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Uses of computer models in engineering: a reminder

Computer models in engineering
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Model implemented under the form of a computer program (e.g., a finite element model).
A single run of the program may be time- and resource-consuming.
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Uses of computer models in engineering: a reminder

Computer models in engineering

◮ X ⊆ R
d : input domain of the system

◮ f : X → R: a performance or cost function (function of the outputs of the system)
◮ Main classes of problems

1. Optimization of the performances of a system, cost minimization...

x⋆ = argmax
x∈X

f (x)

2. In presence of uncertain factors: minimize a probability of failure, i.e.,

X = X0 × X1

x⋆0 = argmin
x0∈X0

α(x0)

α(x0) := PX1
{x1 ∈ X1 : f (x0, x1) > u}

where PX1
is some probability distribution on (X1,B(X1))

3. Performance assessment: estimation of a quantile

qα(x0) = inf{u ∈ R; PX1
{x1 ∈ X1 : f (x0, x1) ≤ u} ≥ α}

(This is a simplified view. Most real problems have several performance functions, and
mix different objectives.)
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Uses of computer models in engineering: a reminder

Computer models in engineering
◮ Computer simulations to assess the probability of undesirable events in a nuclear reactor
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◮ A serious accident: loss of coolant in a
pressurized water nuclear reactor

◮ Under these conditions, temperature of fuel
rods can be described by
∼ 50 dimensioning factors, which are not
known accurately

◮ Peak temperature can be estimated using
complex and time-consuming simulations

◮ f : X → R peak temp. as a function of the
factors

◮ Objective: estimate a probability of
exceeding a critical value

α = PX{f ≥ u}

or a quantile

qα = inf{u ∈ R; PX{f ≤ u} ≥ α}

or a worst-case

M = sup
x∈X

f (x)
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Uses of computer models in engineering: a reminder

Computer models in engineering

◮ Computer simulations to assess the probability of river flooding
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(Courtesy of EDF)

◮ Risk of water flooding in an inhabitable or
industrial area assessed by modeling the
water-surface profile of a river as a function
of factors, such as the river discharge and
the features of the riverbed

◮ Because a single evaluation of such a
model for known discharge and riverbed
features is potentially time-consuming, risk
of flooding must be assessed with a small
budget of simulations

◮ f : X → R the water level as a function of
the factors

◮ The objective is to estimate a quantile for
the water level

q1−α = inf{u ∈ R; PX{f ≤ u} ≥ 1− α}

for a given α that is close to zero.
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How to construct a good estimation procedure?

Estimation from computer experiments

◮ Let f : X → R be a continuous function.

(f corresponds to a computer program whose output is not a closed-form expression of the
inputs.)

◮ Our objective: to obtain an approximation of

m(f ) = min
x∈X

f (x) = f (x⋆)

or

αu(f ) = PX{f > u} =

∫

X

1f>udPX

or
q1−α(f ) = inf{u ∈ R; PX{f ≤ u} ≥ 1− α}

◮ The approximation of m(f ), αu(f ), etc. has to be built from a set of computer experiments
(where an experiment simply consists in choosing an x ∈ X, and computing the value of f
at x).

◮ The result of a pointwise evaluation of f carries information about f and quantities
depending on f (in particular, m(f ), αu(f ), or q1−α(f ))

◮ Expensive computer experiments: the number of evaluations is limited → m(f ), αu(f ), etc.
must be estimated using a fixed number, say N, of evaluations of f .
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How to construct a good estimation procedure?

The case of optimization

❑ Formally, an optimization algorithm corresponds to a pair
(
XN , m̂N

)
,

XN : f 7→ XN (f ) = (X1(f ),X2(f ), . . . ,XN(f )) ∈ X
N ,

m̂N : f 7→ m̂N(f ) ∈ R+ ,

with the following properties:

a) There exists x1 ∈ X such that X1(f ) = x1

b) Let Zn(f ) = f (Xn(f )), 1 ≤ n ≤ N For all 1 ≤ n < N, Xn+1(f ) depends measurably1 on

In(f ), where In = ((X1,Z1) , . . . , (Xn,Zn))

c) m̂N(f ) depends measurably on IN(f )

◮ XN is called a strategy, or policy, or design of experiments

◮ m̂N(f ) is an estimator of m(f )

1i.e., there is a measurable map ϕn : (X × R)n → X such that Xn = ϕn ◦ In
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How to construct a good estimation procedure?

The case of optimization

❑ The algorithm (XN , m̂N) describes a sequence of decisions, made from an increasing
amount of information:

◮ X1(f ) = x1 is chosen prior to any evaluation

◮ for each n = 1, . . . ,N − 1, the algorithm uses information In(f ) to choose the
next evaluation point Xn+1(f )

◮ the estimator m̂N(f ) of m(f ) is the terminal decision

❑ In the framework of optimization, we generally consider m̂N = min1≤n≤N Zn.
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How to construct a good estimation procedure?

Sequential estimation of a probability of failure

❑ Likewise, an algorithm to estimate a probability of failure corresponds to
a pair (XN , α̂N),

XN : f 7→ XN (f ) = (X1(f ),X2(f ), . . . ,XN(f )) ∈ X
N ,

α̂N : f 7→ α̂N(f ) ∈ R+ ,

with the following properties:

a) There exists x1 ∈ X such that X1(f ) = x1

b) Let Zn(f ) = f (Xn(f )), 1 ≤ n ≤ N. For all 1 ≤ n < N, Xn+1(f ) depends

measurably on In(f ), where In = ((X1,Z1) , . . . , (Xn,Zn))

c) α̂N(f ) depends measurably on IN(f )

◮ Again, XN is called a strategy

◮ α̂N(f ) is an estimator of α(f )
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How to construct a good estimation procedure?

◮ To simplify our presentation, we deal first with the problem of optimization

◮ The case of the estimation of a probability of failure, and that of the estimation of a
quantile will be detailed later
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Optimization of an expensive-to-evaluate function

3. Optimization of an expensive-to-evaluate function

How to predict the worst case from time- and
resource-consuming computer experiments?
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Optimization of an expensive-to-evaluate function

◮ In the context of rare events estimation and risk analysis, it is often desirable
to assess the worst-case performance of a system, that is, to determine

M = sup
x∈X

f (x)

or
m = inf

x∈X

f (x)

➟ f may be non-convex
➟ this is a global optimization problem

◮ How to define a good strategy XN for the optimization problem?

◮ In a context of risk analysis, we want a strategy that will provide a robust estimation
of the global optimum

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 15 / 141

Optimization of an expensive-to-evaluate function The problem with local optimization methods

3.1 Why local optimization methods may not be satisfactory for risk analysis
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Optimization of an expensive-to-evaluate function The problem with local optimization methods

An illustrative example
◮ Consider

f : R
2 → R

x 7→ f (x) = exp
(
1.8

(
x[1] + x[2]

))
+ 5x[1] + 6x[2]

2 + 3 sin
(
4πx[1]

)

◮ Objective: find an approximation of

x⋆ = argmin
x∈[−1,1]2

f (x) .

with a budget of N = 60 experiments
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Optimization of an expensive-to-evaluate function The problem with local optimization methods

An illustrative example (continued)

Evaluations points using a Nelder-Mead algorithm (fminsearch function of Matlab)
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→ the algorithm converges to a local minimum (≈ 0.427)
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Optimization of an expensive-to-evaluate function The problem with local optimization methods

This comes as no surprise (local search algorithm). But above all...

◮ after having spent the budget of (possibly expensive) evaluations, the behavior of
the function is only known in a small region of the search domain

◮ the global behavior of the function is unknown

◮ potentially interesting regions have not been explored
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Optimization of an expensive-to-evaluate function The problem with local optimization methods

In a context of expensive-to-evaluate functions and a small budget of evaluations, a
“safer” strategy would consists in sampling f uniformly on the search domain

→ minimum of evaluation results is ≈ −5.823 (global minimum is ≈ −5.845)
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Optimization of an expensive-to-evaluate function The problem with local optimization methods

Summing up

◮ In a context of risk analysis and a limited budget of evaluations, it seems safer to
balance between local search and exploration of the search domain

◮ An exploration/exploitation trade-off has to be achieved

◮ How to define a robust strategy?
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Optimization of an expensive-to-evaluate function Worst-case strategies

The worst-case approach

◮ Let AN be the class of all strategies XN that query sequentially N evaluations of f .

◮ Define the error of approximation of a strategy XN ∈ AN on f as

ε(XN , f ) = m̂N(f )−m(f )

◮ Assume that f belongs to a class of functions F → prior information

➜ A first idea to define a notion of a good strategy is to consider robustness with
respect to a worst case

◮ Define the minimax risk

rminimax(F) = inf
X
N
∈AN

sup
f∈F

ε(XN , f )

◮ A strategy XN
⋆ that attains rminimax(F) is called an optimal minimax strategy

◮ XN
⋆ has the best worst-case performance on F
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Optimization of an expensive-to-evaluate function Worst-case strategies

Example of a minimax strategy: case of Lipschitz functions

Definition

A function f : X → R is called Lipschitz continuous if there exists a real constant K ≥ 0
such that, for all x1 and x2 in X,

|f (x1)− f (x2)| ≤ K‖x1 − x2‖.

Any such K is referred to as a Lipschitz constant for the function f .
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Optimization of an expensive-to-evaluate function Worst-case strategies

Example of a minimax strategy: case of Lipschitz functions

◮ Let F be the class of all Lipschitz continuous functions X → R , with Lipschitz
constant K

◮ Assume that f ∈ F
◮ For any strategy XN , define the fill distance as

hN = sup
x∈X

min
i=1,...,N

|x − Xi |

◮ For any XN ∈ AN and any f ∈ F ,

ε(XN , f ) = f (X1) ∧ · · · ∧ f (XN)− f (x⋆) ≤ f (Xi⋆)− f (x⋆) ≤ KhN ,

where Xi⋆ is the nearest point to x⋆

◮ Thus, for any XN ∈ AN , supf∈F ε(XN , f ) ≤ Khn

◮ For any XN , there exists a function f ∈ F such that

ε(XN , f ) = KhN

Thus,
sup
f∈F

ε(XN , f ) = KhN
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Optimization of an expensive-to-evaluate function Lipschitzian optimization

Example of a minimax strategy: case of Lipschitz functions

❑ Consequence: a minimax strategy minimizes hN
→ sample points have to be uniformly distributed over the search domain

❑ In dimension one:

◮ for any XN , hN ≥ |X |
(N+1)

◮ the optimal strategy is the uniform sampling: rminimax(F) = K |X |
(N+1)

❑ How to deal dimension d > 1?

◮ using a uniform grid is not optimal (not mentioning the fact that the budget of
evaluations must be at least N = 2d)

◮ sampling randomly with a uniform distribution over X provides no guarantee
that hn will be small

◮ optimizing the design of experiments to yield a small hn is interesting but may
numerically expensive

◮ Minimax Latin Hypercube Sampling is an easy procedure that will generally
provide good suboptimal designs
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Optimization of an expensive-to-evaluate function Lipschitzian optimization

Latin Hypercube Sampling [McKay, Conover and Beckman (1979)]

❑ Assume X = [0, 1]d . To obtain an LHS of size N:

◮ Along each dimension of X, split the interval [0, 1] into N intervals of equal
length → N × d cells

◮ Choose n cells in such a way that there is exactly one cell per interval of each
dimension

◮ In each of the n selected cells, sample one point

❑ This sampling scheme does not require more samples for more dimensions

❑ A simple LHS provides not guarantee that hN will be small

❑ Key idea: generate several LHS (cheap procedure) and select the design that
achieves the smallest hN

❑ Maximin LHS design is implemented in the Statistical Toolbox of Matlab
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Optimization of an expensive-to-evaluate function Lipschitzian optimization
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Example of a maximin Latin hypercube sampling of size n = 100 in dimension d = 8
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Optimization of an expensive-to-evaluate function Lipschitzian optimization

Latin Hypercube Sampling for optimization

Pros

◮ Straightforward implementation

◮ Global search and near optimal minimax strategy

◮ The behavior of the function is well captured over the search domain

Cons

◮ The minimax approach is a pessimistic approach

◮ No local search

➜ In practice, we would like to achieve a balance between exploration of the search
domain and local search in promising regions (good performance on worst cases and
good convergence rate)
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Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

3.4 Sequential exploration/exploitation strategies for Lipschitz continuous functions
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Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

A sequential method seeking the global maximum of a Lipschitz continuous
function [Shubert (1972)]

❑ Assume:
◮ X = [a, b], with −∞ < a < b < +∞
◮ f is Lipschitz continuous, with Lipschitz constant K

❑ For any two points a ≤ xi < xj ≤ b, and ∀x ∈ [xi , xj ], the following lower-bounds
hold

f (x) ≥ f (xi )− K (x − xi )

f (x) ≥ f (xj) + K (x − xj).

f

a b
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A sequential method seeking the global maximum of a Lipschitz continuous
function [Shubert (1972)]
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Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

A sequential method seeking the global maximum of a Lipschitz continuous
function [Shubert (1972)]

❑ Exploration vs Exploitation

x+ =
f (xi )− f (xj)

2K
+

xi + xj
2

m− =
f (xi ) + f (xj)

2
− K

xj − xi
2

❑ K can be seen as a parameter to tune the tradeoff local search vs exploration

f

xi xjx+

m−

slope −K

slope K
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Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

A sequential method seeking the global maximum of a Lipschitz continuous
function [Shubert (1972)]

Pros

◮ Straightforward implementation

◮ Global search and local search

◮ Gives bound on error

Cons

◮ A low Lipschitz constant has to be known (high K → global search)

◮ Speed of convergence (global vs. local)

◮ Computational complexity in higher dimensions (Shubert’s algorithm is initialized by
evaluating the function at the vertices of a hyper-rectangle → O(2d) evaluations)
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Lipschitzian Optimization Without the Lipschitz Constant [Jones, Perttunen
and Stuckman (1993)]

❑ The name DIRECT stands fro DIviding RECTangles

❑ As in Shubert’s algorithm, DIRECT balances between global and local search

❑ Two important ideas:

◮ K need not to be known
◮ Sample the function at center of rectangles

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 33 / 141



Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

DIRECT in 1D

❑ Sample at the center of an interval

a bx1

❑ When dividing the search domain, we have to make sure that previous function
evaluations remain at the center of some interval

→ Instead of a bisection, do a trisection.

a

a

b

b
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DIRECT in 1D

❑ Assume:
◮ X = [a, b], with −∞ < a < b < +∞
◮ f is Lipschitz continuous, with Lipschitz constant K

❑ Lipschitz bounds on an interval [ai , bi ] with midpoint xi

f (x) ≥ f (xi ) + K (x − xi ), for ai ≤ x ≤ xi ,

f (x) ≥ f (xi )− K (x − xi ), for xi ≤ x ≤ bi

❑ On [ai , bi ], f is lower-bounded by m−
i = f (xi )− K (bi − ai)/2

❑ Note that m−
i only takes into account the function value at the center of the interval

a b

f

+K −K

x1

m− = f (x1)− K (b − a)/2
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DIRECT in 1D

Definition

◮ Let S be a partition of [a, b] into subintervals [ai , bi ] with midpoints xi , i = 1, . . . , n

◮ An interval [ai , bi ] is called potentially optimal if there exists some constant K ≥ 0
such that the following conditions hold

m−
i (K ) ≤ m−

j (K ), for all j ∈ {1, . . . , n}
m−

i (K ) ≤ min
j

f (xj) ,

with m−
i (K ) := f (xi )− K (bi − ai)/2

(K need not to be a Lipschitz constant)
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DIRECT in 1D

Fix an arbitrary K > 0 and consider a potentially optimal interval [ai , bi ]

f (xi )− K (bi − ai)/2 ≤ f (xj)− K (bj − aj)/2, for all j ∈ {1, . . . , n}
f (xi )− K (bi − ai)/2 ≤ min

j
f (xj)

f (x·)

b·−a·
2
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DIRECT in 1D

Fix an arbitrary K > 0 and consider a potentially optimal interval [ai , bi ]

f (xi )− K (bi − ai)/2 ≤ f (xj)− K (bj − aj)/2, for all j ∈ {1, . . . , n}
f (xi )− K (bi − ai)/2 ≤ min

j
f (xj)

f (x·)

b·−a·
2

K
f (xi )

bi−ai
2

f (xi )− K bi−ai
2

The interval with the lowest lower bound can be found by positioning a line with slope K
below the cloud of dots, and shifting it upwards until it touches a dot.
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Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

DIRECT in 1D

Lipschitz constant K > 0 is unknown

f (xi )− K (bi − ai)/2 ≤ f (xj)− K (bj − aj)/2, for all j ∈ {1, . . . , n}
f (xi )− K (bi − ai)/2 ≤ min

j
f (xj)

f (x·)

b·−a·
2

We identify the set of intervals that could be selected by using some positive K
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DIRECT in 1D

One-dimensional DIRECT algorithm

Require: a, b ∈ R, f : [a, b] → R

Set [a1, b1] = [a, b]
while the budget of evaluations is not exhausted; do

1. Identify the set of potentially optimal intervals
2. Subdivide potentially optimal intervals and evaluate new center points

end while

return m̂N
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DIRECT in several dimensions

◮ Consider f : X = [0, 1]d → R, with d > 1

◮ As DIRECT proceeds, X will be partitioned into hyper-rectangles, each with a sampled point
at its center

Division of hypercubes
Assume that x1 is at the center of the initial hypercube [0, 1]d

1. Evaluate f at x1 ±
1
3
ej , j = 1, . . . , d , where ej stands for the jth unit vector

2. Subdivide along directions with best function values first

5

2

8

6

5

2

8

6

5

2

6

8

The best values will be at the center of hyper-rectangles
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Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

DIRECT in several dimensions
◮ Once the initial hypercube has been partitioned, some of the subregions will be

hyper-rectangles.
◮ By dividing the hyper-rectangles only along the long dimensions, we ensure that the

rectangles shrink on every dimension.

Division of a hyper-rectangle with center xi

◮ Identify the set J of dimensions with the maximum edge length. Set δ equal to 1/3 this
maximum edge length.

◮ Sample the function at xi ± δej , j ∈ J.

◮ Divide the hyper-rectangle containing xi along the dimensions in J, starting with the
dimensions with the lowest value of

wj = min{f (xi − δej ), f (xi + δej )}

and continuing with the dimensions with higher wj .
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DIRECT in several dimensions

◮ The procedure for identifying the set of potentially optimal rectangles in the same as
that in one dimension

◮ For each rectangle with a point xi at its center, we will know the function value at xi
and the distance di from the center point to the vertices.

◮ We can form a diagram like that on Slide 37, using the distance d
·
for the horizontal

axis, and identify the set of potentially optimal rectangles as before
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DIRECT algorithm

Require: X ⊂ R
d , f : X → R

− Normalize the domain to be the unit hyper-cube with center x1
− Evaluate f at x1 and set m̂1 = f (x1), n = 1
− Evaluate f (x1 ± δei), 1 ≤ i ≤ d , and divide hyper-cube
while the budget of evaluations is not exhausted (n ≤ N); do

− Identify the set of potentially optimal hyper-rectangles
for all potentially optimal rectangles do

− Identify the longest side(s) of rectangle
− Divide into smaller rectangles, and evaluate f at centers of new rectangles
− Update m̂n

end for

end while

return m̂N
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DIRECT algorithm

(Only divide along the set of longest sides. Rectangles have edge lengths either 3−k or 3−(k+1),

k ∈ N.)
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DIRECT: 2D illustration

(f defined on Slide 19)
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m̂n with N = 60

LHS −5.823
DIRECT −5.839
Global minimum −5.845
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Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

Lipschitzian Optimization Without the Lipschitz Constant [Jones, Perttunen
and Stuckman (1993)]

Summing up

◮ In the context of risk analysis, it is often desirable to assess the worst-case
performance of a system → this is a global optimization problem

◮ In this context, we want to use robust optimization algorithms

DIRECT in practice

◮ Straightforward and efficient global optimization procedure

◮ Global search and local search

◮ Known convergence results
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3.5 Average-case approach to the problem of optimization
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Optimization of an expensive-to-evaluate function Average-case approach to the problem of optimization

Average-case approach

◮ Summing up: the worst case setting may not be the most appropriate framework to
assess the performance of an algorithm in practice

◮ In practice, we need to know how an optimization algorithm performs for “typical”
functions f not corresponding to worst cases

◮ To address this issue, a classical approach is to adopt an average-case point of view
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Average-case approach

◮ Average-case → introduction of a probability space (Ω,B,P0)

◮ We consider methods where f is seen as a sample path of a real-valued random
process ξ defined on (Ω,B,P0) with parameter in X

→ there exists ω ∈ Ω such that
f = ξ(ω, ·)

◮ From a Bayesian decision-theoretic point of view, ξ represents prior knowledge
about f

All real functions

Prior ξ

Unknown function f
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Average-case approach

◮ Under this setting, for a given sequential strategy Xn ∈ An

Xn (ξ) = (X1(ξ), . . . ,Xn(ξ))

is a random sequence in X

(but we still consider deterministic strategies!)

◮ The performance of a strategy Xn ∈ AN is the random variable

ε(XN , ξ) = m̂N(ξ)−m(ξ)

◮ A good strategy is a strategy that achieves, or gets close to, the average (or Bayes)
risk

raverage := inf
X
N
∈AN

E0 (ε(XN , ξ)) ,

where E0 denotes expectation with respect to the probability P0
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Average-case approach

❑ This point of view has been widely explored in the domain of optimization and
computer experiments.

❑ Two important issues to address:

◮ How to construct an optimal average strategy?

◮ How to choose ξ?
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3.6 Sequential Bayesian optimization
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Optimal Bayesian strategies

◮ Objective: construct an optimal Bayesian optimization strategy X⋆
N such that

E0 (ε(X
⋆
N , ξ)) = raverage = inf

X
N
∈AN

E0 (ε(XN , ξ))

◮ Let En, n = 1, 2, . . ., denote the conditional expectation with respect to In(ξ),

where

◮ In = ((X1,Z1) , . . . , (Xn,Zn))

◮ Zn(ξ) = ξ(Xn(ξ)), 1 ≤ n ≤ N

◮ X⋆
N can be formally obtained by dynamic programming

◮ Denote the terminal risk by
RN = EN (ε(XN , ξ))

and define by backward induction

Rn = min
x∈X

En

(
Rn+1 | Xn+1 = x

)
, n = N − 1, . . . , 0. (1)

◮ To get an insight into (1), notice that Rn+1, n = 0, . . . ,N − 1, depends measurably on
In+1 = (In,Xn+1,Zn+1), so that

En

(
Rn+1 | Xn+1 = x

)

is in fact an expectation with respect to Zn+1, and Rn is an Fn-measurable random variable
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Optimal Bayesian strategies

◮ Then, we have R0 = raverage

◮ The strategy X⋆
N defined by

X ⋆
n+1 = argmin

x∈X

En

(
Rn+1 | Xn+1 = x

)
, n = 1, . . . ,N − 1, (2)

is the optimal Bayesian strategy

◮ Unfortunately,

state space is continuous, dim. n × (d + 1)

action space is continuous, dim. d

}
⇒

solving (1)–(2) over an horizon N

of more than a few steps is

not numerically tractable!

◮ How to construct good sub-optimal strategies?
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k-step lookahead strategies

◮ Using (1), the optimal strategy can be expanded as

X ⋆
n+1 = argmin

x∈X

En

(
min
Xn+2

En+1 . . . min
XN

EN−1 RN

∣∣∣ Xn+1 = x

)
.

◮ A general approach to construct sub-optimal strategies is to truncate this expansion
after k terms, replacing the exact risk Rn+k by a surrogate risk R̃n+k .

◮ Examples of such surrogates will be given below

◮ The resulting strategy,

Xn+1 = argmin
x∈X

En

(
min
Xn+2

En+1 . . . min
Xn+k

En+k−1 R̃n+k

∣∣∣ Xn+1 = x

)
.

is called a k-step lookahead strategy

◮ Both the optimal strategy (2) and the k-step lookahead strategy implicitly define a
sampling criterion Jn(x), the minimum of which indicates the next evaluation to be
performed.

◮ For instance, in the case of the k-step lookahead strategy, the sampling criterion is

Jn(x) = En

(
min
Xn+2

En+1 . . . min
Xn+k

En+k−1 R̃n+k

∣∣∣ Xn+1 = x

)
.
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One-step lookahead strategy for the problem of optimization

◮ In the case of a one-step lookahead strategy the sampling criterion may be written as

Jn(x) = En

(
R̃n+1

∣∣∣ Xn+1 = x
)

and, at step n, the next evaluation point is chosen according to

Xn+1 = argmin
x∈X

Jn(x)

◮ How to define a surrogate R̃n+1 for the optimization problem?

◮ For instance, we can choose the next evaluation point as if it were the last one

→ in this case, we set R̃n+1 = En+1(m̂n+1 −m)

◮ Note that taking R̃n+1 = En+1(m̂n+1 −m) corresponds to considering an optimal
strategy for an horizon of one evaluation only
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One-step lookahead strategy for the problem of optimization

◮ Consider the one-step lookahead strategy for the problem of optimization: each new
evaluation point is chosen according to

Xn+1 = argmin
x∈X

En (En+1(m̂n+1 −m) | Xn+1 = x)

= argmin
x∈X

En (m̂n+1 −m | Xn+1 = x)

= argmin
x∈X

En (m̂n+1 | Xn+1 = x)

= argmin
x∈X

En (m̂n ∧ ξ(Xn+1) | Xn+1 = x)

= argmax
x∈X

En (0 ∧ (ξ(Xn+1)− m̂n) | Xn+1 = x)

= argmax
x∈X

ρn(x) := En

(
(m̂n − ξ(Xn+1))+

∣∣ Xn+1 = x
)
,

where (z)+ = 0 ∨ z

◮ The sampling criterion ρn, introduced by J. Mockus and popularized through the
EGO algorithm [Jones et al. (1998)], is known as the expected improvement (EI).
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One-step lookahead strategy for the problem of optimization

◮ Heuristic interpretation of the EI sampling criterion

Xn+1 = argmax
x∈X

ρn(x) := En

(
(m̂n − ξ(Xn+1))+

∣∣ Xn+1 = x
)
,

◮ For x ∈ X, the random variable

(m̂n − ξ(x))+

is called the improvement at x , and represents the excursion of ξ(x) below the
current minimum

m̂n = ξ(X1) ∧ · · · ∧ ξ(Xn)

◮ A one-step lookahead strategy selects the point which has the maximum expected
improvement
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❑ The next step is to understand:

◮ how to choose a random process ξ

◮ how to compute a sampling criterion such as the expected improvement ρn

❑ We shall see that restricting ξ to be a Gaussian process makes it possible to obtain a
closed-form formula for ρn
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3.7 Gaussian random models
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Gaussian random models

❑ The idea of modeling an unknown function f by a Gaussian process has originally
been introduced in the 60s

◮ in time series analysis
◮ in optimization theory
◮ in geostatistics

❑ Today, the Gaussian process model plays a central role in the design and analysis of
computer experiments

❑ A Gaussian random process ξ can be used as a stochastic model of some uncertain
real-valued function

❑ In other words, ξ can be thought as a prior about some function
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Gaussian random vector

◮ A real-valued random vector X = (X1, . . . ,Xd ) ∈ R
d is said to be Gaussian if and only if

any linear combination of its components
∑d

i=1 aiXi , with a1, . . . , ad ∈ R, is a Gaussian
variable

◮ A Gaussian random vector X is characterized by its mean vector

µ = (E[X1], . . . ,E[Xd ]) ∈ R
d

and the covariance of the pairs of components (Xi ,Xj ), i , j ∈ {1, . . . , d}

cov(Xi ,Xj ) = E[XiXj ]− E[Xi ]E[Xj ]

◮ If the covariance matrix
Σ =

(
cov(Xi ,Xj )

)
i,j=1,...,d

is nonsingular, X has the probability density function

gµ,Σ(x) =
1

(2π)d/2(detΣ)1/2
exp

(
−
1

2
(x − µ)TΣ−1(x − µ)

)

◮ The correlation coefficient of two components Xi , Xj is defined by

ρ(Xi ,Xj ) =
cov(Xi ,Xj )√
var(Xi ) var(Xj )

∈ [−1, 1],

→ measures the similarity between Xi and Xj
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Gaussian random process

◮ Random process: a set ξ = {ξ(x), x ∈ X} of random variables indexed by the elements of X

◮ A random process ξ is Gaussian if and only if, ∀n ∈ N, ∀x1, . . . , xn ∈ X, and
∀a1, . . . , an ∈ R, the real-valued random variable

n∑

i=1

aiξ(xi )

is Gaussian

◮ A Gaussian process is characterized by

its mean function
x ∈ X 7→ E[ξ(x)]

and its covariance function

(x , y) ∈ X
2 7→ cov(ξ(x), ξ(y))

◮ Standing assumption: the covariance function is stationary, i.e., there exists k : X → R such
that

cov(ξ(x), ξ(y)) = k(x − y)

◮ Notation: ξ ∼ GP (m, k)
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Gaussian process: correlation structure

◮ When k is stationary, the variance var(ξ(x)) does not depend on x

◮ The covariance function can be written as

k(x − y) = σ2ρ(x − y) ,

with σ2 = var(ξ(x)), and where ρ is the correlation function of ξ.

◮ The graph of the correlation function is a symmetric “bell curve” shape

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

correlation range

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 63 / 141



Optimization of an expensive-to-evaluate function Gaussian random models

Gaussian process simulation

◮ Using a random generator, it is possible to“generate” sample paths f1, f2, . . . of a
Gaussian process ξ
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Gaussian process simulation

◮ Using a random generator, it is possible to“generate” sample paths f1, f2, . . . of a
Gaussian process ξ
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Regularity properties of a random process

Definition
Given x0 ∈ R

d , a random process ξ is said to be continuous in mean-square at x0 iff

lim
x→x0

E[(ξ(x)− ξ(x0))
2] = 0

Proposition

Let ξ be a second-order random process with continuous mean function and stationary
covariance function k. ξ is continuous in mean-square iff k is continuous at zero.
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Regularity properties of a random process

Definition
For x , h ∈ R

d , define the random variable

ξh(x) =
ξ(x0 + h)− ξ(x0)

‖h‖

ξ is mean-square differentiable at x0 iff there exists a random vector ∇ξ(x0) such that

lim
h→0

E
[
(ξh(x0)− (∇ξ(x0), h))

2 ] = 0

Proposition

Let ξ be a second-order random process with differentiable mean function and stationary
covariance function k. ξ is differentiable in mean-square iff k is two-time differentiable
at zero.
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Influence of the regularity

mean-square continuity
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three-time mean-square differentiability
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Choice of a covariance

◮ A Gaussian process prior carries a high amount of information about f

→ it is often difficult to elicit such a prior before any evaluation is made

◮ Covariance function of ξ is usually assumed to belong to some parametric class of
positive definite functions

◮ Parameter values assumed to be unknown

◮ Two approaches:

1. The parameters can be estimated from the evaluation results by maximum likelihood,
and then plugged in a sampling criterion

2. We can assume a prior distribution for the parameters of the covariance and use a fully
Bayesian approach
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Choice of a parametrized covariance function: the Matérn covariance

◮ The Matérn covariance function is a conventional covariance function in the literature of
computer experiments

→ offers the possibility to adjust the regularity of ξ with a single parameter

◮ The Matérn function:

κν(h) =
1

2ν−1Γ(ν)

(
2ν1/2h

)ν
Kν

(
2ν1/2h

)
, h ∈ R (3)

with

– Γ the Gamma function

– Kν the modified Bessel function of the second kind

◮ To model a real-valued function defined over X ⊂ R, we use the Matérn covariance:

kθ(h) = σ2κν(|h|/ρ) , h ∈ R (4)

– σ2 > 0 is a variance parameter (we have kθ(0) = σ2)

– ρ > 0 is a scale or range parameter, i.e., characteristic correlation length
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Choice of a parametrized covariance function: the Matérn covariance

Matérn covariance in one dimension σ2 = 1, ρ = 0.8
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ν = 1/2

ν = 3/2

ν = 9/2

ξ is p-time mean-square differentiable iff ν > p
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Choice of a parametrized covariance function: the Matérn covariance

◮ To model a function f defined over X ⊂ R
d , with d > 1, we use the anisotropic form

of the Matérn covariance:

kθ(x , y) = σ2κν




√√√√
d∑

i=1

(x[i ] − y[i ])2

ρ2i


 , x , y ∈ R

d (5)

where x[i ], y[i ] denote the i th coordinate of x and y , and the positive scalars ρi
represent scale parameters

◮ Since σ2 > 0, ν > 0, ρi > 0, i = 1, . . . , d , in practice, we consider the vector of
parameters

θ = {log σ2, log ν,− log ρ1, . . . ,− log ρd} ∈ R
d+2

→ makes parameter estimation easier
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Parameter estimation by maximum likelihood

◮ Assume ξ is a zero-mean Gaussian process

◮ The log-likelihood of the data ξ
n
= (ξ(x1), . . . , ξ(xn))

T can be written as

ℓ(ξ
n
; θ) = −n

2
log(2π)− 1

2
log detK(θ)− 1

2
ξ
n

T
K(θ)−1ξ

n
, (6)

where K(θ) is the covariance matrix of ξ
n
, which depends on the parameter vector θ

◮ The log-likelihood can be maximized using a gradient-based search method

◮ If the mean of ξ is polynomial and unknown, use restricted maximum likelihood
instead
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Correlation, prediction, conditioning

◮ Consider a pair of random variables (ξ(xi ), ξ(xj)), for xi ∈ X and xj ∈ X

◮ If xi ∈ X and xj ∈ X are far apart, ξ(xi ) and ξ(xj) are typically uncorrelated
◮ If xi ∈ X and xj ∈ X are close, ξ(xi ) and ξ(xj) are typically correlated

ρ(xi − xj) = 0
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◮ Correlation makes prediction possible
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Correlation, prediction, conditioning

◮ Correlation → we can predict Zj = ξ(xj ) from the observation of Zi = ξ(xi )

◮ Define the conditional density function by

fZj |Zi
(v |Zi = u) =

f(Zj ,Zi )(v,u)

fZi
(u)
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◮ The random variable denoted by Zj | Zi

with density fZj |Zi
represents the residual

uncertainty about Zj when Zi has been
observed

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 74 / 141



Optimization of an expensive-to-evaluate function Gaussian random models

Correlation, prediction, conditioning

◮ The conditional mean is defined by

E0[Zj | Zi = u] = h(u) =

∫

R

v fZj |Zi
(v |Zi = u)dv

◮ The random variable Ẑj = E0[Zj | Zi ] = h(Zi) minimizes E0

[
(Ẑj − Zj)

2
]

◮ Important properties:

∃λ ∈ R , such that Ẑj = h(Zi) = λZi

Zj − Ẑj ⊥ Zi ⇐⇒ Zj − Ẑj ⊥ span{Zi} ⇐⇒ E0

{
(Zj − Ẑj)Zi

}
= 0

◮ In other words, Ẑj is the orthogonal projection of Zj onto span{Zi}
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Prediction of a zero-mean Gaussian process

◮ Let ξ ∼ GP (0, k)

◮ The best linear unbiased predictor (BLUP) of ξ(x) from observations ξ(xi ), i = 1, . . . , n,
also called the kriging predictor of ξ(x), is the orthogonal projection

ξ̂n(x) :=
n∑

i=1

λi (x ; xn) ξ(xi )

of ξ(x) onto span{ξ(xi ), i = 1, . . . , n}

◮ Weights λi (x ; xn) are solutions of a system of linear equations

k(xn, xn)λ(x ; xn) = k(xn, x) (7)

with

– λ(x ; xn) = (λ1(x ; xn), . . . , λn(x ; xn))
T

– k(xn, xn): n × n covariance matrix of the observation vector

– k(xn, x): n × 1 vector with entries k(xi , x)

◮ The function x 7→ ξ̂n(x) conditioned on ξ(x1) = f (x1), . . . , ξ(xn) = f (xn), is deterministic,
and provides a cheap approximation of the function f
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Prediction of a zero-mean Gaussian process

◮ The covariance function of the error of prediction, also called kriging covariance is given by

k(x , y ; xn) := cov
(
ξ(x)− ξ̂(x ; xn), ξ(y)− ξ̂(y ; xn)

)

= k(x − y)−
∑

i

λi (x ; xn) k(y − xi ) .

◮ The variance of the prediction error, also called the kriging variance, is defined as

σ2
n(x) = k(x , x ; xn)

Proposition
Let ξ ∼ GP (0, k). Define ξ | Fn as the random process ξ conditioned on the
σ-algebra Fn generated by ξ(x1), . . . , ξ(xn)
→ ξ | Fn is a Gaussian process with

– mean ξ̂n( · )

– covariance k ( · , · ; xn)

◮ In particular, ξ̂n(x) = E0

(
ξ(x) | Fn

)
is the best Fn-measurable predictor of ξ(x),

for all x ∈ X.
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Gaussian process conditioned on observations

◮ For all x ∈ X, the random variable ξ(x) | Fn with distribution N
(
ξ̂n(x), σ

2
n(x)

)

represents the residual uncertainty about f (x) when Fn is observed
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Gaussian process conditioned on observations

◮ For all x ∈ X, the random variable ξ(x) | Fn with distribution N
(
ξ̂n(x), σ

2
n(x)

)

represents the residual uncertainty about f (x) when Fn is observed
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Prediction of a Gaussian process with unknown mean function

◮ In the domain of computer experiments, the mean of a Gaussian process is generally
written as a linear parametric function

m( · ) = βTϕ( · ) , (8)

with
- β a vector of unknown parameters

- ϕ = (ϕ1, . . . , ϕl )
T an l-dimensional vector of functions (in practice, polynomials)

◮ Simplest case: the mean function is an unknown constant m, in which case β = m
and ϕ : x ∈ X 7→ 1
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Prediction of a Gaussian process with unknown mean function

◮ Define the linear space of functions

P =

{
x 7→

l∑

i=1

βiϕi (x); βi ∈ R

}
,

◮ Define Λ the linear space of finite-support measures on X, i.e.

λ ∈ Λ =⇒ λ =
n∑

i=1

λiδxi for some n ∈ N

◮ For f : X → R, and λ =
∑n

i=1 λiδxi ∈ Λ,

〈λ, f 〉 =
∫

X

f dλ =
n∑

i=1

λi f (xi)

◮ Define the linear subspace ΛP⊥ ⊂ Λ of finite-support measures vanishing on P, i.e.

λ ∈ ΛP⊥ =⇒ 〈λ, f 〉 =
∫

X

fdλ =
n∑

i=1

λi f (xi ) = 0 , ∀f ∈ P
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Prediction of a Gaussian process with unknown mean function

◮ Let ξ be a Gaussian random process with an unknown mean in P, and a covariance
function k

◮ For x ∈ X, the kriging predictor ξ̂n(x) of ξ(x) from ξ(x1), . . . , ξ(xn) is the linear projection

ξ̂n(x) =
∑

i

λi (x ; xn)ξ(xi )

of ξ(x) onto
span{ξ(xi ), i = 1, . . . , n}

such that the variance of the error ξ(x)− ξ̂n(x) is minimized, under the constraint

δx −
∑

λi (x ; xn)δxi ∈ ΛP⊥

i.e.,

〈δx −
∑

λi (x ; xn)δxi , ϕj 〉 = ϕj (x)−
∑

λi (x ; xn)ϕj (xi ) = 0 , j = 1, . . . , l

◮ The requirement δx −
∑

λi (x ; xn)δxi ∈ ΛP⊥ makes the kriging predictor unbiased, even if
the mean of ξ is unknown
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Prediction of a Gaussian process with unknown mean function

ξ̂n(x) is the linear projection of ξ(x) onto span{ξ(x1), . . . , ξ(xn)} orthogonally to P

Span{ξ(xi), i ≤ n}

P

ξ(x)

ξ̂n(x)

O
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Prediction of a Gaussian process with unknown mean function

◮ The weights λi (x ; xn) are again solutions of a system of linear equations, which can
be written under a matrix form as

(
k(xn, xn) ϕ(xn)

T

ϕ(xn) 0

)(
λ(x ; xn)
µ(x)

)
=

(
k(x , xn)
ϕ(x)

)
, (9)

with

– ϕ(xn) an l × n matrix with entries ϕi (xj), i = 1, . . . , l , j = 1, . . . , n

– µ a vector of Lagrange coefficients

– k(xn, xn), λ(x ; xn), k(x , xn) as above

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 83 / 141



Optimization of an expensive-to-evaluate function Gaussian random models

Prediction of a Gaussian process with unknown mean function

◮ When the mean is unknown, the kriging covariance function is given by

k(x , y ; xn) := cov
(
ξ(x)− ξ̂n(x), ξ(y)− ξ̂n(y)

)

= k(x − y)− λ(x ; xn)
T k(y ; xn)− µ(x)Tϕ(y) .

Proposition

Let k be a covariance function and assume m ∈ P.

If

{
ξ | m ∼ GP (m, k)

m : x 7→ βTϕ(x), β ∼ U(Rl)
then ξ | Fn ∼ GP

(
ξ̂n( · ), k( · , · ; xn)

)

with U(Rl) the (improper) uniform distribution over Rl

→ justifies the use of kriging in a Bayesian framework provided that the covariance
function of ξ is known
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Summing up

◮ The framework of Gaussian random processes makes it possible to compute an
interpolation of evaluation results, and derive confidence intervals about the
interpolation

◮ The global behavior of f is captured by interpolation

◮ The regions that may contain a global minimizer can be identified
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➜ Moreover, restricting ξ to be a Gaussian process makes it possible to compute the
expected improvement with moderate computational effort
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3.8 Optimization with the expected improvement criterion
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Expected Improvement [Mockus et al. 78, Schonlau et al. 96, Jones
et al. 98]

◮ A well-known Bayesian optimization algorithm
◮ proposed by Mockus et al.
◮ popularized by the EGO algorithm of Jones et al.

◮ Idea : explore areas that are likely to contain a global optimizer

◮ Recall that the expected improvement criterion has been obtained by considering a one-step
lookahead strategy for the problem of optimization: each new evaluation point is chosen
according to

Xn+1 = argmin
x∈X

En (m̂n+1 −m | Xn+1 = x)

= argmin
x∈X

En (m̂n+1 | Xn+1 = x)

= argmin
x∈X

En (m̂n ∧ ξ(Xn+1) | Xn+1 = x)

= argmax
x∈X

En (0 ∧ (ξ(Xn+1)− m̂n) | Xn+1 = x)

= argmax
x∈X

ρn(x) := En

(
(m̂n − ξ(Xn+1))+

∣∣ Xn+1 = x
)

with
◮ m̂n = ξ(X1) ∧ · · · ∧ ξ(Xn),
◮ z+ = max(z, 0)

◮ The sampling criterion ρn is the expected improvement (EI)

→ average excursion of ξ(x) below the current minimum of past evaluation results
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Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]

◮ Assume ξ is a Gaussian process, with known mean and covariance functions

◮ Then, ρn(x) has a closed-form expression:

ρn(x) = γ
(
mn − ξ̂n(x ;Xn ), σ

2
n(x)

)
,

with

γ(z , s) =

{√
s Φ′

(
z√
s

)
+ z Φ

(
z√
s

)
if s > 0,

max (z , 0) if s = 0.

◮ The EI algorithm:





x1 = xinit ,

Xn+1 = argmax
x∈X

ρn(x) , n ≥ 1 ,
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Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]

◮ High σn(x) →
unexplored region

◮ High mn − ξ̂n(x) →
promising region

◮ Compute the
Expected
Improvement ρn

◮ Next sample:
Xn+1 = argmax

x∈X

ρn(x)
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Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]
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Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]
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Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]
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Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]

◮ High σn(x) →
unexplored region

◮ High mn − ξ̂n(x) →
promising region

◮ Compute the
Expected
Improvement ρn

◮ Next sample:
Xn+1 = argmax

x∈X

ρn(x)
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ρn(x) = E[ max(mn − ξ(x), 0) | ξ(X1), . . . , ξ(Xn) ]

(cheap to evaluate)
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Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]

◮ High σn(x) →
unexplored region

◮ High mn − ξ̂n(x) →
promising region

◮ Compute the
Expected
Improvement ρn

◮ Next sample:
Xn+1 = argmax

x∈X

ρn(x)
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Global optimization based on EI
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From EI to EGO

◮ In practice, it is often difficult to choose a covariance function for ξ before any
evaluation is made

◮ As a result, the covariance function of is usually assumed to belong to some
parametric class of positive definite functions, the value of the parameters assumed
to be unknown

◮ In the Efficient Global Optimization (EGO) algorithm, the parameters are estimated
from the evaluation results by maximum likelihood, and then plugged in the EI
sampling criterion (computed for a Gaussian process with known covariance function)
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EI/EGO: 2D illustration
(f defined on Slide 19)
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1

m̂n with N = 60

LHS −5.823
DIRECT −5.839
EI/EGO −5.845
Global minimum −5.845

NB: Global minimum found by the EI algorithm in only 31 evaluations (abs. tol. 1.10−4)
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Global optimization based on EI/EGO: implementation issues

How to find the maximizer of ρn at each iteration?

◮ simple approach: use a finite grid on X (a set of candidate points)

◮ refine the grid in regions with a high ρn

◮ in practice, a high precision on the location of the maximizer of ρn is not required

How to choose the prior, i.e. the mean and the covariance functions of ξ?

◮ Usually: consider a parametrized covariance function (e.g. the exponential or the
Matérn covariance function) and estimate the parameters by maximum likelihood

◮ Not necessarily a good idea to estimate the parameters at each iteration (use instead
an initial design to estimate the parameters)

◮ NB: In principle, the uncertainty due to parameter estimation should be taken into
account. Very often in practice, a plug-in approach is used (EGO). However, in this
case, the variance of the error of prediction is underestimated.
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Global optimization based on EI

Pros

◮ Efficient global optimization procedure (often better than DIRECT in experiments)

◮ Global search and local search

◮ Known convergence results

Cons

◮ Working principle rather involved (?)

◮ User friendly software yet to come

◮ Not (yet) in Matlab

◮ The role of the tuning parameters needs to be understood by the user
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Summing up

◮ In the context of risk analysis, it is often desirable to assess the worst-case
performance of a system → this is a global optimization problem

◮ Some working principles of Lipschitzian and Bayesian sequential search algorithms
exposed

◮ Particularly interesting in the context of expensive-to-evaluate functions, very useful
and effective in practical situations

◮ Many applications can be found in the literature

◮ A great number of methodological and theoretical questions are open and it is an
active research domain at present time
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Estimation of a probability of failure

4. Estimation of a probability of failure in a Bayesian
sequential decision framework

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 96 / 141



Estimation of a probability of failure Problem statement

4.1 Statement of the problem
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Estimation of a probability of failure Problem statement

Reminder

◮ Our objective: to obtain an approximation of

αu(f ) = PX{f > u} =

∫

X

1f>udPX

◮ The approximation of αu(f ) has to be built from a set of computer experiments

◮ Expensive computer experiments: the number of evaluations is limited

◮ We want to construct an algorithm to estimate a probability of failure, that is
a pair (XN , α̂N),

XN : f 7→ XN (f ) = (X1(f ),X2(f ), . . . ,XN(f )) ∈ X
N ,

α̂N : f 7→ α̂N(f ) ∈ R+ ,

◮ XN is called a strategy

◮ α̂N(f ) is an estimator of αu(f )

◮ How to construct a good algorithm?
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Estimation of a probability of failure

◮ Assume that an estimator α̂N has been chosen (see how later)

◮ How to construct the strategy XN ?

◮ Let AN be the class of all strategies XN that query sequentially N evaluations of f

◮ Given a loss function
L : R× R → R

define the error of approximation of a strategy XN ∈ AN on f as

ǫ(XN , f ) = L(α̂N(f ), α(f ))

◮ Here, we shall consider the quadratic loss function, so that

ǫ(XN , f ) = (α̂N(f )− α(f ))2

(Depending on the problem, there may exist better choices. For instance, if it is
more harmful to underestimate a probability of failure than to overestimate it, then
the loss function should be chosen accordingly.)

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 99 / 141

Estimation of a probability of failure Problem statement

Estimation of a probability of failure

◮ We adopt a Bayesian approach: the unknown function f is considered as a sample
path of a real-valued random process ξ defined on some probability space (Ω,B,P0)
with parameter x ∈ X

◮ A good strategy is a strategy that achieves, or gets close to, the Bayes or average risk

raverage := inf
X
N
∈AN

E0 (ǫ(XN , ξ))

where E0 denotes the expectation with respect to P0

◮ From a subjective Bayesian point of view, the stochastic model ξ is a representation
of our uncertain initial knowledge about f

◮ From a pragmatic perspective, the prior distribution can be seen as a tool to define a
notion of a good strategy in an average sense.
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4.2 Optimal and k-step lookahead strategies
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Optimal Bayesian strategies

◮ Let En, n = 1, 2, . . ., denote the conditional expectation with respect to In(ξ),
where

◮ In = ((X1,Z1) , . . . , (Xn,Zn))
◮ Zn(ξ) = ξ(Xn(ξ)), 1 ≤ n ≤ N

◮ As above, an optimal strategy, i.e. a strategy X⋆
N ∈ AN such that

E0 (ǫ(X
⋆
N , ξ)) = raverage = inf

X
N
∈AN

E0 (ǫ(XN , ξ))

can be formally obtained by dynamic programming

◮ Let RN = EN (ǫ(XN , ξ)) = EN

(
(α̂N − α)2

)
denote the terminal risk

◮ Define by backward induction

Rn = min
x∈X

En

(
Rn+1 | Xn+1 = x

)
, n = N − 1, . . . , 0. (10)
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Optimal Bayesian strategies

◮ Then, we have R0 = raverage

◮ The optimal strategy X⋆
N is formally obtained as

X ⋆
n+1 = argmin

x∈X

En

(
Rn+1 | Xn+1 = x

)
, n = 1, . . . ,N − 1, (11)

◮ Unfortunately, as in the case of optimization, this dynamic programming is not
numerically tractable

(the space of possible actions X at each step is continuous, the state space (X× R)n

at step n is also continuous and of dimension n(d + 1))
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Optimal Bayesian strategies

◮ As in the case of optimization, the optimal strategy can be expanded as

X ⋆
n+1 = argmin

x∈X

En

(
min
Xn+2

En+1 . . . min
XN

EN−1 RN

∣∣∣ Xn+1 = x

)
.

◮ A k-step lookahead strategy is obtained when truncating the expansion after k terms
and replacing the exact risk Rn+k by a surrogate R̃n+k

Xn+1 = argmin
x∈X

Jn(x) := En

(
min
Xn+2

En+1 . . . min
Xn+k

En+k−1 R̃n+k

∣∣∣ Xn+1 = x

)
. (12)

◮ We restrict our attention to the class of one-step lookahead strategies:
in this case, the sampling criterion Jn(x) may be written as

Jn(x) = En

(
R̃n+1

∣∣∣ Xn+1 = x
)

◮ How to define a surrogate risk R̃n+1 for the problem of the estimation of a
probability of failure?
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One-step lookahead strategy for the problem of estimation of a
probability of failure

◮ A natural and straightforward way of building a one-step lookahead strategy is to
select greedily each evaluation as if it were the last one

◮ When the Bayesian risk provides a measure of the estimation error, we call such a
strategy a stepwise uncertainty reduction (SUR) strategy

◮ Given a sequence of estimators (α̂n)n≥1, a direct application of the above principle
using the quadratic loss function yields the sampling criterion

Jn(x) = En

(
(α− α̂n+1)

2 | Xn+1 = x
)
.

◮ Restricting ξ to be a Gaussian process makes it possible to derive estimators for α
and to compute Jn with moderate computational efforts
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4.3 Estimators of the probability of failure under a Gaussian prior
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Estimators of the probability of failure under a Gaussian prior

◮ Given a random process ξ and a strategy XN , the optimal estimator that minimizes
E0

(
(α− α̂n)

2
)
among all Fn-measurable estimators α̂n, 1 ≤ n ≤ N, is

α̂n = En (α) = En

(∫

X

1ξ>u dPX

)
=

∫

X

pn dPX , (13)

where
pn : x ∈ X 7→ Pn {ξ(x) > u} .

◮ When ξ is a Gaussian process, the probability pn(x) of exceeding u at x ∈ X, given
In, has a simple closed-form expression:

pn(x) = 1 − Φ

(
u − ξ̂n(x)

σn(x)

)
= Φ

(
ξ̂n(x)− u

σn(x)

)
,

with Φ the cdf of the normal distribution

◮ Thus, in the Gaussian case, the estimator (13) is amenable to a numerical
approximation, by integrating the excess probability pn over X
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Estimators of the probability of failure under a Gaussian prior

◮ Another natural way to obtain an estimator of α given In is to approximate the
excess indicator 1ξ>u by a hard classifier ηn : X → {0, 1}
(“hard” refers to the fact that ηn takes its values in {0, 1})

◮ If ηn is close (in some sense) to 1ξ>u, the estimator

α̂n =

∫

X

ηndPX

should be close to α =
∫
1ξ>udPX
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Estimators of the probability of failure under a Gaussian prior

◮ More precisely,

En

(
(α̂n − α)2

)
= En

[(∫
(ηn − 1ξ>u)dPX

)2
]
≤
∫

En

(
(ηn − 1ξ>u)

2
)
dPX (14)

◮ Let
τn(x) = Pn{ηn(x) 6= 1ξ(x)>u} = En

(
(ηn(x)− 1ξ(x)>u)

2
)

be the probability of misclassification; that is, the probability to predict a point above
(resp. under) the threshold, when the true value is under (resp. above) the threshold

◮ Thus, (14) shows that it is desirable to use a classifier ηn such that τn is small for
all x ∈ X
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Estimators of the probability of failure under a Gaussian prior

◮ The right-hand side of (14) is minimized if we set

ηn(x) = 1pn(x)>1/2 = 1ξ̄n(x)>u ,

where ξ̄n(x) denotes the posterior median of ξ(x).

◮ Then, we have

τn(x) = pn(x) + (1− 2pn(x)) ηn(x)

= min(pn(x), 1− pn(x))
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Estimators of the probability of failure under a Gaussian prior

◮ In the case of a Gaussian process, the posterior median and the posterior mean are
equal

◮ Then, the classifier that minimizes τn(x) for each x ∈ X is ηn = 1ξ̂n>u
, in which case

τn(x) = Pn

(
(ξ(x)− u)(ξ̂n(x)− u) < 0

)
= 1 − Φ

(∣∣ξ̂n(x)− u
∣∣

σn(x)

)
. (15)

◮ For ηn = 1ξ̂n>u
, we have

α̂n =

∫

X

1ξ̂n>u
dPX = α(ξ̂n)

Therefore, this approach to obtain an estimator of α can be seen as a type of plug-in
estimation.
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Estimators of the probability of failure under a Gaussian prior

◮ Summing up, the following two estimators of the probability of failure can be
considered:

α̂n = En(α) =

∫

X

pn dPX α̂n = α(ξ̂n) =

∫

X

1ξ̂n>u
dPX
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4.4 Upper bounds of the SUR sampling criterion
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Upper bounds of the SUR sampling criterion

◮ Recall that the sampling criterion of the one-step lookahead strategy using the
quadratic loss function for the problem of estimation of a probability of failure is

Jn(x) = En

(
(α− α̂n+1)

2 | Xn+1 = x
)
.

◮ Unfortunately, Jn has no analytical expression (setting either α̂n = En (α) or

α̂n = α(ξ̂n))

◮ We seek to replace the minimization of Jn by the minimization of an upper bound
of Jn
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Upper bounds of the SUR sampling criterion

◮ Recall that τn(x) = min(pn(x), 1− pn(x)) is the probability of misclassification at x
using the classifier 1ξ̂n(x)>u

◮ Let us further denote by νn(x) := pn(x) (1− pn(x)) the variance of the excess
indicator 1ξ(x)≥u.

Proposition

Assume that either α̂n = En (α) or α̂n = α(ξ̂n).
Define Gn :=

∫
X

√
γn(y)dPX(y) for all n ∈ {0, . . . ,N − 1}, with

γn :=

{
νn = pn(1− pn) = τn(1− τn) , if α̂n = En (α) ,

τn = min(pn, 1− pn) , if α̂n = α(ξ̂n).

Then, for all x ∈ X and all n ∈ {0, . . . ,N − 1},

Jn(x) ≤ J̃n(x) := En

(
G 2

n+1 | Xn+1 = x
)
.
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Upper bounds of the SUR sampling criterion

◮ Note that γn(x) is a function of pn(x) that vanishes at 0 and 1, and reaches its
maximum at 1/2; that is, when the uncertainty on 1ξ(x)>u is maximal
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γn = pn(1 − pn)
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Figure: γn as a function of pn. In both cases, γn is maximum at pn = 1/2.
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Upper bounds of the SUR sampling criterion

◮ As a result, we can write two SUR criteria:

1. Setting α̂n = α(ξ̂n), we obtain

JSUR
1,n (x) = En

((∫ √
τn+1 dPX

)2 ∣∣∣ Xn+1 = x
)

2. Setting α̂n = En (α), we obtain

JSUR
2,n (x) = En

((∫ √
νn+1 dPX

)2 ∣∣∣ Xn+1 = x
)

◮ Each criterion is expressed as the conditional expectation of some squared
Fn+1-measurable integral criterion, with an integrand that can be expressed as a
function of the excess probability pn+1.
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4.5 Discretizations of the SUR criteria
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Discretizations of the SUR criteria

◮ At this point, we need to provide numerical approximations of the integrals in the SUR
criteria

Example for the criterion JSUR
1,n

◮ For each y ∈ X, τn+1(y) is a function of In+1 = (In,Xn+1,Zn+1), with Zn+1 = ξ(Xn+1)

◮ At step n, In is known

◮ Consider the notation
vn+1(y ;Xn+1,Zn+1) =

√
τn+1(y)

to emphasize the fact that, when a new evaluation point must be chosen at step n, τn+1(y)
depends on the choice of Xn+1 and the random outcome Zn+1

◮ For x ∈ X, let us further denote by Qn,x the probability distribution of ξ(x) under Pn

◮ Then,

JSUR
1,n (x) =

∫

R

{∫

X

vn+1(y ; x , z) dPX(y)

}2

dQn,x (z)

◮ Given In and a triple (x , y , z), vn+1(y ; x , z) can be computed efficiently using kriging
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Discretizations of the SUR criteria

◮ To obtain a numerical approximation of JSUR
1,n , we proceed in two steps:

1. compute the integral on X with respect to PX;

2. compute the integral on R with respect to Qn,x

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 120 / 141



Estimation of a probability of failure Discretizations of the SUR criteria

Discretizations of the SUR criteria
◮ To compute the integral on X with respect to PX, we can use a MC approach

◮ Draw an i.i.d. sequence Y1, . . . ,Ym ∼ PX and use the MC approximation:
∫

X

vn+1(y ; x , z) dPX(y) ≈
1

m

m∑

j=1

vn+1(Yj ; x , z).

◮ Equivalently, it means that we choose to work from the start on a discretized version of the
problem: we replace PX by the empirical distribution

P̂X,m =
1

m

m∑

j=1

δYj

and our goal is to estimate the MC estimator

αm(ξ) =

∫
1ξ>udP̂X,m =

1

m

m∑

j=1

1ξ(Yj )>u

using either the posterior mean

En (αm) =
1

m

∑

j

pn(Yj )

or the plug-in estimate

αm(ξ̂n) =
1

m

∑

j

1
ξ̂n(Yj )>u
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Discretizations of the SUR criteria

◮ We call this approach meta-estimation: the objective is to estimate the value of a
precise Monte Carlo estimator of α(f ) (m being large), using prior information on f
to alleviate the computational burden of running m times the computer code f

◮ This point of view also suggests a natural solution for the problem of finding the
minimum of JSUR

1,n or JSUR
2,n , which is to replace the continuous search for a

minimizer x ∈ X by a discrete search over the set Xm := {Y1, . . . ,Ym}.
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Discretizations of the SUR criteria

◮ The second problem is the computation of a one-dimensional integral

◮ Qn,x is a Gaussian probability distribution with mean ξ̂n(x) and variance σ2
n(x)

◮ The integral can be computed using a standard Gauss-Hermite quadrature with Q points

◮ This is equivalent to replacing (under Pn) the random variable ξ(x) by a quantized random
variable with probability distribution

Q∑

q=1

wqδzn+1,q(x),

where wq are weights of the quadrature and

zn+1,q(x) = ξ̂n(x) + σn(x)uq ,

where uq denote quadrature points

◮ Eventually, the JSUR
1 strategy is:

Xn+1 = argmin
1≤k≤m

Q∑

q=1

wq

{ m∑

j=1

vn+1

(
Yj ; Yk , zn+1,q(Yk)

)}2

.

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 123 / 141

Estimation of a probability of failure Algorithm description

Sequential estimation of a probability of failure

Sketch of an algorithm

1. Construct an initial design of size n0 < N and evaluate f at the points of
the initial design.

2. Choose a Gaussian process ξ (in practice, this amounts to choosing a
parametric form for the mean of ξ and a parametric covariance
function kθ)

3. Generate a Monte Carlo sample Xm = {Y1, . . . ,Ym} of size m from PX

4. While the evaluation budget N is not exhausted,

4.1 optional step: estimate the parameters of the covariance
function (case of a plug-in approach);

4.2 select a new evaluation point, using past evaluation
results, the prior ξ and Xm;

4.3 perform the new evaluation.

5. Estimate the probability of failure obtained from the N evaluations of f
(for instance, by using EN (αm) =

1
m

∑
j pN(Yj)).
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Procedure to select a new evaluation point Xn+1 ∈ X using a SUR strategy

1. Compute the kriging approximation f̂n and kriging variance σ2
n on Xm from In

2. For each candidate point Yj , j ∈ {1, . . . ,m},

2.1 for each point Yk , k ∈ {1, . . . ,m}, compute the kriging weights
λi (Yk ; {Xn,Yj}), i ∈ {1, . . . , (n + 1)}, and the kriging variances

σ2(Yk ; {Xn,Yj})

2.2 compute zn+1,q(Yj ) = f̂n(Yj ) + σn(Yj )uq , for q = 1, . . . ,Q
2.3 for each zn+1,q(Yj ), q ∈ {1, . . . ,Q},

2.3.1 compute the kriging approximation f̃n+1,j,q on Xm from

In ∪
(
Yj , f (Yj ) = zn+1,q(Yj )

)
, using the weights

λi (Yk ; {Xn,Yj}), i = 1, . . . , (n + 1), k = 1, . . . ,m,
obtained at Step 2.1.

2.3.2 for each k ∈ {1, . . . ,m}, compute

vn+1

(
Yk ; Yj , zn+1,q(Yj )

)
, using u, f̃n+1,j,q obtained

in 2.3.1, and σ2(Yk ; {Xn,Yj}) obtained in 2.1

2.4 compute Jn(Yj ) =
∑m

k=1

∑Q
q=1 w ′

q vn+1

(
Yk ; Yj , zn+1,q(Yj )

)
.

3. Find j⋆ = argminj Jn(Yj ) and set Xn+1 = Yj⋆
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4.6 One-dimensional illustration
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Estimation of the volume of an excursion set

◮ Unknown f , threshold u,
and pdf. dPX/dx over X

◮ Initial design

◮ Construction of fn,
confidence intervals,
probability of excursion
P{f (x) ≥ u}, x ∈ X

◮ Computation and
minimization of Jn

◮ Position of next evaluation
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P{f (x) ≥ u}, x ∈ X

◮ Computation and
minimization of Jn

◮ Position of next evaluation
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Estimation of a probability of failure Final remarks

Additional remarks

◮ In terms of computational complexity, a SUR strategy to estimate a probability of
failure is more expensive than the EI/EGO algorithm

◮ Kriging takes O(mn2) operations to predict the value of f at m locations from n
evaluation results of f

◮ In the procedure to select an evaluation
◮ a first kriging prediction is performed at Step 1
◮ m different predictions have to performed at Step 2.1.

◮ The cost becomes rapidly burdensome for large values of n and m

◮ To work on applications where m must be large (small probabilities of failure), we
can avoid dealing with candidate points that have a very low probability of
misclassification
(they are probably far from the frontier of the domain of failure)

◮ It is also likely that those points with a low probability of misclassification will have a
very small contribution to the variance of the error of estimation α̂n − αm.

◮ The idea is to rewrite the sampling strategy, in such a way that the summation
over m, and the search set for the minimizer, is restricted to a subset of points Yj

corresponding to the m0 largest values of τn(Yj).
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SUR strategy to estimate a quantile

5. Estimation of a quantile using a SUR strategy
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SUR strategy to estimate a quantile Problem statement

5.1 Statement of the problem
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SUR strategy to estimate a quantile Problem statement

Quantile estimation

◮ X ⊆ R
d space of uncertain factors

◮ PX probability measure on X

◮ f : X → R unknown function, whose value is a quantity of interest

◮ We consider the problem of estimating a quantile

qα(f ) = inf{u ∈ R; PX{f ≤ u} ≥ α}

for a given probability α, that is close to one

(In practice, knowing the value of a quantile makes it possible to assess the safety of
a system.)
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SUR strategy to estimate a quantile Problem statement

Quantile estimation by Monte Carlo

◮ To estimate qα(f ) → draw an i.i.d m-sample Y1, . . . ,Ym ∼ PX, and consider the
empirical estimator

qα,m(f ) = min

{
z ;

1

m

m∑

i=1

1Zi≤z ≥ α

}
= Z(

⌈αm⌉
)

where
Zi = f (Yi ) , i = 1, . . . ,m

and Z(i) stands for the ith order statistics of the sample Z1, . . . ,Zm

◮ It is well known that

√
m
(
qα,m(f )− qα(f )

)
→m N

(
0, σ2)

with σ2 = α(1−α)

pZ (qα(f ))2
, where pZ is the pdf of Z = f (X ), X ∼ PX

(see, e.g., Wasserman. 2006. All of Nonparametric Statistics. Springer.)

=⇒ a high value of m must be used in order to obtain a good estimator of qα
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SUR strategy to estimate a quantile Problem statement

◮ If the evaluation of f is expensive, the budget of evaluations can be very limited

➟ we need to find small variance estimators

◮ Classical approaches : importance sampling, control variate sampling...
(see, e.g., Glynn 96, Hesterberg and Nelson 98, Cannamela et al. 08)

◮ Here: we want to use a SUR approach
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SUR strategy to estimate a quantile Stepwise uncertainty reduction

5.2 Stepwise uncertainty reduction for the problem of estimating a quantile
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SUR strategy to estimate a quantile Stepwise uncertainty reduction

Stepwise uncertainty reduction for the problem of quantile estimation

◮ As in the case of the estimation of a probability of failure, assume a fixed m-sample:

Yi
i.i.d∼ PX, i = 1, . . . ,m

. . . we want to approximate the empirical estimator

qα,m(f ) = min

{
y ;

1

m

m∑

i=1

1Yi≤y ≥ α

}
= Y(

⌈αm⌉
)

(meta-estimation)

◮ Approach: choose sequentially evaluation points of f

X1(f ), . . . ,Xn(f ) ∈ {Y1, . . . ,Ym}

to construct a meta-estimator q̂α,n of qα,m(f ) such that

q̂α,n is close to qα,m(f )
with n ≪ m
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SUR strategy to estimate a quantile Stepwise uncertainty reduction

Stepwise uncertainty reduction for the problem of quantile estimation

◮ Choose of a prior about f under the form of Gaussian random process ξ

◮ Restricting ξ to be a Gaussian process makes it possible to derive the posterior
distribution of ξ after n evaluations

◮ Consider the estimator
q̂α,n = En(qα,m(ξ))

◮ How to compute q̂α,n?

➟ Contrarily to the case of the probability of failure, q̂α,n does not have a simple
expression as a function of the kriging predictor and kriging variance.

◮ In practice, q̂α,n can be approximated by simulation
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SUR strategy to estimate a quantile Stepwise uncertainty reduction

Approximation of q̂α,n by simulation of sample paths

❏ For i = 1, . . . ,M:

(a) Generate a sample path f (n,i) according to the distribution of ξ conditioned on
In(ξ)
(Using a conditioning-by-kriging technique, see, e.g., Chiles 99)

(b) Compute

q(n,i)
α = qα,m(f

(n,i))

based on the m-sample
{
f (n,i)(Yj)

}
j=1,...,m

.

❏ Thus, we obtain a sample
q(n,1)
α , . . . , q(n,M)

α

distributed according to the posterior distribution of qα,m(ξ)

❏ Define q̂ ′
α,n = 1

M

∑M

i=1 q
(n,i)
α → approximates q̂α,n at rate M−1/2
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SUR strategy to estimate a quantile Stepwise uncertainty reduction

SUR strategy to estimate a quantile

◮ Define a one-step lookahead strategy XN by

Xn+1 = argmin
x∈{Y1,...,Ym}

Jn(x) := En

{
(qα,m(ξ)− q̂α,n+1)

2
∣∣∣ Xn+1 = x

}
,

where q̂α,n+1 is computed from the observations ξ(Xi ), i = 1, . . . , n and the random
outcome ξ(x)

◮ Note that for each n, Xn is Fn−1-measurable
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SUR strategy to estimate a quantile Stepwise uncertainty reduction

Computation of the sampling criterion Jn+1

In practice, the sampling criterion Jn can be computed at x using the fact that

Jn(x) = En

{
(qα,m(ξ)− q̂α,n+1)

2 | Xn+1 = x
}

= En

{
En

{
(qα,m(ξ)− q̂α,n+1)

2
} ∣∣∣ Xn+1 = x

}
.

➟ the numerical approximation of the inner expectation can be carried out as follows:

1- Compute quantiles q
(n+1,i)
α (by simulation, as above), conditioning the sample paths by

ξ(X1), . . . , ξ(Xn−1) and ξ(x) = z

2- Define q̂ ′
α,n+1(x , z) =

1
M

∑M
i=1 q

(n+1,i)
α and γn+1(x , z) =

1
M−1

∑M
i=1(q

(n+1,i)
α − q̂ ′

α,n+1(x , ))
2.

➟ The numerical approximation of the outer expectation consists in approximating the integral
∫

R

γn+1(x , z)dQn,x (z)

which can be carried out as in the case of the estimation of a probability of failure.
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SUR strategy to estimate a quantile Example

5.3 Example
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SUR strategy to estimate a quantile Example

Example
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