

Monte Carlo estimation of a probability of failure

Monte Carlo integration with importance sampling

Recall the importance-sampling estimator of a probability of failure

- ▶ Assume given a probability P_X with density p, on a factor space X, a function $f : X \to \mathbb{R}$, and a threshold $u \in \mathbb{R}$
- \blacktriangleright Choose an instrumental distribution $Q_{\mathbb{X}}$ on $\mathbb{X},$ with density q
- Let $X_1, X_2, \ldots, X_n \stackrel{\text{i.i.d}}{\sim} Q_X$
- Then

$$\alpha_n = \frac{1}{n} \sum_{i=1}^n w_i \mathbb{1}_{f(X_i) > u}$$

with $w_i = \frac{p(X_i)}{q(X_i)}$, $i = 1 \dots n$, is an unbiased estimator of $\alpha = \int \mathbb{1}_{f > u}$.

- The random variable $Z_i = \mathbb{1}_{f(X_i) > u}$ has a Bernoulli distribution $B(\tilde{\alpha})$, with $\tilde{\alpha} = Q_{\mathbb{X}}(f > u)$
- ► Thus,

$$\operatorname{var}(lpha_n) = rac{\sum_{i=1}^n \mathsf{w}_i^2}{n^2} \widetilde{lpha}(1 - \widetilde{lpha})$$

which is minimum if $q = q^{\star}$, with

$$q^{\star}(x) = \frac{\mathbb{1}_{f(x)>u} p(x)}{\alpha}$$

Monte Carlo estimation of a	Monte Carlo estimation of a probability of failure			
Monte Carlo integration with importance sampling				
• What makes the problem of computing α difficult?				
The difficulty is to choose Q _X in such a way that there is a high proportion of points X ₁ ,, X _n in the domain of failure Γ = {x; f(x) > u}				
► Γ small, unknown set → it is not possible to find a good instrumental density Q _X before any evaluation is made				
This observation being made, the idea is then to consider an adaptive strategy: after having made some evaluations of <i>f</i> , and if <i>f</i> is reasonably smooth, we may have an idea of regions of X that are interesting to explore in order to find Γ				
Two main routes have been proposed in the literature				
sequential importance sampling				
control variate sampling				
		(ロ) (型) (主) (主) 主 のへで)		
E. Vazquez	Extreme events modeling III	Summer School CEA-EDF-INRIA, 2011 5 / 22		
Sequential Monte Carlo for estimating a	probability of failure			

2. Sequential Monte Carlo for estimating a probability of failure

・ロ・ ・ 日・ ・ 田・ ・ 田・ æ Summer School CEA-EDF-INRIA, 2011 6 / 22

Sac

Some reminders about MCMC

MCMC: given a probability P_X on a measurable space (X, \mathcal{X}) , construct a Markov chain $(X_n)_{n \in \mathbb{N}}$ in such a way that p is an invariant density of the chain

Markov transitions

► A Markov transition (or Markov kernel) on X is a set of probability distributions

$$\{K(x, \cdot); x \in \mathbb{X}\}$$

such that for any measurable subset $A \in \mathcal{X}$, $x \mapsto K(x, A)$ is measurable application. \rightarrow K(x, A) is "the probability to go to A starting from x".

- Given a kernel K, we can define two integral operations
 - 1. If $f : \mathbb{X} \to \mathbb{R}$ is a measurable and bounded function, define $Kf : \mathbb{X} \to \mathbb{R}$ by

$$(Kf)(x) = \int f(y)K(x, \mathrm{d}y), \quad x \in \mathbb{X}$$

2. If μ is a probability on $(\mathbb{X}, \mathcal{X})$, define a measure μK by

$$(\mu \mathcal{K})(\mathcal{A}) = \int \mathcal{K}(y, \mathcal{A}) \mathrm{d}\mu(y), \quad \mathcal{A} \in \mathcal{X}$$

• Given two kernels K_1 and K_2 , define a composite kernel K_1K_2 by

$$(K_1K_2)(x,A) = (K_1(x,\cdot)K_2)(A) = \int K_1(x,\mathrm{d} y)K_2(y,A), \quad (x,A) \in \mathbb{X} \times \mathcal{X}$$

 $(K_1K_2)(x, A)$ is the probability to from x to A using a first transition K_1 and a second transition K_2

• Given a kernel K, the iterated kernel K^n , $n \ge 1$, is defined by induction using the composition rule

		・ロト・日本・日本・日本・日本
E. Vazquez	Extreme events modeling III	Summer School CEA-EDF-INRIA, 2011 7 / 22

Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Some reminders about MCMC

Markov chains

A random process $(X_n)_{n \in \mathbb{N}}$ is a Markov chain if there exists a sequence of Markov transitions $(K_n)_{n \geq 1}$ such that for all measurable and bounded function $f : \mathbb{X} \to \mathbb{R}$

 $E[f(X_{n+1}) | X_n, \dots, X_0] = (K_{n+1}f)(X_n)$ a.s

 (X_n) is said to be stationary or homogeneous if for all $n, K_n = K$ for some K

Invariant measures Let (X_n) be a homogeneous Markov Chain. A probability measure π is an invariant measure of (X_n) if

$$\pi K=\pi$$

Foundation of MCMC for the estimation of a probability of failure Let (X_n) be a π -invariant Markov Chain. Under certain conditions, given $\phi \in L^1$,

$$rac{1}{n}\sum_{i=1}^n \phi(X_i) o \int_{\mathbb{X}} \phi \mathrm{d}\pi$$
 a.s

In particular, if P_X is invariant for (X_n) ,

$$rac{1}{n}\sum_{i=1}^n\mathbbm{1}_{f(X_i)>u}
ightarrow lpha^u(f)$$
 a.s

(日) æ Summer School CEA-EDF-INRIA, 2011 8 / 22

500

Some reminders about MCMC

Given a probability distribution P_X , how to construct a kernel K such that (X_n) is P_X -invariant?

(NB: of course we can choose $K(x, \, \cdot) := \mathsf{P}_{\mathbb{X}})$

Metropolis-Hastings algorithm

- ▶ Given a probability distribution P_X, with density p, the Metropolis-Hastings algorithm makes it possible to construct a P_X-invariant Markov chain (X_n)
- Consider a kernel Q such that $\forall x \in \mathbb{X}$, $Q(x, \cdot)$ has a density $q(\cdot \mid x)$
- Given $X_n = x$
 - 1. Generate $Y \sim Q(x, \cdot)$
 - 2. Take

$$X_{n+1} = \begin{cases} Y & \text{with probability } \rho(x, Y) \\ x & \text{with probability } 1 - \rho(x, Y) \end{cases}$$

with

$$\rho(x, y) = \min\left\{\frac{p(y)}{p(x)}\frac{q(x \mid y)}{q(y \mid x)}, 1\right\}$$

• The transition kernel of the chain (X_n) is

$$K(x, \mathrm{d} z) = \rho(x, z)Q(x, \mathrm{d} z) + (1 - r(x))\delta_x(\mathrm{d} z)$$

Extreme events modeling III

with $r(x) = \int \rho(x, y) Q(x, dy)$

• We have $P_X = P_X K$

```
E. Vazquez
```

Sequential Monte Carlo for estimating a probability of failure MCMC reminders

Sequential Monte Carlo

- With MCMC methods, it is often difficult to assess when the Markov chain has reached its stationary regime
- \blacktriangleright Moreover, MCMC methods are designed to sample from a fixed distribution π
- ► Sequential Monte Carlo methods address these limitations by running several Markov chains in parallel: X⁽ⁱ⁾ = (X⁽ⁱ⁾_n), i = 1,..., N
- At time *n*, each chain $X^{(i)}$ is given a weight $w_n^{(i)}$, which is determined so that, for a distribution π_n , and a function $\phi \in L^1(\pi_n)$, we have

$$\sum_{i=1}^N w_n^{(i)} \phi(X_n^{(i)}) o_N \int \phi \mathrm{d} \pi_n$$
 a.s.

- A pair $(w_n^{(i)}, X_n^{(i)})$ is called a particle
- Depending on the application, several methods have been proposed in the literature to determine the weights and the transition kernels
- > Here, we shall focus only on the problem of the estimation of a probability of failure

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 9 / 22

Estimation of a probability of failure by subset simulation

- The idea of subset simulation is the following:
 → when u is a high threshold, it may be difficult to deal with the problem of estimating α^u, but we can try to decompose the problem into a series of easier problems
- If *u* is not too high, then we can get a good approximation of α^u with only a few evaluations of *f*
- Consider a finite sequence of increasing thresholds

$$-\infty = u_0 < u_1 < u_2 \cdots < u_S = u$$

and define the corresponding sequence of nested subsets

$$\Gamma_k = \{x \in \mathbb{X}; f(x) > u_k\}, \quad k = 0, \dots, S$$

We can write

E. Vazquez

Sequential Monte Carlo for estimating a probability of failure Estimation of a probability of failure

Estimation of a probability of failure by subset simulation

- ► Thus, α^u can be computed as a product of the probabilities $P_X(\Gamma_{k+1} | \Gamma_k)$
- How to compute/estimate a probability $P_{\mathbb{X}}(\Gamma_k \mid \Gamma_{k-1})$?
- For $k \ge 0$, denote by μ_k the normalized restriction of $\mathsf{P}_{\mathbb{X}}$ to the domain $\mathsf{\Gamma}_k$

$$\mu_k(\mathrm{d} x) = \frac{1}{\mathsf{P}_{\mathbb{X}}(\mathsf{\Gamma}_k)} \mathbb{1}_{\mathsf{\Gamma}_k}(x) \mathsf{P}_{\mathbb{X}}(\mathrm{d} x)$$

► In particular, we have

 $\mu_0 = \mathsf{P}_{\mathbb{X}}$

$$\mu_{\mathcal{S}}(\mathrm{d} x) = \frac{1}{\alpha} \mathbb{1}_{\Gamma}(x) \mathsf{P}_{\mathbb{X}}(\mathrm{d} x),$$

which is the optimal instrumental distribution for estimating $\alpha(!)$

- We have $\mathsf{P}_{\mathbb{X}}(\mathsf{\Gamma}_{k+1} \mid \mathsf{\Gamma}_k) = \mu_k(\mathsf{\Gamma}_{k+1})$
- Thus, to estimate P_X(Γ_{k+1} | Γ_k), we could use a MC approach, using μ_k as the sampling distribution (provided μ_k is known, or at least, we know how to sample from μ_k)
- If µ_k(Γ_{k+1}) is not too small, we could get a good MC estimate of this probability with a moderate effort

Sequential Monte Carlo for estimating a probability of failure Estimation of a probability of failure					
Estimation of a probability	/ of failure by subset s	simulation			
An example:					
 Recall that the number of MC evaluations needed to estimate α with a given standard deviation δα is approximately 1/(δ²α) Suppose α ≈ 10⁻⁴ Setting δ = 0.1, we need approximately 10⁶ evaluations to estimate α by a simple MC approach Now, suppose that the thresholds u_k, i = 1,, S - 1, are chosen in such a way that μ_k(Γ_{k+1}) ≈ 0.1. We need approximately 1000 evaluations to estimate μ_k(Γ_{k+1}). Since 10⁻⁴ = (0.1)⁴, we need, in principle, a total of 4 × 1000 = 4000 evaluations to estimate α by subset sampling 					
So, the questions that need to be addressed are:					
1. How to sample from μ_k ?					
2. How to choose the u_k s so that $\mu_k(\Gamma_{k+1})$ is not too small?					
E. Vazquez	Extreme events modeling III	Summer School CEA-EDF-INRIA, 2011 13 / 22			

Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Fixed-threshold algorithm ▶ Cérou et al. (2011) show that a simplified version of the fixed-threshold algorithm produced an unbiased estimator $\hat{\alpha}$ of α^{u} • Cérou et al. (2011) also show that the variance of $\hat{\alpha}$ is minimized if the thresholds are set in such a way that $\mu_0(\Gamma_1) = \ldots = \mu_{S-1}(\Gamma_S) = p_0 = \alpha^{1/S}$ \rightarrow this is a difficult issue in practice • Instead of determining the thresholds u_k , we can try to prescribe a number N_0 of particles that will be kept at each stage k. Then, at stage k, the threshold u_k is defined implicitly by the $(N - N_0)$ th-order statistic of the N-sample $f(X_k^{(j)})$, j = 1, ..., N.

500

Adaptive algorithm

Assume given a transition kernel K. Prescribe $N_0 < N$ a fixed number of "succeeding particles".

1. Initialization. Generate an N-sample $X_0^{(j)} \stackrel{\text{i.i.d}}{\sim} \mu_0 = \mathsf{P}_{\mathbb{X}}, \ 1 \leq j \leq n$. Set

$$u_1 = [f(X_0^{(j)})]_{(N-N_0)}$$

where $[f(X_0^{(j)})]_{(N-N_0)}$ stands for the $(N-N_0)$ -th order statistic of the *N*-sample $f(X_0^{(j)}), j = 1, ..., N$

- 2. Set k = 1. While $u_k < u$.
 - 2.1 Starting from an N₀-sample with distribution μ_k , draw an i.i.d. N-sample $X_k^{(j)}$, $1 \le j \le N$ with the same distribution μ_k 2.

$$u_{k+1} = [f(X_k^{(j)})]_{(N-N_0)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの Summer School CEA-EDF-INRIA, 2011 17 / 22

- 2.3 Set k = k + 1
- 3. Let N_u be the number of particles such that $f(X_{k-1}^{(j)}) > u$. Set $\widehat{\alpha} = \frac{N_u}{N} \left(\frac{N_0}{N}\right)^{k-1}$

E. Vazquez

Sequential Monte Carlo for estimating a probability of failure Subset sampling algorithms

Extreme events modeling III

Adaptive algorithm • Step 2.1 of the adaptive algorithm is obviously the main difficulty of the algorithm \rightarrow use Step 2.2 of the fixed-threshold algorithm ▶ For this, we need a P_X -invariant kernel K with good mixing properties \rightarrow in practice, K should be a parametrized kernel, whose parameter is tuned to keep the acceptance rate in a reasonable range Cérou et al. provides an analysis of the properties of the adaptive algorithm. They show that $\widehat{\alpha}$ has a bias that decreases at rate 1/N, but the mean square error is actually smaller than that of the fixed-threshold algorithm \blacktriangleright In applications, subset sampling algorithms perform very well \rightarrow more expensive that geometrical methods, but much cheaper than simple MC ヘロト ヘヨト ヘヨト æ 500 Summer School CEA-EDF-INRIA, 2011 18 / 22 E. Vazquez Extreme events modeling III

Sequential Monte Carlo for estimating a	probability of failure References			
Some references				
► Au SK. and Beck J. (2001), "Estimation of small failure probabilities in high dimensions by				
 Cérou F., Del Moral P., Furon 	T. and Guyader A. (2011)), "Sequential Monte Carlo for Rare		
Event Estimation", Technical F	Report			
		4日 2 4 月 2 4 日 2 4 日 2 9 9 9 9		
E. Vazquez	Extreme events modeling III	Summer School CEA-EDF-INRIA, 2011 19 / 22		

Control-variate sampling

• The idea of control-variate sampling for the estimation of a probability of failure is to make use of a cheap approximation g of f so that the random variable Z = f(X) can be predicted by W = g(X).

Principle

Control-variate sampling

- ► W will be our control variate
- Control variates method are standard variance reduction techniques used in Monte Carlo methods
- Let $\alpha_n(f)$ be the MC estimator of $\alpha(f)$:

$$\alpha_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{f(X_i) > u}, \quad X_i \stackrel{\text{i.i.d.}}{\sim} \mathsf{P}_{\mathbb{X}}$$

Consider the estimator

$$\tilde{\alpha}_n = \alpha_n(f) + \gamma[\alpha_n(g) - \alpha(g)], \quad \gamma \in \mathbb{R}$$

We have

$$\mathsf{E}(\tilde{\alpha}_n) = \alpha(f)$$

and

$$\operatorname{var}(\tilde{\alpha}_n) = \operatorname{var}(\alpha_n(f)) + \gamma^2 \operatorname{var}(\alpha_n(g)) + 2\gamma \operatorname{cov}(\alpha_n(f), \alpha_n(g))$$

E. Vazquez

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ つ Q ○ Summer School CEA-EDF-INRIA, 2011 20 / 22

Control-variate sampling

► For the optimal choice

$$\gamma^{\star} = -\frac{\operatorname{cov}(\alpha_n(f), \alpha_n(g))}{\operatorname{var}(\alpha_n(g))}$$

we have

$$\operatorname{var}(ilde{lpha}_n) = (1-
ho^2)\operatorname{var}(lpha_n(f))$$

- where ρ is the correlation coefficient between $\alpha_n(f)$ and $\alpha_n(g)$
- If g is close to f, we expect ρ to be high, so the control variate estimator α̃_n will have a small variance wrt α_n
- ▶ How to choose g?

Some references

- An idea is to use the framework of FORM: in the standardized Gaussian space, compute a first-order approximation of f at the design point x^{*} → this yields an affine approximation g of f, for which we can compute α(g) exactly, using the formula α(g) = Φ(-β)
- How to compute/estimate the optimal γ^* ?
- An idea is to use the approximation

$$\operatorname{cov}(\alpha_{n}(f), \alpha_{n}(g)) = \operatorname{E}\left(\frac{1}{n^{2}} \sum_{i,j=1}^{n} \mathbb{1}_{f(X_{i}) > u} \mathbb{1}_{g(X_{j}) > u}\right) - \alpha(f)\alpha(g)$$

$$= \frac{1}{n} \operatorname{E}\left(\mathbb{1}_{f(X_{i}) > u} \mathbb{1}_{g(X_{i}) > u}\right) + \frac{n-1}{n} \alpha(f)\alpha(g) - \alpha(f)\alpha(g)$$

$$\approx \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{1}_{f(X_{i}) > u} \mathbb{1}_{g(X_{i}) > u} - \frac{1}{n} \alpha_{n}(f)\alpha_{n}(g)$$

$$\stackrel{\text{E. Vazquez}}{\overset{\text{Extreme events modeling III}}{\overset{\text{Extreme events modeling III}}}$$

References

Cannamela C., Garnier J., Iooss B. (2008), Controlled stratification for quantile estimation, Annals of Applied Statistics

Hesterberg T. C. and Nelson B. L. (1998). Control variates for probability and quantile estimation. Management Science

Control-variate sampling

Summer School CEA-EDF-INRIA, 2011 22 / 22

э

500

・ロット 白マット キョット