j)
0

i.i.d
∼ µ0 = PX, 1 ≤ j ≤ n.

Set
u1 = [f (X

(j)
0 )](N−N0)

where [f (X
(j)
0 )](N−N0) stands for the (N − N0)-th order statistic of the

N-sample f (X
(j)
0 ), j = 1, . . . ,N

2. Set k = 1. While uk < u.

2.1 Starting from an N0-sample with distribution µk , draw an i.i.d. N-sample X
(j)
k

, 1 ≤ j ≤ N with the
same distribution µk

2.2 Set
uk+1 = [f (X

(j)
k

)](N−N0)

2.3 Set k = k + 1

3. Let Nu be the number of particles such that f (X
(j)
k−1) > u. Set α̂ = Nu

N

(
N0
N

)k−1
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Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Adaptive algorithm

◮ Step 2.1 of the adaptive algorithm is obviously the main difficulty of the algorithm → use
Step 2.2 of the fixed-threshold algorithm

◮ For this, we need a PX-invariant kernel K with good mixing properties → in practice, K
should be a parametrized kernel, whose parameter is tuned to keep the acceptance rate in a
reasonable range

◮ Cérou et al. provides an analysis of the properties of the adaptive algorithm. They show that
α̂ has a bias that decreases at rate 1/N, but the mean square error is actually smaller than
that of the fixed-threshold algorithm

◮ In applications, subset sampling algorithms perform very well → more expensive that
geometrical methods, but much cheaper than simple MC
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Sequential Monte Carlo for estimating a probability of failure References

Some references

◮ Au S.-K. and Beck J. (2001), “Estimation of small failure probabilities in high dimensions by
subset simulation”, in Probabilistic Engineering Mechanics

◮ Cérou F., Del Moral P., Furon T. and Guyader A. (2011), “Sequential Monte Carlo for Rare
Event Estimation”, Technical Report
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Control-variate sampling Principle

Control-variate sampling

◮ The idea of control-variate sampling for the estimation of a probability of failure is to make
use of a cheap approximation g of f so that the random variable Z = f (X ) can be predicted
by W = g(X ).

◮ W will be our control variate

◮ Control variates method are standard variance reduction techniques used in Monte Carlo
methods

◮ Let αn(f ) be the MC estimator of α(f ):

αn(f ) =
1

n

n∑

i=1

1f (Xi )>u , Xi
i.i.d.
∼ PX

◮ Consider the estimator

α̃n = αn(f ) + γ[αn(g)− α(g)], γ ∈ R

◮ We have
E(α̃n) = α(f )

and
var(α̃n) = var(αn(f )) + γ2 var(αn(g)) + 2γ cov(αn(f ), αn(g))
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Control-variate sampling Principle

Control-variate sampling
◮ For the optimal choice

γ⋆ = −
cov(αn(f ), αn(g))

var(αn(g))

we have
var(α̃n) = (1− ρ2) var(αn(f ))

where ρ is the correlation coefficient between αn(f ) and αn(g)
◮ If g is close to f , we expect ρ to be high, so the control variate estimator α̃n will have a

small variance wrt αn

◮ How to choose g?
◮ An idea is to use the framework of FORM: in the standardized Gaussian space, compute a

first-order approximation of f at the design point x⋆ ➟ this yields an affine approximation g

of f , for which we can compute α(g) exactly, using the formula α(g) = Φ(−β)
◮ How to compute/estimate the optimal γ⋆?
◮ An idea is to use the approximation

cov(αn(f ), αn(g)) = E



 1

n2

n∑

i,j=1

1f (Xi )>u1g(Xj )>u



− α(f )α(g)

=
1

n
E
(
1f (Xi )>u1g(Xi )>u

)
+

n − 1

n
α(f )α(g)− α(f )α(g)

≈
1

n2

n∑

i=1

1f (Xi )>u1g(Xi )>u −
1

n
αn(f )αn(g)
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Control-variate sampling References

Some references

◮ Cannamela C., Garnier J., Iooss B. (2008), Controlled stratification for quantile estimation,
Annals of Applied Statistics

◮ Hesterberg T. C. and Nelson B. L. (1998). Control variates for probability and quantile
estimation. Management Science
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