

Computer models in engineering

- $\mathbb{X} \subseteq \mathbb{R}^d$: input domain of the system
- $f : \mathbb{X} \to \mathbb{R}$: a performance or cost function (function of the outputs of the system)
- Main classes of problems
 - 1. Optimization of the performances of a system, cost minimization...

$$x^{\star} = \operatorname*{argmax}_{x \in \mathbb{X}} f(x)$$

2. In presence of uncertain factors: minimize a probability of failure, i.e.,

$$\begin{aligned} \mathbb{X} &= \mathbb{X}_0 \times \mathbb{X}_1 \\ x_0^{\star} &= \operatorname*{argmin}_{x_0 \in \mathbb{X}_0} \alpha(x_0) \\ \alpha(x_0) &:= \mathsf{P}_{\mathbb{X}_1} \{ x_1 \in \mathbb{X}_1 : f(x_0, x_1) > u \} \end{aligned}$$

where $\mathsf{P}_{\mathbb{X}_1}$ is some probability distribution on $(\mathbb{X}_1,\mathcal{B}(\mathbb{X}_1))$

3. Performance assessment: estimation of a quantile

 $q_{\alpha}(x_0) = \inf\{u \in \mathbb{R}; \mathsf{P}_{\mathbb{X}_1}\{x_1 \in \mathbb{X}_1 : f(x_0, x_1) \le u\} \ge \alpha\}$

(This is a simplified view. Most real problems have several performance functions, and mix different objectives.)

Extreme events modeling IV

```
E. Vazquez
```

Uses of computer models in engineering: a reminder

Computer models in engineering

• Computer simulations to assess the probability of undesirable events in a nuclear reactor

- A serious accident: loss of coolant in a pressurized water nuclear reactor
- Under these conditions, temperature of fuel rods can be described by
 ~ 50 dimensioning factors, which are not known accurately

(日)(四)(四)(日)

Ξ.

Summer School CEA-EDF-INRIA, 2011 5 / 141

SQA

- Peak temperature can be estimated using complex and time-consuming simulations
- *f* : X → R peak temp. as a function of the factors
- Objective: estimate a probability of exceeding a critical value

$$\alpha = \mathsf{P}_{\mathbb{X}}\{f \ge u\}$$

or a quantile

$$q_{\alpha} = \inf\{u \in \mathbb{R}; \, \mathsf{P}_{\mathbb{X}}\{f \leq u\} \geq \alpha\}$$

or a worst-case

$$M = \sup_{x \in \mathbb{X}} f(x)$$

Estimation from computer experiments

- Let f : X → R be a continuous function.
 (f corresponds to a computer program whose output is not a closed-form expression of the inputs.)
- Our objective: to obtain an approximation of

$$m(f) = \min_{x \in \mathbb{X}} f(x) = f(x^*)$$

or

$$\alpha^{u}(f) = \mathsf{P}_{\mathbb{X}}\{f > u\} = \int_{\mathbb{X}} \mathbb{1}_{f > u} \mathrm{d}\mathsf{P}_{\mathbb{X}}$$

or

$$q_{1-lpha}(f) = \inf\{u \in \mathbb{R}; \mathsf{P}_{\mathbb{X}}\{f \le u\} \ge 1-lpha\}$$

- The approximation of m(f), α^u(f), etc. has to be built from a set of computer experiments (where an experiment simply consists in choosing an x ∈ X, and computing the value of f at x).
- The result of a pointwise evaluation of f carries information about f and quantities depending on f (in particular, m(f), $\alpha^u(f)$, or $q_{1-\alpha}(f)$)
- Expensive computer experiments: the number of evaluations is limited $\rightarrow m(f)$, $\alpha^u(f)$, etc. must be estimated using a fixed number, say N, of evaluations of f.

Extreme events modeling IV

・・

Summer School CEA-EDF-INRIA, 2011 9 / 141

I	E. Va	azque	ez	

How to construct a good estimation procedure?

The case of optimization
The case of optimization algorithm corresponds to a pair
$$(\underline{X}_N, \widehat{m}_N)$$
,
 $\underline{X}_N : f \mapsto \underline{X}_N(f) = (X_1(f), X_2(f), \dots, X_N(f)) \in \mathbb{X}^N$,
 $\widehat{m}_N : f \mapsto \widehat{m}_N(f) \in \mathbb{R}_+$,
with the following properties:
a) There exists $x_1 \in \mathbb{X}$ such that $X_1(f) = x_1$
b) Let $Z_n(f) = f(X_n(f))$, $1 \le n \le N$ For all $1 \le n < N$, $X_{n+1}(f)$ depends measurably¹ on
 $\mathcal{I}_n(f)$, where $\mathcal{I}_n = ((X_1, Z_1), \dots, (X_n, Z_n))$
c) $\widehat{m}_N(f)$ depends measurably on $\mathcal{I}_N(f)$
 $\stackrel{\times}{\to} \underline{X}_N$ is called a strategy, or policy, or design of experiments
 $\stackrel{\times}{\to} \widehat{m}_N(f)$ is an estimator of $m(f)$

E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 10 / 141

How to construct a good estimation procedure?

The case of optimization

 \Box Formally, an optimization algorithm corresponds to a pair $(\underline{X}_N, \widehat{m}_N)$,

$$\underline{X}_{N} : f \mapsto \underline{X}_{N}(f) = (X_{1}(f), X_{2}(f), \dots, X_{N}(f)) \in \mathbb{X}^{N},$$

$$\widehat{m}_{N} : f \mapsto \widehat{m}_{N}(f) \in \mathbb{R}_{+},$$

with the following properties:

- a) There exists $x_1 \in \mathbb{X}$ such that $X_1(f) = x_1$
- b) Let $Z_n(f) = f(X_n(f))$, $1 \le n \le N$ For all $1 \le n < N$, $X_{n+1}(f)$ depends measurably¹ on $\mathcal{I}_n(f)$, where $\mathcal{I}_n = ((X_1, Z_1), \dots, (X_n, Z_n))$
- c) $\widehat{m}_N(f)$ depends measurably on $\mathcal{I}_N(f)$
- X_N is called a strategy, or policy, or design of experiments
- $\widehat{m}_N(f)$ is an estimator of m(f)

How to construct a go	ood estimation procedure?	
 To simplify our presenta 	tion, we deal first with the	problem of optimization
The case of the estimat	ion of a probability of failure	e, and that of the estimation of a
quantile will be detailed	later	
E. Vazquez	Extreme events modeling IV	▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
· · ·		
Ontimization of an over	ncius to avaluato function	
3 Ontimizat	ion of an expensive-to-e	evaluate function
5. Optimizat		
How to	predict the worst case from	n time- and
resour	ce-consuming computer exp	periments?
1		
		(ロ)

In the context of rare events estimation and risk analysis, it is often desirable to assess the worst-case performance of a system, that is, to determine

$$M = \sup_{x \in \mathbb{X}} f(x)$$

or

$$m=\inf_{x\in\mathbb{X}}f(x)$$

 \rightarrow f may be non-convex

→ this is a global optimization problem

- How to define a good strategy X_N for the optimization problem?
- In a context of risk analysis, we want a strategy that will provide a robust estimation of the global optimum

Extreme events modeling IV

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 15 / 141

E. Vazquez

Optimization of an expensive-to-e	valuate function The problem with local	optimization methods	
This comes as no surprise (local se	earch algorithm). But abo	ove all	
after having spent the budget the function is only known in	of (possibly expensive) e a small region of the sear	evaluations, the behavior of rch domain	
the global behavior of the fun	ction is unknown		
potentially interesting regions	have not been explored	ㅁ › 《쿱 › 《글 › 《글 ·] 》	Q (?~
E. Vazquez	Extreme events modeling IV	Summer School CEA-EDF-INRIA, 2011 19	/ 141

Optimization of an expensive-to-evaluate function The problem with local optimization methods

- In a context of risk analysis and a limited budget of evaluations, it seems safer to balance between local search and exploration of the search domain
- An exploration/exploitation trade-off has to be achieved
- How to define a robust strategy?

æ

500

ヘロト ヘヨト ヘヨト

The worst-case approach

- Let A_N be the class of all strategies X_N that query sequentially N evaluations of f.
- ▶ Define the error of approximation of a strategy $X_N \in A_N$ on f as

$$\varepsilon(\underline{X}_N, f) = \widehat{m}_N(f) - m(f)$$

- Assume that f belongs to a class of functions $\mathcal{F} \rightarrow \text{prior information}$
- → A first idea to define a notion of a good strategy is to consider robustness with respect to a worst case
 - Define the minimax risk

$$r_{\min\max}(\mathcal{F}) = \inf_{\underline{X}_N \in \mathcal{A}_N} \sup_{f \in \mathcal{F}} \varepsilon(\underline{X}_N, f)$$

• A strategy \underline{X}_{N}^{*} that attains $r_{\min}(\mathcal{F})$ is called an optimal minimax strategy

Extreme events modeling IV

• \underline{X}_N^{\star} has the best worst-case performance on \mathcal{F}

E. Vazquez

Optimization of an expensive-to-evaluate function Worst-case strategies

Example of a minimax strategy: case of Lipschitz functions

Definition

A function $f : \mathbb{X} \to \mathbb{R}$ is called Lipschitz continuous if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in \mathbb{X} ,

$$|f(x_1) - f(x_2)| \le K ||x_1 - x_2||.$$

Any such K is referred to as a Lipschitz constant for the function f.

3

500

ヘロト ヘヨト ヘヨト

▲□▶▲□▶▲□▶▲□▶ ■ めんら

Summer School CEA-EDF-INRIA, 2011 22 / 141

Example of a minimax strategy: case of Lipschitz functions

- ▶ Let \mathcal{F} be the class of all Lipschitz continuous functions $\mathbb{X} \to \mathbb{R}$, with Lipschitz constant K
- Assume that $f \in \mathcal{F}$
- For any strategy \underline{X}_N , define the fill distance as

$$h_N = \sup_{x \in \mathbb{X}} \min_{i=1,\dots,N} |x - X_i|$$

• For any $\underline{X}_N \in \mathcal{A}_N$ and any $f \in \mathcal{F}$,

$$\varepsilon(\underline{X}_N, f) = f(X_1) \wedge \cdots \wedge f(X_N) - f(x^*) \leq f(X_{i^*}) - f(x^*) \leq Kh_N,$$

where $X_{i^{\star}}$ is the nearest point to x^{\star}

- Thus, for any $\underline{X}_N \in \mathcal{A}_N$, $\sup_{f \in \mathcal{F}} \varepsilon(\underline{X}_N, f) \leq Kh_n$
- ▶ For any X_N , there exists a function $f \in \mathcal{F}$ such that

$$\varepsilon(\underline{X}_N, f) = Kh_N$$

Thus,

$$\sup_{f\in\mathcal{F}}\varepsilon(\underline{X}_N,f)=Kh_N$$

Extreme events modeling IV

E. Vazquez

Optimization of an expensive-to-evaluate function Lipschitzian optimization

Example of a minimax strategy: case of Lipschitz functions Consequence: a minimax strategy minimizes h_N sample points have to be uniformly distributed over the search domain In dimension one: for any X_N, h_N ≥ |X|/(N+1) the optimal strategy is the uniform sampling: r_{minimax}(F) = K |X|/(N+1) How to deal dimension d > 1? using a uniform grid is not optimal (not mentioning the fact that the budget of evaluations must be at least N = 2^d) sampling randomly with a uniform distribution over X provides no guarantee that h_n will be small optimizing the design of experiments to yield a small h_n is interesting but may numerically expensive Minimax Latin Hypercube Sampling is an easy procedure that will generally provide good suboptimal designs

< □ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ○ へ ○ Summer School CEA-EDF-INRIA, 2011 24 / 141


```
<ロ> < 四> < 四> < 回> < 回> < 回> < 回> < 回>
                                                                                                                  590
             E. Vazquez
                                                                                 Summer School CEA-EDF-INRIA, 2011 26 / 141
                                                 Extreme events modeling IV
                   Optimization of an expensive-to-evaluate function
                                                            Lipschitzian optimization
                                                                    0.5
                                                                          0.5
Example of a maximin Latin hypercube sampling of size n = 100 in dimension d = 8
                                                                              <ロ > < 同 > < 回 > < 回 >
                                                                                                                   500
                                                                                 Summer School CEA-EDF-INRIA, 2011
                                                                                                                  27 / 141
             E. Vazquez
                                                 Extreme events modeling IV
```

Latin Hypercube Sampling for optimization

Pros

- Straightforward implementation
- Global search and near optimal minimax strategy
- The behavior of the function is well captured over the search domain

Cons

- ▶ The minimax approach is a pessimistic approach
- No local search
- → In practice, we would like to achieve a balance between exploration of the search domain and local search in promising regions (good performance on worst cases and good convergence rate)

Extreme events modeling IV

E. Vuzque

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 28 / 141

Assume:

- $\mathbb{X} = [a, b]$, with $-\infty < a < b < +\infty$
- \blacktriangleright f is Lipschitz continuous, with Lipschitz constant K
- □ For any two points $a \le x_i < x_j \le b$, and $\forall x \in [x_i, x_j]$, the following lower-bounds hold

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

A sequential method seeking the global maximum of a Lipschitz continuous function [Shubert (1972)]

□ Assume:

- $\mathbb{X} = [a, b]$, with $-\infty < a < b < +\infty$
- ▶ f is Lipschitz continuous, with Lipschitz constant K
- □ For any two points $a \le x_i < x_j \le b$, and $\forall x \in [x_i, x_j]$, the following lower-bounds hold

- Assume:
 - $\mathbb{X} = [a, b]$, with $-\infty < a < b < +\infty$
 - ▶ f is Lipschitz continuous, with Lipschitz constant K
- □ For any two points $a \le x_i < x_j \le b$, and $\forall x \in [x_i, x_j]$, the following lower-bounds hold

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

A sequential method seeking the global maximum of a Lipschitz continuous function [Shubert (1972)]

□ Assume:

- $\mathbb{X} = [a, b]$, with $-\infty < a < b < +\infty$
- ▶ f is Lipschitz continuous, with Lipschitz constant K
- □ For any two points $a \le x_i < x_j \le b$, and $\forall x \in [x_i, x_j]$, the following lower-bounds hold

□ Assume:

- $\mathbb{X} = [a, b]$, with $-\infty < a < b < +\infty$
- f is Lipschitz continuous, with Lipschitz constant K
- \Box For any two points $a \le x_i < x_i \le b$, and $\forall x \in [x_i, x_i]$, the following lower-bounds hold

E. Vazquez

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

A sequential method seeking the global maximum of a Lipschitz continuous function [Shubert (1972)]

□ Assume:

- $\mathbb{X} = [a, b]$, with $-\infty < a < b < +\infty$
- \triangleright f is Lipschitz continuous, with Lipschitz constant K
- \Box For any two points $a \le x_i < x_j \le b$, and $\forall x \in [x_i, x_j]$, the following lower-bounds hold

□ Assume:

- $\mathbb{X} = [a, b]$, with $-\infty < a < b < +\infty$
- ► f is Lipschitz continuous, with Lipschitz constant K
- □ For any two points $a \le x_i < x_j \le b$, and $\forall x \in [x_i, x_j]$, the following lower-bounds hold

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

A sequential method seeking the global maximum of a Lipschitz continuous function [Shubert (1972)]

Exploration vs Exploitation

$$x_{+} = rac{f(x_{i}) - f(x_{j})}{2K} + rac{x_{i} + x_{j}}{2}$$

$$m^{-} = rac{f(x_i) + f(x_j)}{2} - K rac{x_j - x_j}{2}$$

 \Box K can be seen as a parameter to tune the tradeoff local search vs exploration

Pros

- Straightforward implementation
- Global search and local search
- Gives bound on error

E. Vazquez

Cons

- A low Lipschitz constant has to be known (high $K \rightarrow$ global search)
- Speed of convergence (global vs. local)
- Computational complexity in higher dimensions (Shubert's algorithm is initialized by evaluating the function at the vertices of a hyper-rectangle $\rightarrow O(2^d)$ evaluations)

Lipschitzian Optimization Without the Lipschitz Constant [Jones, Perttunen and Stuckman (1993)]

Extreme events modeling IV

- □ The name DIRECT stands fro DIviding RECTangles
- □ As in Shubert's algorithm, DIRECT balances between global and local search
- **D** Two important ideas:
 - K need not to be known
 - Sample the function at center of rectangles

æ

500

(日)

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

DIRECT in 1D

□ Assume:

- $\mathbb{X} = [a, b]$, with $-\infty < a < b < +\infty$
- ▶ f is Lipschitz continuous, with Lipschitz constant K
- \Box Lipschitz bounds on an interval $[a_i, b_i]$ with midpoint x_i

$$\begin{array}{rcl} f(x) & \geq & f(x_i) + K(x-x_i), & \text{ for } a_i \leq x \leq x_i, \\ f(x) & \geq & f(x_i) - K(x-x_i), & \text{ for } x_i \leq x \leq b_i \end{array}$$

 \Box On $[a_i, b_i]$, f is lower-bounded by $m_i^- = f(x_i) - K(b_i - a_i)/2$

 \Box Note that m_i^- only takes into account the function value at the center of the interval

DIRECT in 1D

Definition

- ▶ Let S be a partition of [a, b] into subintervals $[a_i, b_i]$ with midpoints x_i , i = 1, ..., n
- An interval [a_i, b_i] is called potentially optimal if there exists some constant K ≥ 0 such that the following conditions hold

 $\begin{array}{ll} m_i^-(K) & \leq & m_j^-(K), \quad \text{for all } j \in \{1, \ldots, n\} \\ m_i^-(K) & \leq & \min_i f(x_j), \end{array}$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Summer School CEA-EDF-INRIA, 2011 36 / 141

with $m_i^-(K) := f(x_i) - K(b_i - a_i)/2$

(K need not to be a Lipschitz constant)

Extreme events modeling IV

DIRECT in 1D

E. Vazquez

Fix an arbitrary K > 0 and consider a potentially optimal interval $[a_i, b_i]$

DIRECT in 1D

Fix an arbitrary K > 0 and consider a potentially optimal interval $[a_i, b_i]$

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

DIRECT in 1D

Lipschitz constant K > 0 is unknown

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

DIRECT in several dimensions

- Consider $f : \mathbb{X} = [0, 1]^d \to \mathbb{R}$, with d > 1
- As DIRECT proceeds, X will be partitioned into hyper-rectangles, each with a sampled point at its center

Division of hypercubes

Assume that x_1 is at the center of the initial hypercube $[0, 1]^d$

- 1. Evaluate f at $x_1 \pm \frac{1}{3}e_j$, j = 1, ..., d, where e_j stands for the j^{th} unit vector
- 2. Subdivide along directions with best function values first

The best values will be at the center of hyper-rectangles

```
E. Vazquez
```

DIRECT in several dimensions

- Consider $f : \mathbb{X} = [0, 1]^d \to \mathbb{R}$, with d > 1
- As DIRECT proceeds, X will be partitioned into hyper-rectangles, each with a sampled point at its center

Division of hypercubes

Assume that x_1 is at the center of the initial hypercube $[0, 1]^d$

- 1. Evaluate f at $x_1 \pm \frac{1}{3}e_j$, j = 1, ..., d, where e_j stands for the j^{th} unit vector
- 2. Subdivide along directions with best function values first

・ロト < 四ト < 三ト < 三ト = 三</p>

Summer School CEA-EDF-INRIA, 2011 39 / 141

500

```
E. Vazquez
```

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

Extreme events modeling IV

DIRECT in several dimensions

- Once the initial hypercube has been partitioned, some of the subregions will be hyper-rectangles.
- By dividing the hyper-rectangles only along the long dimensions, we ensure that the rectangles shrink on every dimension.

Division of a hyper-rectangle with center x_i

- Identify the set J of dimensions with the maximum edge length. Set δ equal to 1/3 this maximum edge length.
- Sample the function at $x_i \pm \delta e_j$, $j \in J$.
- Divide the hyper-rectangle containing x_i along the dimensions in J, starting with the dimensions with the lowest value of

$$w_j = \min\{f(x_i - \delta e_j), f(x_i + \delta e_j)\}$$

and continuing with the dimensions with higher w_i .

<section-header>DIRECT in several dimension a for each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d_i from the center point to the vertices. b for each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d_i from the center point to the vertices. b Care and metalogical matrix is a conter, we will know the function value at x_i and the distance d_i from the center point to the vertices. c Care and rectangle with a point x_i at its center, we will know the function value at x_i and the distance d_i from the center point to the vertices. c Care and content is a point x_i at its center, we will know the function value at x_i and the distance d_i for the horizontal axis, and identify the set of potentially optimal rectangles as before c Learner Care and Care Deleted States Care Care Deleted Care Deleted 2011 (1011) c Learner Care and Care Deleted Care Deleted Care Deleted Care Deleted 2011 (1012) c Learner Care and Care Deleted Care Deleted Care Deleted 2011 (1012) c Learner Care and Care Deleted Care Deleted 2011 (1012) c Learner Care and Care Deleted Care Deleted 2011 (1012) c Learner Care and Care and Care Deleted 2011 (1012) c Learner Care and Care and Ca</section-header>	
DIRECT in several dimensions ■ The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension ■ For each rectangle with a point x _i at its center, we will know the function value at x _i and the distance d, from the center point to the vertices. ■ We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before ■ Verter	
 The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension For each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d, from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before E Varue Control of the distance d is the potentially optimal rectangles as before Control of an eperate to evaluate function Summer School CEAEDPANNA, 2011 41/141 Control of an eperate to evaluate function Segurity: X ⊂ R^d, f: X → R Normalize the domain to be the unit hyper-cube with center x₁ Evaluate f at x₁ and set m ₁ = f(x₁), n = 1 Evaluate f at x₁ and set m ₁ = f(x₁), n = 1 Evaluate f (x₁ ± δ₈), 1 ≤ i ≤ d, and divide hyper-cube with center x₁ Evaluate f (x₁ ± δ₈), 1 ≤ i ≤ d, and divide hyper-cube with the budget of evaluations is not exhausted (n ≤ N); do Identify the set of potentially optimal nectangles for all potentially optimal rectangles, and evaluate f at centers of new rectangles For all potentially optimal rectangles, and evaluate f at centers of new rectangles Update m _n, end for end while return m _n 	DIRECT in several dimensions
 The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension For each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d_i from the center point to the vertices. We can form a diagram like that on Silde 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before Evaque Determine the proceeding to the vertices. Optimization of an expendence function Sequent School CEAEDF-INRIA, 2011 41/14 Optimization of an expendence function Sequent School CEAEDF-INRIA, 2011 41/14 Optimization of an expendence function Sequent School CEAEDF-INRIA, 2011 41/14 Optimization of an expendence function Sequent School CEAEDF-INRIA, 2011 41/14 Optimization of an expendence function Sequent School CEAEDF-INRIA, 2011 41/14 Optimization of an expendence function Sequent School CEAEDF-INRIA, 2011 41/14 Optimization of an expendence function Sequent School CEAEDF-INRIA, 2011 41/14 	
 Superior of an expensive to evolute function. Superior expensive to evolute function. The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension. For each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d_i from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance d_i for the horizontal axis, and identify the set of potentially optimal rectangles as before. Evage Eval Eval Eval Eval Eval Eval Evaluation of an expensive to evolute function. Determine the evolution of an expensive to evolute function. Superior of an expensive to evolute function. Superior State f at x₁ and set m ₁ = f(x₁), n = 1. Evaluate f (x₁ ± b₁), 1 ≤ i ≤ d₁, and divide hyper-cube with center x₁. Evaluate f (x₁ ± b₂), 1 ≤ i ≤ d₁, and divide hyper-cube with center x₁. Identify the set of potentially optimal hyper-cubes. Identify the set of potentially optimal hyper-rectangles. for all potentially optimal rectangles do Identify the longest side(s) of rectangle. Divide into smaller rectangles, and evaluate f at centers of new rectangles. Update m _n, end for end while return m _N. 	
 The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension For each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d, from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before 	
 The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension. For each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d_i from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before E. Varger Determine the state of the potential state of the potentis of the potentis of the potential state	
 9. The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension 9. For each rectangle with a point x, at its center, we will know the function value at x, and the distance d, from the center point to the vertices. 9. We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before 	
 The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension For each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d_i from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before E Varque Determe events modeling IV Determe set as provide the center x₁ Control and the distance d_i f : X → R Normalize the domain to be the unit hyper-cube with center x₁ Evaluate f at x₁ and set m̂₁ = f(x₁), n = 1 Evaluate f(x₁ ± δe), 1 ≤ i ≤ d, and divide hyper-cube while the budget of evaluations is not exhausted (n ≤ N); do Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do Identify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles Update m̂_n end for end while return m̂_N 	
 The procedure for identifying the set of potentially optimal rectangles in the same as that in one dimension For each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d, from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before E. Varguer Determine vertex modeling IV Optimization of an expensive to evaluate function Sequential Lipschitzian optimization DIRECT algorithm Require: X ⊂ ℝ^d, f : X → ℝ Normalize the domain to be the unit hyper-cube with center x₁ E. Varguet f at x₁ and set m̂₁ = f(x₁), n = 1 Evaluate f (x₁ ± δe₁), 1 ≤ i ≤ d, and divide hyper-cube while the budget of evaluations is not exhausted (n ≤ N); do I dentify the soft of potentially optimal rectangles for all potentially optimal rectangles do I dentify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles Guidant m̂_N 	
that in one dimension For each rectangle with a point x, at its center, we will know the function value at x, and the distance d; from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before Every Control of the potentially optimal rectangles as before Control of an expensive to events modeling N Optimization of an expensive to evolute function Sequent 2000 Summer School CCALEDF-INREA, 2011 4/141 Optimization of an expensive to evolute function Sequential Expension of the potential optimization DIRECT algorithm Require: X ⊂ ℝ ^d , f : X → ℝ Normalize the domain to be the unit hyper-cube with center x ₁ Evaluate f at x ₁ and set m̂ ₁ = f(x ₁), n = 1 Evaluate f (x ₁ ± δe ₁), 1 ≤ i ≤ d, and divide hyper-cube while the budget of evaluations is not exhausted (n ≤ N); do I dentify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do I dentify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles Output at m̂ _n end for end while return m̂ _N	The procedure for identifying the set of potentially optimal rectangles in the same as
 For each rectangle with a point x_i at its center, we will know the function value at x_i and the distance d_i from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before E Vargue E Vargue E Vargue Centre events modeling IV Centre CEA EDF-INRIA.2011 41/141 Optimization of an expension-to-evaluate function Sequential Uperhitizin optimization DIRECT algorithm Require: X ⊂ R^d, f : X → R • Normalize the domain to be the unit hyper-cube with center x₁ • Evaluate f at x₁ and set m̂₁ = f(x₁), n = 1 • Evaluate f devaluations is not exhausted (n ≤ N); do • Identify the set of potentially optimal rectangles do • Identify the longest side(s) of rectangle • Divide into smaller rectangles, and evaluate f at centers of new rectangles for all potentially optimal rectangles, and evaluate f at centers of new rectangles • Update m̂_n end for end while return m̂_N	that in one dimension
Indicating <i>d</i> , from the center point to the vertices. We can form a diagram like that on Slide 37, using the distance <i>d</i> . for the horizontal axis, and identify the set of potentially optimal rectangles as before Evage: Evage: Summe School CEA.EDF-INRIA.2011 (1/11) Optimization of an expendive-to-evaluate function Sequential Expendence of the set of potentially optimal rectangles as before Summe School CEA.EDF-INRIA.2011 (1/11) Optimization of an expendive-to-evaluate function Sequence: X ⊂ R ^d , f : X → R Normalize the domain to be the unit hyper-cube with center x ₁ Evaluate f at x ₁ and set m̂ ₁ = f(x ₁), n = 1 Evaluate f (x ₁ ± de ₁), 1 ≤ i ≤ d, and divide hyper-cube While the budget of evaluations is not exhausted (n ≤ N); do Identify the longest side(s) of rectangles for all potentially optimal rectangles do Identify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles for all potentially optimal rectangles, and evaluate f at centers of new rectangles end for end while returm m̂ _N	For each rectangle with a point x_i at its center, we will know the function value at x_i
• We can form a diagram like that on Silde 37, using the distance <i>d</i> . for the horizontal axis, and identify the set of potentially optimal rectangles as before $E.V_{acquec} = Etreme events modeling N$ Summer School CEA.EDF-INRIA.2011 41/141 Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization DIRECT algorithm Require: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ - Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate \widehat{m}_1 - Evaluate	and the distance d_i from the center point to the vertices
• We can form a diagram like that on Slide 37, using the distance d. for the horizontal axis, and identify the set of potentially optimal rectangles as before $E Varque E treme events modeling N \qquad Summer School CEA-EDF-INRIA, 2011 41/141 \\ Coptimization of an expensive-to-evaluate function Sequential Lipschitzlan optimization I = Varque E X \subset \mathbb{R}^d, f : X \to \mathbb{R}= Normalize the domain to be the unit hyper-cube with center x_1= Evaluate f at x_1 and set \hat{m}_1 = f(x_1), n = 1= Evaluate f (x_1 \pm \delta_e_i), 1 \le i \le d, and divide hyper-cube while the budget of evaluations is not exhausted (n \le N); do= Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do= Identify the longest side(s) of rectangle= Divide into smaller rectangles, and evaluate f at centers of new rectangles n_iend for end while return \hat{m}_N$	
axis, and identify the set of potentially optimal rectangles as before E. Varquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 47/141 Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization DIRECT algorithm Require: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ = Normalize the domain to be the unit hyper-cube with center x_1 . = Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ = Evaluate f ($x_1 \pm \delta e_i$), $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted ($n \le N$); do = Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do = Identify the longest side(s) of rectangle = Divide into smaller rectangles, and evaluate f at centers of new rectangles = Update \hat{m}_n end for end while return \hat{m}_N	• We can form a diagram like that on Slide 37, using the distance d. for the horizontal
Exace Extreme events modeling M Summer School CEA-EDF-INRIA. 2011 41/141 Coptimization of an expensive-to-evaluate function Sequential Lipschitzian optimization DIRECT algorithm Require: $\mathbb{X} \subset \mathbb{R}^d$, $f : \mathbb{X} \to \mathbb{R}$ A Normalize the domain to be the unit hyper-cube with center x_1 . A Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ A Evaluate f ($x_1 \pm \delta_e$), $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted ($n \le N$); do A Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do A Identify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles and for end for end while return \hat{m}_N	axis, and identify the set of potentially optimal rectangles as before
E Varquez Extreme events modeling N Sequential Lipschitzlan optimization Optimization of an expensive-to-evaluate function Sequential Lipschitzlan optimization DIRECT algorithm Require: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ A Normalize the domain to be the unit hyper-cube with center x_1 A Normalize the domain to be the unit hyper-cube with center x_1 A Sequential $X = X = X = X$ Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ A Evaluate $f(x_1 \pm \delta_{e_1})$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do A Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do A Identify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles and for end while return \widehat{m}_N	
<page-header><page-header><page-header><page-header><page-header><page-header><page-header></page-header></page-header></page-header></page-header></page-header></page-header></page-header>	
<u>Example Example Example 2</u> Example Example Example 2 Example = Example = Example 2 $Example = Example 2$ $Example 2$	
E Vagez Externe events and CEAEDEFINIRIA. 2011 4/141 Optimization of an expensive-to-evolutate function Sequential Lipschitzlan optimization DIRECT algorithm Require: X ⊂ R ^d , f : X → R Australia et the domain to be the unit hyper-cube with center x₁. Evaluate f at x₁ and set $\widehat{m}_1 = f(x_1), n = 1$ Evaluate f at x₁ and set $\widehat{m}_1 = f(x_1), n = 1$ Evaluate f (x₁ ± δe_i), $1 \le i \le d$, and divide hyper-cube Monthalize the budget of evaluations is not exhausted ($n \le N$); do Identify the set of potentially optimal rectangles do Evaluate f at centers of new rectangles. Evaluate f at mainly explicitly optimal rectangles, and evaluate f at centers of new rectangles. Evaluate \widehat{m}_n 	
<page-header><page-header><page-header><page-header><page-header><page-header></page-header></page-header></page-header></page-header></page-header></page-header>	
<page-header><page-header><page-header><text><text><text><text><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></text></text></text></text></page-header></page-header></page-header>	
<page-header><page-header><page-header><text><text><equation-block><equation-block><list-item><list-item><list-item><code-block></code-block></list-item></list-item></list-item></equation-block></equation-block></text></text></page-header></page-header></page-header>	
<page-header><page-header><text><text><section-header><equation-block><equation-block><list-item><list-item><list-item><code-block></code-block></list-item></list-item></list-item></equation-block></equation-block></section-header></text></text></page-header></page-header>	
<page-header></page-header>	◆□ ▶ ◆ 車 ▶ ◆ 車 ▶ ◆ 車 ▶ ◆ 車 ● ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
DIRECT algorithm Fequire: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ A Normalize the domain to be the unit hyper-cube with center x_1 A Normalize the domain to be the unit hyper-cube with center x_1 A Normalize the domain to be the unit hyper-cube with center x_1 A Scaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ A Scaluate $f(x_1 \pm \delta_{e_1})$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do A ledentify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do A ledentify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles and for end for end while return \hat{m}_N	E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 41 / 141
DIRECT algorithm Require: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ A Normalize the domain to be the unit hyper-cube with center x_1 Normalize the domain to be the unit hyper-cube with center x_1 A Scaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ A Scaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do a Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do A Identify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles $update \hat{m}_n$ end for end while return \hat{m}_N	
DIRECT algorithm Require: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ A Normalize the domain to be the unit hyper-cube with center x_1 Normalize the domain to be the unit hyper-cube with center x_1 A Sequire: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ A Normalize the domain to be the unit hyper-cube with center x_1 Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ A Sequire $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do a Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do A Identify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles and for end for end while return \hat{m}_N	
DIRECT algorithm Require: $\mathbb{X} \subset \mathbb{R}^d$, $f : \mathbb{X} \to \mathbb{R}$ - Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization
DIRECT algorithm Require: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ - Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	
DIRECT algorithm Require: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ - Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	
DIRECT algorithm Require: $X \subset \mathbb{R}^d$, $f : X \to \mathbb{R}$ - Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	
Require: $\mathbb{X} \subset \mathbb{R}^d$, $f : \mathbb{X} \to \mathbb{R}$ - Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	DIRECT algorithm
Require: $\mathbb{X} \subset \mathbb{R}^d$, $f : \mathbb{X} \to \mathbb{R}$ - Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	
Require: $\mathbb{X} \subset \mathbb{R}^d$, $f : \mathbb{X} \to \mathbb{R}$ - Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted ($n \le N$); do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	
- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	Require: $\mathbb{X} \subset \mathbb{R}^d$, $f : \mathbb{X} \to \mathbb{R}$
- Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \widehat{m}_n end for end while return \widehat{m}_N	
- Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	- Normalize the domain to be the unit hyper-cube with center x_1
while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$
 Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do Identify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles Update m̂n end for end while return m̂N 	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube
for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do
- Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles
- Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N	 Normalize the domain to be the unit hyper-cube with center x₁ Evaluate f at x₁ and set m̂₁ = f(x₁), n = 1 Evaluate f(x₁ ± δe_i), 1 ≤ i ≤ d, and divide hyper-cube while the budget of evaluations is not exhausted (n ≤ N); do Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do
- Update \hat{m}_n end for end while return \hat{m}_N	 Normalize the domain to be the unit hyper-cube with center x₁ Evaluate f at x₁ and set m̂₁ = f(x₁), n = 1 Evaluate f(x₁ ± δe_i), 1 ≤ i ≤ d, and divide hyper-cube while the budget of evaluations is not exhausted (n ≤ N); do Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do Identify the longest side(s) of rectangle
end for end while return \hat{m}_N	 Normalize the domain to be the unit hyper-cube with center x₁ Evaluate f at x₁ and set m̂₁ = f(x₁), n = 1 Evaluate f(x₁ ± δe_i), 1 ≤ i ≤ d, and divide hyper-cube while the budget of evaluations is not exhausted (n ≤ N); do Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do Identify the longest side(s) of rectangle Divide into smaller rectangles and evaluate f at centers of new rectangles
end while return \hat{m}_N	 Normalize the domain to be the unit hyper-cube with center x₁ Evaluate f at x₁ and set m̂₁ = f(x₁), n = 1 Evaluate f(x₁ ± δe_i), 1 ≤ i ≤ d, and divide hyper-cube while the budget of evaluations is not exhausted (n ≤ N); do Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do Identify the longest side(s) of rectangle Divide into smaller rectangles, and evaluate f at centers of new rectangles Indate m̂
return \hat{m}_N	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\widehat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \widehat{m}_n and for
return m _N	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for
	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted ($n \le N$); do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while
	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N
	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N
	- Normalize the domain to be the unit hyper-cube with center x_1 - Evaluate f at x_1 and set $\hat{m}_1 = f(x_1)$, $n = 1$ - Evaluate $f(x_1 \pm \delta e_i)$, $1 \le i \le d$, and divide hyper-cube while the budget of evaluations is not exhausted $(n \le N)$; do - Identify the set of potentially optimal hyper-rectangles for all potentially optimal rectangles do - Identify the longest side(s) of rectangle - Divide into smaller rectangles, and evaluate f at centers of new rectangles - Update \hat{m}_n end for end while return \hat{m}_N

Optimization of an expensive-to-evaluate function Sequential Lipschitzian optimization

Lipschitzian Optimization Without the Lipschitz Constant [Jones, Perttunen and Stuckman (1993)]

Summing up

- In the context of risk analysis, it is often desirable to assess the worst-case performance of a system → this is a global optimization problem
- In this context, we want to use robust optimization algorithms

DIRECT in practice

- Straightforward and efficient global optimization procedure
- Global search and local search
- Known convergence results

Optimization of an expensive-to-evaluate function Average-case approach to the problem of optimization

Optimization of an expensive-to-evaluate function Average-case approach to the problem of optimization				
Average case approach				
Average-case approach				
This point of view has been widely explored in the domain of optimization and computer experiments.				
Two important issues to address:				
How to construct an optimal average strategy?				
• How to choose ξ ?				
・ 日 > ・ 4 目 > ・ 4 目 > ・ 4 目 > ・ 4 日 > ・ 4 日 > ・ 4 日 > ・ 1 日 > 1 日 → 1 日 → 1 日 → 1 日 → 1 日 → 1 日 → 1 日 → 1 日 → 1 日 → 1 日 → 1 日 → 1 日 → 1 日				
E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 50 / 141				
Ontimization of an expensive-to-evaluate function Sequential Bayesian optimization				
3.6 Sequential Bayesian optimization				

Optimal Bayesian strategies

• Objective: construct an optimal Bayesian optimization strategy \underline{X}_N^{\star} such that

$$\mathsf{E}_{0}\left(\varepsilon(\underline{X}_{N}^{\star},\xi)\right) = r_{\text{average}} = \inf_{\underline{X}_{N} \in \mathcal{A}_{N}} \mathsf{E}_{0}\left(\varepsilon(\underline{X}_{N},\xi)\right)$$

Let E_n , n = 1, 2, ..., denote the conditional expectation with respect to $\mathcal{I}_n(\xi)$, where

•
$$I_n = ((X_1, Z_1), ..., (X_n, Z_n))$$

- $Z_n(\xi) = \xi(X_n(\xi)), \ 1 \le n \le N$
- X_N^{\star} can be formally obtained by dynamic programming
- Denote the terminal risk by

$$R_N = \mathsf{E}_N\left(\varepsilon(\underline{X}_N,\xi)\right)$$

and define by backward induction

$$R_n = \min_{x \in \mathbb{X}} E_n(R_{n+1} \mid X_{n+1} = x), \quad n = N - 1, \dots, 0.$$
 (1)

▶ To get an insight into (1), notice that R_{n+1} , n = 0, ..., N - 1, depends measurably on $\mathcal{I}_{n+1} = (\mathcal{I}_n, X_{n+1}, Z_{n+1})$, so that

$$\Xi_n(R_{n+1} \mid X_{n+1} = x)$$

is in fact an expectation with respect to Z_{n+1} , and R_n is an \mathcal{F}_n -measurable random variable

		(日)	Ş
E. Vazquez	Extreme events modeling IV	Summer School CEA-EDF-INRIA, 2011 52 / 14	1

Optimization of an expensive-to-evaluate function Sequential Bayesian optimization

Optimal Bayesian strategies

- Then, we have $R_0 = r_{\text{average}}$
- The strategy \underline{X}_N^* defined by

$$X_{n+1}^{\star} = \operatorname*{argmin}_{x \in \mathbb{X}} \mathsf{E}_n \big(R_{n+1} \mid X_{n+1} = x \big), \quad n = 1, \dots, N-1,$$
 (2)

is the optimal Bayesian strategy

Unfortunately,

state space is continuous, dim. $n \times (d+1)$ action space is continuous, dim. d

- solving (1)–(2) over an horizon of more than a few steps is not numerically tractable!
- How to construct good sub-optimal strategies?

< ロ > < 同 > < 回 > < 回 >

k-step lookahead strategies

▶ Using (1), the optimal strategy can be expanded as

$$X_{n+1}^{\star} = \underset{x \in \mathbb{X}}{\operatorname{argmin}} \, \mathsf{E}_n \left(\min_{X_{n+2}} \mathsf{E}_{n+1} \, \dots \, \min_{X_N} \, \mathsf{E}_{N-1} \, \mathsf{R}_N \, \Big| \, X_{n+1} = x \right) \, .$$

- ▶ A general approach to construct sub-optimal strategies is to truncate this expansion after k terms, replacing the exact risk R_{n+k} by a surrogate risk \widetilde{R}_{n+k} .
- Examples of such surrogates will be given below
- The resulting strategy,

E. Vazquez

$$X_{n+1} = \underset{x \in \mathbb{X}}{\operatorname{argmin}} \, \mathsf{E}_n \left(\underset{X_{n+2}}{\min} \, \mathsf{E}_{n+1} \, \dots \, \underset{X_{n+k}}{\min} \, \mathsf{E}_{n+k-1} \, \widetilde{R}_{n+k} \, \middle| \, X_{n+1} = x \right) \, .$$

is called a *k*-step lookahead strategy

- Both the optimal strategy (2) and the k-step lookahead strategy implicitly define a sampling criterion J_n(x), the minimum of which indicates the next evaluation to be performed.
- ▶ For instance, in the case of the *k*-step lookahead strategy, the sampling criterion is

$$J_{n}(x) = \mathsf{E}_{n} \left(\min_{X_{n+2}} \mathsf{E}_{n+1} \dots \min_{X_{n+k}} \mathsf{E}_{n+k-1} \widetilde{R}_{n+k} \mid X_{n+1} = x \right).$$

$$\underset{\text{Extreme events modeling IV}}{\underset{\text{Summer School CEA-EDF-INRIA, 2011 54 / 141}{\underset{54 / 141}$$

Optimization of an expensive-to-evaluate function Sequential Bayesian optimization

One-step lookahead strategy for the problem of optimization

▶ In the case of a one-step lookahead strategy the sampling criterion may be written as

$$J_n(x) = \mathsf{E}_n\left(\widetilde{R}_{n+1} \mid X_{n+1} = x\right)$$

and, at step n, the next evaluation point is chosen according to

$$X_{n+1} = \operatorname*{argmin}_{x \in \mathbb{X}} J_n(x)$$

- How to define a surrogate \widetilde{R}_{n+1} for the optimization problem?
- ► For instance, we can choose the next evaluation point as if it were the last one
 - \rightarrow in this case, we set $\widehat{R}_{n+1} = \mathsf{E}_{n+1}(\widehat{m}_{n+1} m)$
- Note that taking R
 {n+1} = E{n+1}(m
 _{n+1} − m) corresponds to considering an optimal strategy for an horizon of one evaluation only

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ 一 つ へ ○ Summer School CEA-EDF-INRIA, 2011 55 / 141

One-step lookahead strategy for the problem of optimization
Heuristic interpretation of the EI sampling criterion X_{n+1} = argmax_xρ_n(x) := E_n ((m̂_n - ξ(X_{n+1}))₊ | X_{n+1} = x),
For x ∈ X, the random variable (m̂_n - ξ(x))₊
is called the improvement at x, and represents the excursion of ξ(x) below the current minimum m̂_n = ξ(X₁) ∧ ··· ∧ ξ(X_n)
A one-step lookahead strategy selects the point which has the maximum expected improvement

Optimization of an expensive-to-evaluate function Sequential Bayesian optimization				
☐ The next step is to understand:				
\blacktriangleright how to choose a random process ξ				
\blacktriangleright how to compute a sampling criterion such as the expected improvement ρ_n				
\Box We shall see that restricting ξ to be a Gaussian process makes it possible to obtain a				
closed-form formula for ρ_n				
 < ロ > < 目 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > <				
E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 58 / 141				
Ontimization of an expensive-to-evaluate function Gaussian random models				
3.7 Gaussian random models				

Optimization of an expensive-to-evaluate function Gaussian random models

Gaussian random vector

- A real-valued random vector $X = (X_1, \ldots, X_d) \in \mathbb{R}^d$ is said to be Gaussian if and only if any linear combination of its components $\sum_{i=1}^d a_i X_i$, with $a_1, \ldots, a_d \in \mathbb{R}$, is a Gaussian variable
- A Gaussian random vector X is characterized by its mean vector

$$\mathsf{E} = (\mathsf{E}[X_1], \dots, \mathsf{E}[X_d]) \in \mathbb{R}^d$$

and the covariance of the pairs of components (X_i, X_j) , $i, j \in \{1, \dots, d\}$

$$\operatorname{cov}(X_i, X_j) = \mathsf{E}[X_i X_j] - \mathsf{E}[X_i] \mathsf{E}[X_j]$$

If the covariance matrix

$$\Sigma = (\operatorname{cov}(X_i, X_j))_{i,j=1,\ldots,d}$$

is nonsingular, X has the probability density function

$$g_{\mu,\Sigma}(x) = rac{1}{(2\pi)^{d/2} (\det \Sigma)^{1/2}} \exp\left(-rac{1}{2}(x-\mu)^{\mathsf{T}} \Sigma^{-1}(x-\mu)
ight)$$

• The correlation coefficient of two components X_i , X_j is defined by

$$ho(X_i, X_j) = rac{\operatorname{cov}(X_i, X_j)}{\sqrt{\operatorname{var}(X_i)\operatorname{var}(X_j)}} \in [-1, 1],$$

 \rightarrow measures the similarity between X_i and X_j

Gaussian random process

- ▶ Random process: a set $\xi = \{\xi(x), x \in X\}$ of random variables indexed by the elements of X
- A random process ξ is Gaussian if and only if, $\forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in \mathbb{X}$, and $\forall a_1, \dots, a_n \in \mathbb{R}$, the real-valued random variable

$$\sum_{i=1}^n a_i \xi(x_i)$$

is Gaussian

 A Gaussian process is characterized by its mean function

$$x \in \mathbb{X} \mapsto \mathsf{E}[\xi(x)]$$

and its covariance function

$$(x,y)\in\mathbb{X}^2\mapsto \mathsf{cov}(\xi(x),\xi(y))$$

• Standing assumption: the covariance function is stationary, i.e., there exists $k : \mathbb{X} \to \mathbb{R}$ such that

Extreme events modeling IV

$$\mathsf{cov}(\xi(x),\xi(y))=k(x-y)$$

Summer School CEA-EDF-INRIA, 2011 62 / 141

500

• Notation: $\xi \sim GP(m, k)$

E. Vazquez

Optimization of an expensive-to-evaluate function Gaussian random models

Gaussian process: correlation structure

- When k is stationary, the variance $var(\xi(x))$ does not depend on x
- The covariance function can be written as

$$k(x-y) = \sigma^2 \rho(x-y),$$

with $\sigma^2 = var(\xi(x))$, and where ρ is the correlation function of ξ .

► The graph of the correlation function is a symmetric "bell curve" shape

Regularity properties of a random process

Definition

Given $x_0 \in \mathbb{R}^d$, a random process ξ is said to be continuous in mean-square at x_0 iff

$$\lim_{x \to x_0} \mathsf{E}[(\xi(x) - \xi(x_0))^2] = 0$$

Proposition

Let ξ be a second-order random process with continuous mean function and stationary covariance function k. ξ is continuous in mean-square iff k is continuous at zero.

Extreme events modeling IV

E. Vazquez

Optimization of an expensive-to-evaluate function Gaussian random models

Regularity properties of a random process

Definition

For $x, h \in \mathbb{R}^d$, define the random variable

$$\xi_h(x) = \frac{\xi(x_0+h) - \xi(x_0)}{\|h\|}$$

 ξ is mean-square differentiable at x_0 iff there exists a random vector $\nabla \xi(x_0)$ such that

$$\lim_{h\to 0} \mathsf{E}\big[\left(\xi_h(x_0) - (\nabla\xi(x_0), h)\right)^2\big] = 0$$

Proposition

Let ξ be a second-order random process with differentiable mean function and stationary covariance function k. ξ is differentiable in mean-square iff k is two-time differentiable at zero.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 65 / 141

Correlation, prediction, conditioning

- Consider a pair of random variables $(\xi(x_i), \xi(x_j))$, for $x_i \in \mathbb{X}$ and $x_j \in \mathbb{X}$
- If $x_i \in \mathbb{X}$ and $x_j \in \mathbb{X}$ are far apart, $\xi(x_i)$ and $\xi(x_j)$ are typically uncorrelated
- ▶ If $x_i \in \mathbb{X}$ and $x_j \in \mathbb{X}$ are close, $\xi(x_i)$ and $\xi(x_j)$ are typically correlated

Optimization of an expensive-to-evaluate function Gaussian random models

Correlation, prediction, conditioning

- Correlation \rightarrow we can predict $Z_j = \xi(x_j)$ from the observation of $Z_i = \xi(x_i)$
- Define the conditional density function by

$$f_{Z_j|Z_i}(v|Z_i = u) = rac{f_{(Z_j,Z_i)(v,u)}}{f_{Z_i}(u)}$$

Summer School CEA-EDF-INRIA, 2011 76 / 141

Prediction of a zero-mean Gaussian process

► The covariance function of the error of prediction, also called kriging covariance is given by

$$k(x,y;\underline{x}_n) := \operatorname{cov}\left(\xi(x) - \widehat{\xi}(x;\underline{x}_n), \xi(y) - \widehat{\xi}(y;\underline{x}_n)\right)$$
$$= k(x-y) - \sum_i \lambda_i(x;\underline{x}_n) k(y-x_i).$$

► The variance of the prediction error, also called the kriging variance, is defined as

 $\sigma_n^2(x) = k(x, x; \underline{x}_n)$

E

996

《曰》《卽》《臣》《臣》

Summer School CEA-EDF-INRIA, 2011 77 / 141

Proposition

Let $\xi \sim GP(0, k)$. Define $\xi \mid \mathcal{F}_n$ as the random process ξ conditioned on the σ -algebra \mathcal{F}_n generated by $\xi(x_1), \ldots, \xi(x_n) \rightarrow \xi \mid \mathcal{F}_n$ is a Gaussian process with

- mean $\hat{\xi}_n(\cdot)$ - covariance $k(\cdot, \cdot; \underline{x}_n)$

Extreme events modeling IV

▶ In particular, $\hat{\xi}_n(x) = \mathsf{E}_0(\xi(x) | \mathcal{F}_n)$ is the best \mathcal{F}_n -measurable predictor of $\xi(x)$, for all $x \in \mathbb{X}$.

```
E. Vazquez
```


Э

500

Prediction of a Gaussian process with unknown mean function

Define the linear space of functions

$$\mathcal{P} = \left\{ x \mapsto \sum_{i=1}^{l} eta_i arphi_i(x); \; eta_i \in \mathbb{R}
ight\},$$

• Define Λ the linear space of finite-support measures on \mathbb{X} , i.e.

$$\lambda \in \Lambda \implies \lambda = \sum_{i=1}^n \lambda_i \delta_{\mathsf{x}_i}$$
 for some $n \in \mathbb{N}$

• For $f : \mathbb{X} \to \mathbb{R}$, and $\lambda = \sum_{i=1}^n \lambda_i \delta_{x_i} \in \Lambda$,

$$\langle \lambda, f \rangle = \int_{\mathbb{X}} f d\lambda = \sum_{i=1}^{n} \lambda_i f(x_i)$$

▶ Define the linear subspace $\Lambda_{\mathcal{P}^{\perp}} \subset \Lambda$ of finite-support measures vanishing on \mathcal{P} , i.e.

Extreme events modeling IV

$$\lambda \in \Lambda_{\mathcal{P}^{\perp}} \implies \langle \lambda, f \rangle = \int_{\mathbb{X}} f d\lambda = \sum_{i=1}^{n} \lambda_i f(x_i) = 0, \quad \forall f \in \mathcal{P}$$

E. Vazquez

Optimization of an expensive-to-evaluate function Gaussian random models

Prediction of a Gaussian process with unknown mean function

- Let ξ be a Gaussian random process with an unknown mean in P, and a covariance function k
- For $x \in \mathbb{X}$, the kriging predictor $\widehat{\xi}_n(x)$ of $\xi(x)$ from $\xi(x_1), \ldots, \xi(x_n)$ is the linear projection

$$\widehat{\xi}_n(x) = \sum_i \lambda_i(x; \underline{x}_n) \xi(x_i)$$

of $\xi(x)$ onto

$$\operatorname{span}\{\xi(x_i), i=1,\ldots,n\}$$

such that the variance of the error $\xi(x) - \widehat{\xi}_n(x)$ is minimized, under the constraint

$$\delta_x - \sum \lambda_i(x; \underline{x}_n) \delta_{x_i} \in \Lambda_{\mathcal{P}^{\perp}}$$

i.e.,

$$\langle \delta_x - \sum \lambda_i(x; \underline{x}_n) \delta_{x_i}, \varphi_j \rangle = \varphi_j(x) - \sum \lambda_i(x; \underline{x}_n) \varphi_j(x_i) = 0, \quad j = 1, \dots, I$$

The requirement δ_x − ∑λ_i(x; x_n)δ_{xi} ∈ Λ_{P⊥} makes the kriging predictor unbiased, even if the mean of ξ is unknown

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ < □ ↓ <

▲□▶▲□▶▲□▶▲□▶ ▲□ ◆ ○ ◆ ○

Summer School CEA-EDF-INRIA, 2011 80 / 141

Optimization of an expensive-to-evaluate function Gaussian random models

Summing up

- The framework of Gaussian random processes makes it possible to compute an interpolation of evaluation results, and derive confidence intervals about the interpolation
- ► The global behavior of *f* is captured by interpolation
- The regions that may contain a global minimizer can be identified

Optimization of an expensive-to-evaluate function Expected Improvement

Expected Improvement [Mockus et al. 78, Schonlau et al. 96, Jones et al. 98]

- A well-known Bayesian optimization algorithm
 - proposed by Mockus et al.
 - popularized by the EGO algorithm of Jones et al.
- Idea : explore areas that are likely to contain a global optimizer
- Recall that the expected improvement criterion has been obtained by considering a one-step lookahead strategy for the problem of optimization: each new evaluation point is chosen according to

$$X_{n+1} = \operatorname{argmin}_{x \in \mathbb{X}} E_n \left(\widehat{m}_{n+1} - m \mid X_{n+1} = x \right)$$

$$= \operatorname{argmin}_{x \in \mathbb{X}} E_n \left(\widehat{m}_{n+1} \mid X_{n+1} = x \right)$$

$$= \operatorname{argmin}_{x \in \mathbb{X}} E_n \left(\widehat{m}_n \wedge \xi(X_{n+1}) \mid X_{n+1} = x \right)$$

$$= \operatorname{argmax}_{x \in \mathbb{X}} E_n \left(0 \wedge (\xi(X_{n+1}) - \widehat{m}_n) \mid X_{n+1} = x \right)$$

$$= \operatorname{argmax}_{x \in \mathbb{X}} \rho_n(x) := E_n \left((\widehat{m}_n - \xi(X_{n+1}))_+ \mid X_{n+1} = x \right)$$
with
$$\widehat{m}_n = \xi(X_1) \wedge \dots \wedge \xi(X_n),$$

$$E_{t+1} = \max(z, 0)$$
The sampling criterion ρ_n is the expected improvement (EI)
$$\rightarrow \text{ average excursion of } \xi(x) \text{ below the current minimum of past evaluation results}$$

E. Vazquez

 \rightarrow

Summer School CEA-EDF-INRIA, 2011 87 / 141

Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98]

- Assume ξ is a Gaussian process, with known mean and covariance functions
- Then, $\rho_n(x)$ has a closed-form expression:

$$\rho_n(x) = \gamma \left(m_n - \widehat{\xi}_n(x; \underline{X}_n), \sigma_n^2(x) \right),$$

with

$$\gamma(z,s) = \begin{cases} \sqrt{s} \Phi'\left(\frac{z}{\sqrt{s}}\right) + z \Phi\left(\frac{z}{\sqrt{s}}\right) & \text{if } s > 0, \\ \max(z,0) & \text{if } s = 0. \end{cases}$$

► The El algorithm:

E. Vazquez

$$\begin{cases} x_1 = x_{\text{init}}, \\ X_{n+1} = \operatorname*{argmax}_{x \in \mathbb{X}} \rho_n(x), \quad n \ge 1, \end{cases}$$

Extreme events modeling IV

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 88 / 141

Optimization of an expensive-to-evaluate function Expected Improvement Expected Improvement [Mockus 78, Schonlau et al. 96, Jones et al. 98] 2∟ 1.5 • High $\sigma_n(x) \rightarrow$ 1 unexplored region $+2\sigma_n(x)$ 0.5 • High $m_n - \xi_n(x) \rightarrow$ 0 ► Compute the $\widehat{\xi}_n(x)$ -0.5 -1 ► Next sample: $-2\sigma_n(x)$ -1.5 $X_{n+1} = \arg \max_{x \in \mathbb{X}} \rho_n(x)$ -2^L -0.5 0.5 0 ・ロト ・ 理ト ・ モト ・ モト SQA æ Summer School CEA-EDF-INRIA, 2011 89 / 141 E. Vazquez Extreme events modeling IV

			\widehat{m}_n with $N=60$		
-1 -0.5 0	0.5 1 L	_HS	-5.823		
	Ľ	DIRECT	-5.839		
	E	EI/EGO	-5.845		
	G	Global minimum	-5.845		
NB: Global minimum found by the El algorithm in only 31 evaluations (abs. tol. 1.10^{-4})					
		<pre>< d> < d> <</pre>	■ → ■ → ■ → • • • • •		
E. Vazquez	Extreme events modeling IV	Summer School (CEA-EDF-INRIA, 2011 92 / 141		

Global optimization based on EI/EGO: implementation issues

How to find the maximizer of ρ_n at each iteration?

- ▶ simple approach: use a finite grid on X (a set of candidate points)
- refine the grid in regions with a high ρ_n
- in practice, a high precision on the location of the maximizer of ρ_n is not required

How to choose the prior, i.e. the mean and the covariance functions of ξ ?

- Usually: consider a parametrized covariance function (e.g. the exponential or the Matérn covariance function) and estimate the parameters by maximum likelihood
- Not necessarily a good idea to estimate the parameters at each iteration (use instead an initial design to estimate the parameters)
- ▶ NB: In principle, the uncertainty due to parameter estimation should be taken into account. Very often in practice, a plug-in approach is used (EGO). However, in this case, the variance of the error of prediction is underestimated.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで Summer School CEA-EDF-INRIA, 2011 93 / 141 E. Vazquez Extreme events modeling IV

Optimization of an expensive-to-evaluate function Expected Improvement

Global optimization based on El Pros • Efficient global optimization procedure (often better than DIRECT in experiments) Global search and local search Known convergence results Cons Working principle rather involved (?) User friendly software yet to come Not (yet) in Matlab The role of the tuning parameters needs to be understood by the user ヘロト ヘヨト ヘヨト 500 э. E. Vazquez Extreme events modeling IV Summer School CEA-EDF-INRIA, 2011 94 / 141

Optimization of an expe	nsive-to-evaluate function Summing up					
Summing up						
Summig up						
 In the context of risk an performance of a system 	alysis, it is often desirable t m i ightarrow this is a global optimiza	o assess the worst-case ation problem				
Some working principles of Lipschitzian and Bayesian sequential search algorithms exposed						
 Particularly interesting in the context of expensive-to-evaluate functions, very useful and effective in practical situations 						
Many applications can b	e found in the literature					
 A great number of meth 	odological and theoretical o	uestions are open and it is an				
active research domain a	at present time					
	-					
5.14		< ロ > < 団 > < 邑 > < 邑 > < 邑 > < 邑 > < 邑 > < 邑 > < < ○ < ○ < ○ < ○ < ○ < ○ < ○ < ○ < ○				
E. Vazquez	Extreme events modeling IV	Summer School CEA-EDF-INRIA, 2011 95 / 141				
[
Estimation	of a probability of failure					
4. Estimatio	on of a probability of failu	re in a Bayesian				
sequential decision framework						

Estimation of a probability of failure Problem statement

Reminder

• Our objective: to obtain an approximation of

$$\alpha^{u}(f) = \mathsf{P}_{\mathbb{X}}\{f > u\} = \int_{\mathbb{X}} \mathbb{1}_{f > u} \mathrm{d}\mathsf{P}_{\mathbb{X}}$$

- The approximation of $\alpha^{u}(f)$ has to be built from a set of computer experiments
- Expensive computer experiments: the number of evaluations is limited
- We want to construct an algorithm to estimate a probability of failure, that is a pair $(\underline{X}_N, \widehat{\alpha}_N)$,

$$\begin{array}{rcl} \underline{X}_{N} & : & f \mapsto \underline{X}_{N}(f) = (X_{1}(f), X_{2}(f), \ldots, X_{N}(f)) \in \mathbb{X}^{N}, \\ \widehat{\alpha}_{N} & : & f \mapsto \widehat{\alpha}_{N}(f) \in \mathbb{R}_{+}, \end{array}$$

- X_N is called a strategy
- $\widehat{\alpha}_N(f)$ is an estimator of $\alpha^u(f)$
- How to construct a good algorithm?

Estimation of a probability of failure

- Assume that an estimator $\widehat{\alpha}_N$ has been chosen (see how later)
- How to construct the strategy X_N ?
- Let A_N be the class of all strategies X_N that query sequentially N evaluations of f
- Given a loss function

 $L: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

define the error of approximation of a strategy $\underline{X}_N \in \mathcal{A}_N$ on f as

$$\epsilon(\underline{X}_N, f) = L(\widehat{\alpha}_N(f), \alpha(f))$$

Here, we shall consider the quadratic loss function, so that

$$\epsilon(\underline{X}_N, f) = (\widehat{\alpha}_N(f) - \alpha(f))^2$$

(Depending on the problem, there may exist better choices. For instance, if it is more harmful to underestimate a probability of failure than to overestimate it, then the loss function should be chosen accordingly.)

Extreme events modeling IV

E. Vazquez

Estimation of a probability of failure Problem statement

Estimation of a probability of failure

- We adopt a Bayesian approach: the unknown function f is considered as a sample path of a real-valued random process ξ defined on some probability space (Ω, B, P₀) with parameter x ∈ X
- A good strategy is a strategy that achieves, or gets close to, the Bayes or average risk

$$r_{\mathrm{average}} := \inf_{\underline{X}_{N} \in \mathcal{A}_{N}} \mathsf{E}_{0}\left(\epsilon(\underline{X}_{N}, \xi)\right)$$

where E_0 denotes the expectation with respect to P_0

- From a subjective Bayesian point of view, the stochastic model ξ is a representation of our uncertain initial knowledge about f
- From a pragmatic perspective, the prior distribution can be seen as a tool to define a notion of a good strategy in an average sense.

Extreme events modeling IV

Estimation of a probability of failure Optimal and k-step lookahead strategies

Optimal Bayesian strategies As in the case of optimization, the optimal strategy can be expanded as $X_{n+1}^{\star} = \underset{X \in \mathbb{X}}{\operatorname{argmin}} \, \mathsf{E}_{n} \left(\min_{X_{n+2}} \mathsf{E}_{n+1} \dots \min_{X_{N}} \mathsf{E}_{N-1} \, \mathsf{R}_{N} \mid X_{n+1} = x \right) \, .$ ▶ A k-step lookahead strategy is obtained when truncating the expansion after k terms and replacing the exact risk R_{n+k} by a surrogate R_{n+k} $X_{n+1} = \underset{x \in \mathbb{X}}{\operatorname{argmin}} J_n(x) := \mathsf{E}_n \left(\min_{X_{n+2}} \mathsf{E}_{n+1} \dots \min_{X_{n+k}} \mathsf{E}_{n+k-1} \widetilde{R}_{n+k} \mid X_{n+1} = x \right) \,.$ (12)We restrict our attention to the class of one-step lookahead strategies: in this case, the sampling criterion $J_n(x)$ may be written as $J_n(x) = \mathsf{E}_n\left(\widetilde{R}_{n+1} \mid X_{n+1} = x\right)$ • How to define a surrogate risk R_{n+1} for the problem of the estimation of a probability of failure? ヘロト ヘヨト ヘヨト æ Summer School CEA-EDF-INRIA, 2011 104 / 141 E. Vazquez Extreme events modeling IV

One-step lookahead strategy for the problem of estimation of a probability of failure

- A natural and straightforward way of building a one-step lookahead strategy is to select greedily each evaluation as if it were the last one
- When the Bayesian risk provides a measure of the estimation error, we call such a strategy a stepwise uncertainty reduction (SUR) strategy
- Given a sequence of estimators $(\hat{\alpha}_n)_{n \ge 1}$, a direct application of the above principle using the quadratic loss function yields the sampling criterion

$$J_n(x) = \mathsf{E}_n\left(\left(\alpha - \widehat{\alpha}_{n+1}\right)^2 \mid X_{n+1} = x\right) \,.$$

Restricting ξ to be a Gaussian process makes it possible to derive estimators for α and to compute J_n with moderate computational efforts

Extreme events modeling IV

4.3 Estimators of the probability of failure under a Gaussian prior

æ

ヘロト ヘヨト ヘヨト

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 105 / 141

Estimators of the probability of failure under a Gaussian prior

• Given a random process ξ and a strategy \underline{X}_N , the optimal estimator that minimizes $E_0\left((\alpha - \widehat{\alpha}_n)^2\right)$ among all \mathcal{F}_n -measurable estimators $\widehat{\alpha}_n$, $1 \le n \le N$, is

$$\widehat{\alpha}_n = \mathsf{E}_n(\alpha) = \mathsf{E}_n\left(\int_{\mathbb{X}} \mathbb{1}_{\xi > u} \,\mathrm{d}\mathsf{P}_{\mathbb{X}}\right) = \int_{\mathbb{X}} p_n \,\mathrm{d}\mathsf{P}_{\mathbb{X}}, \qquad (13)$$

where

$$p_n: x \in \mathbb{X} \mapsto \mathsf{P}_n \{\xi(x) > u\}$$

• When ξ is a Gaussian process, the probability $p_n(x)$ of exceeding u at $x \in \mathbb{X}$, given \mathcal{I}_n , has a simple closed-form expression:

$$p_n(x) = 1 - \Phi\left(\frac{u - \widehat{\xi}_n(x)}{\sigma_n(x)}\right) = \Phi\left(\frac{\widehat{\xi}_n(x) - u}{\sigma_n(x)}\right),$$

with Φ the cdf of the normal distribution

► Thus, in the Gaussian case, the estimator (13) is amenable to a numerical approximation, by integrating the excess probability p_n over X

```
E. Vazquez
```

Estimation of a probability of failure Estimators of the probability of failure

Extreme events modeling IV

Estimators of the probability of failure under a Gaussian prior

Another natural way to obtain an estimator of α given *I_n* is to approximate the excess indicator 1_{ξ>u} by a hard classifier η_n : X → {0, 1}

("hard" refers to the fact that η_n takes its values in $\{0,1\}$)

• If η_n is close (in some sense) to $\mathbb{1}_{\xi>u}$, the estimator

$$\widehat{\alpha}_{n} = \int_{\mathbb{X}} \eta_{n} \mathrm{d} \mathsf{P}_{\mathbb{X}}$$

should be close to $\alpha = \int \mathbb{1}_{\xi > u} d\mathsf{P}_{\mathbb{X}}$

æ

(日)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summer School CEA-EDF-INRIA, 2011 107 / 141

Estimators of the probability of failure under a Gaussian prior

More precisely,

$$\mathsf{E}_{n}\left(\left(\widehat{\alpha}_{n}-\alpha\right)^{2}\right)=\mathsf{E}_{n}\left[\left(\int(\eta_{n}-\mathbb{1}_{\xi>u})\mathrm{d}\mathsf{P}_{\mathbb{X}}\right)^{2}\right]\leq\int\mathsf{E}_{n}\left((\eta_{n}-\mathbb{1}_{\xi>u})^{2}\right)\mathrm{d}\mathsf{P}_{\mathbb{X}}\quad(14)$$

Let

$$\tau_n(x) = \mathsf{P}_n\{\eta_n(x) \neq \mathbb{1}_{\xi(x)>u}\} = \mathsf{E}_n\left((\eta_n(x) - \mathbb{1}_{\xi(x)>u})^2\right)$$

be the probability of misclassification; that is, the probability to predict a point above (resp. under) the threshold, when the true value is under (resp. above) the threshold

► Thus, (14) shows that it is desirable to use a classifier η_n such that τ_n is small for all x ∈ X

E. Vazquez

Extreme events modeling IV

Estimators of the probability of failure under a Gaussian prior

▶ The right-hand side of (14) is minimized if we set

$$\eta_n(x) = \mathbb{1}_{p_n(x) > 1/2} = \mathbb{1}_{\bar{\xi}_n(x) > u},$$

where $\bar{\xi}_n(x)$ denotes the posterior median of $\xi(x)$.

► Then, we have

$$\tau_n(x) = p_n(x) + (1 - 2p_n(x)) \eta_n(x) = \min(p_n(x), 1 - p_n(x))$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Summer School CEA-EDF-INRIA, 2011 109 / 141

Estimators of the probability of failure under a Gaussian prior

- In the case of a Gaussian process, the posterior median and the posterior mean are equal
- ▶ Then, the classifier that minimizes $\tau_n(x)$ for each $x \in \mathbb{X}$ is $\eta_n = \mathbb{1}_{\hat{\xi}_n > u}$, in which case

$$\tau_n(x) = \mathsf{P}_n\left((\xi(x) - u)(\widehat{\xi}_n(x) - u) < 0\right) = 1 - \Phi\left(\frac{|\widehat{\xi}_n(x) - u|}{\sigma_n(x)}\right).$$
(15)

• For $\eta_n = \mathbb{1}_{\widehat{\xi}_n > u}$, we have

$$\widehat{\alpha}_n = \int_{\mathbb{X}} \mathbb{1}_{\widehat{\xi}_n > u} \mathrm{d} \mathsf{P}_{\mathbb{X}} = \alpha(\widehat{\xi}_n)$$

Therefore, this approach to obtain an estimator of α can be seen as a type of plug-in estimation.

Extreme events modeling IV

E. Vazquez

Summer School CEA-EDF-INRIA, 2011 112 / 141

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Summer School CEA-EDF-INRIA, 2011 111 / 141

500

Upper bounds of the SUR sampling criterion

- ► Recall that \(\tau_n(x) = \min(p_n(x), 1 p_n(x)\)\) is the probability of misclassification at x using the classifier \(\mathbf{1}_{\hat{\varepsilon}_n(x)>u\)}\)
- Let us further denote by v_n(x) := p_n(x) (1 − p_n(x)) the variance of the excess indicator 1_{ξ(x)≥u}.

Proposition

Assume that either $\widehat{\alpha}_n = \mathsf{E}_n(\alpha)$ or $\widehat{\alpha}_n = \alpha(\widehat{\xi}_n)$. Define $G_n := \int_{\mathbb{X}} \sqrt{\gamma_n(y)} \mathrm{dP}_{\mathbb{X}}(y)$ for all $n \in \{0, \dots, N-1\}$, with

$$\gamma_n := \begin{cases} \nu_n = p_n(1-p_n) = \tau_n(1-\tau_n), & \text{if } \widehat{\alpha}_n = \mathsf{E}_n(\alpha), \\ \tau_n = \min(p_n, 1-p_n), & \text{if } \widehat{\alpha}_n = \alpha(\widehat{\xi}_n). \end{cases}$$

Then, for all $x \in \mathbb{X}$ and all $n \in \{0, \ldots, N-1\}$,

$$J_n(x) \leq \widetilde{J}_n(x) := \mathsf{E}_n\left(G_{n+1}^2 \mid X_{n+1} = x\right)$$

Extreme events modeling IV

E. Vazquez

Estimation of a probability of failure Upper bounds of the SUR sampling criterion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summer School CEA-EDF-INRIA, 2011 115 / 141

Upper bounds of the SUR sampling criterion

Note that γ_n(x) is a function of p_n(x) that vanishes at 0 and 1, and reaches its maximum at 1/2; that is, when the uncertainty on 1_{ξ(x)>u} is maximal

Discretizations of the SUR criteria

At this point, we need to provide numerical approximations of the integrals in the SUR criteria

Example for the criterion $J_{1,n}^{SUR}$

- For each $y \in \mathbb{X}$, $\tau_{n+1}(y)$ is a function of $\mathcal{I}_{n+1} = (\mathcal{I}_n, X_{n+1}, Z_{n+1})$, with $Z_{n+1} = \xi(X_{n+1})$
- At step n, \mathcal{I}_n is known
- Consider the notation

$$v_{n+1}(y; X_{n+1}, Z_{n+1}) = \sqrt{\tau_{n+1}(y)}$$

to emphasize the fact that, when a new evaluation point must be chosen at step n, $\tau_{n+1}(y)$ depends on the choice of X_{n+1} and the random outcome Z_{n+1}

- ▶ For $x \in \mathbb{X}$, let us further denote by $Q_{n,x}$ the probability distribution of $\xi(x)$ under P_n
- Then,

$$J_{1,n}^{SUR}(x) = \int_{\mathbb{R}} \left\{ \int_{\mathbb{X}} v_{n+1}(y; x, z) \, \mathrm{dP}_{\mathbb{X}}(y) \right\}^2 \mathrm{dQ}_{n, x}(z)$$

• Given \mathcal{I}_n and a triple (x, y, z), $v_{n+1}(y; x, z)$ can be computed efficiently using kriging

```
E. Vazquez
```

Estimation of a probability of failure Discretizations of the SUR criteria

Extreme events modeling IV

Discretizations of the SUR criteria To obtain a numerical approximation of J^{SUR}_{1,n}, we proceed in two steps: compute the integral on X with respect to P_X; compute the integral on R with respect to Q_{n,x}

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへぐ

Summer School CEA-EDF-INRIA, 2011 119 / 141

Discretizations of the SUR criteria

- \blacktriangleright To compute the integral on $\mathbb X$ with respect to $\mathsf{P}_{\mathbb X},$ we can use a MC approach
- ▶ Draw an i.i.d. sequence $Y_1, \ldots, Y_m \sim \mathsf{P}_{\mathbb{X}}$ and use the MC approximation:

$$\int_{\mathbb{X}} v_{n+1}(y;x,z) \, \mathrm{dP}_{\mathbb{X}}(y) \approx \frac{1}{m} \sum_{j=1}^{m} v_{n+1}(Y_j;x,z).$$

> Equivalently, it means that we choose to work from the start on a discretized version of the problem: we replace $\mathsf{P}_{\mathbb{X}}$ by the empirical distribution

$$\widehat{\mathsf{P}}_{\mathbb{X},m} = rac{1}{m} \sum_{j=1}^m \delta_{Y_j}$$

and our goal is to estimate the MC estimator

$$\alpha_m(\xi) = \int \mathbb{1}_{\xi > u} \mathrm{d}\widehat{\mathsf{P}}_{\mathbb{X},m} = \frac{1}{m} \sum_{j=1}^m \mathbb{1}_{\xi(Y_j) > u}$$

using either the posterior mean

$$\mathsf{E}_n(\alpha_m) = \frac{1}{m}\sum_j p_n(Y_j)$$

or the plug-in estimate

$$\alpha_m(\widehat{\xi}_n) = \frac{1}{m} \sum_j \mathbb{1}_{\widehat{\xi}_n(Y_j) > u}$$

E. Vazquez

Estimation of a probability of failure Discretizations of the SUR criteria

Extreme events modeling IV

Summer School CEA-EDF-INRIA, 2011 121 / 141

Discretizations of the SUR criteria

- ▶ The second problem is the computation of a one-dimensional integral
- $Q_{n,x}$ is a Gaussian probability distribution with mean $\hat{\xi}_n(x)$ and variance $\sigma_n^2(x)$
- The integral can be computed using a standard Gauss-Hermite quadrature with Q points
- This is equivalent to replacing (under P_n) the random variable ξ(x) by a quantized random variable with probability distribution

$$\sum_{q=1}^{Q} w_q \delta_{z_{n+1,q}(x)},$$

where w_q are weights of the quadrature and

$$z_{n+1,q}(x) = \widehat{\xi}_n(x) + \sigma_n(x)u_q,$$

where u_q denote quadrature points

• Eventually, the J_1^{SUR} strategy is:

$$X_{n+1} = \underset{1 \le k \le m}{\operatorname{argmin}} \\ \sum_{q=1}^{Q} w_q \left\{ \sum_{j=1}^{m} v_{n+1} \left(Y_j; Y_k, z_{n+1,q}(Y_k) \right) \right\}^2.$$

E. Vazquez

Estimation of a probability of failure Algorithm description

Extreme events modeling IV

Sequential estimation of a probability of failure

Sketch of an algorithm

- 1. Construct an initial design of size $n_0 < N$ and evaluate f at the points of the initial design.
- 2. Choose a Gaussian process ξ (in practice, this amounts to choosing a parametric form for the mean of ξ and a parametric covariance function k_{θ})
- 3. Generate a Monte Carlo sample $\mathbb{X}_m = \{Y_1, \ldots, Y_m\}$ of size m from $\mathsf{P}_{\mathbb{X}}$
- 4. While the evaluation budget N is not exhausted,
 - 4.1 *optional step*: estimate the parameters of the covariance function (case of a plug-in approach);
 - 4.2 select a new evaluation point, using past evaluation results, the prior ξ and X_m ;
 - 4.3 perform the new evaluation.
- 5. Estimate the probability of failure obtained from the N evaluations of f (for instance, by using $E_N(\alpha_m) = \frac{1}{m} \sum_i p_N(Y_j)$).

Estimation of a probability of failure Example Estimation of the volume of an excursion set (×) – 0.5 ▶ Unknown *f*, threshold *u*, 0 Initial design -0.5 -2 -1.5 0 0.5 1 1.5 2 -1 • Construction of f_n , confidence intervals, probability of excursion $\mathsf{P}\{f(x) \ge u\}, x \in \mathbb{X}$ 1 $\{n \ge 0.8 \\ (x)\}^{u} d = (x)^{u} d$ Computation and Position of next evaluation 0L _2 0.5 -1.5 -0.5 -1 0 1 1.5 2 Summer School CEA-EDF-INRIA, 2011 E. Vazquez Extreme events modeling IV 127 / 141

Estimation of a probability of failure Example Estimation of the volume of an excursion set (×) – 0.5 \blacktriangleright Unknown *f*, threshold *u*, 0 Initial design -0.5 -2 -1.5 0 0.5 1 1.5 2 -1 • Construction of f_n , confidence intervals, probability of excursion $\mathsf{P}\{f(x) \ge u\}, x \in \mathbb{X}$ 1 $\{n \ge 0.8 \\ \{n \ge 0.8 \\ u \ge 0.6 \\ u \ge 0.4 \\ u \ge 0.2 \\ u$ Computation and Position of next evaluation 0L _2 0.5 -1.5 -0.5 -1 0 1 1.5 2 Summer School CEA-EDF-INRIA, 2011 Extreme events modeling IV 127 / 141

E. Vazquez

E. Vazquez

Estimation of a probability of failure Final remarks

Additional remarks

- In terms of computational complexity, a SUR strategy to estimate a probability of failure is more expensive than the EI/EGO algorithm
- Kriging takes O(mn²) operations to predict the value of f at m locations from n evaluation results of f
- In the procedure to select an evaluation
 - a first kriging prediction is performed at Step 1
 - m different predictions have to performed at Step 2.1.
- The cost becomes rapidly burdensome for large values of *n* and *m*
- To work on applications where m must be large (small probabilities of failure), we can avoid dealing with candidate points that have a very low probability of misclassification

(they are probably far from the frontier of the domain of failure)

- It is also likely that those points with a low probability of misclassification will have a very small contribution to the variance of the error of estimation â_n − α_m.
- ► The idea is to rewrite the sampling strategy, in such a way that the summation over *m*, and the search set for the minimizer, is restricted to a subset of points Y_j corresponding to the m₀ largest values of τ_n(Y_j).

SQC

₹.

・ロト ・ 日下 ・ モト ・ モト

Quantile estimation by Monte Carlo

• To estimate $q_{\alpha}(f) \rightarrow \text{draw}$ an i.i.d *m*-sample $Y_1, \ldots, Y_m \sim \mathsf{P}_{\mathbb{X}}$, and consider the empirical estimator

$$q_{\alpha,m}(f) = \min\left\{z; \frac{1}{m}\sum_{i=1}^m \mathbb{1}_{Z_i \leq z} \geq \alpha\right\} = Z_{\left(\lceil \alpha m \rceil\right)}$$

where

$$Z_i = f(Y_i), \quad i = 1, \ldots, m$$

and $Z_{(i)}$ stands for the *i*th order statistics of the sample Z_1, \ldots, Z_m It is well known that

$$\sqrt{m}ig(q_{lpha,m}(f)-q_{lpha}(f)ig)
ightarrow_m\mathcal{N}ig(0,\sigma^2ig)$$

with $\sigma^2 = \frac{\alpha(1-\alpha)}{p_Z(q_\alpha(f))^2}$, where p_Z is the pdf of Z = f(X), $X \sim P_X$ (see, e.g., Wasserman. 2006. All of Nonparametric Statistics. Springer.)

a high value of m must be used in order to obtain a good estimator of q_{lpha}

E. Vazquez

SUR strategy to estimate a quantile Problem statement			
If the evolution of fice	when a she hudget of a	valuations can be very limited	
If the evaluation of T is e	xpensive, the budget of ev	valuations can be very limited	
🗯 we need to find small variance estimators			
Classical approaches : importance sampling, control variate sampling			
(see e.g. Glynn 96 Hest	erberg and Nelson 08 Ca	nnamela et al 08	
(300, 0.g., diyini 90, 11030	crucing and recision 50, ca		
Here: we want to use a SUR approach			
· There. We want to use a Soft approach			
		 < □ > < □ > 	996
E. Vazquez	Extreme events modeling IV	Summer School CEA-EDF-INRIA, 2011 13	3 / 141

- As in the case of the estimation of a probability of failure, assume a fixed *m*-sample:
 Y_i ^{i.i.d} ∼ P_X, i = 1,..., m
- ... we want to approximate the empirical estimator

$$q_{lpha,m}(f) = \min\left\{y; rac{1}{m}\sum_{i=1}^m \mathbbm{1}_{Y_i \leq y} \geq lpha
ight\} = Y_{\left(\lceil lpha m
ight
ceil}$$

(meta-estimation)

• Approach: choose sequentially evaluation points of f

$$X_1(f),\ldots,X_n(f)\in\{Y_1,\ldots,Y_m\}$$

to construct a meta-estimator $\widehat{q}_{\alpha,n}$ of $q_{\alpha,m}(f)$ such that

 $\widehat{q}_{lpha,n}$ is close to $q_{lpha,m}(f)$ with $n \ll m$

SUR strategy to estimate a quantile Stepwise uncertainty reduction

Extreme events modeling IV

Stepwise uncertainty reduction for the problem of quantile estimation

- Choose of a prior about f under the form of Gaussian random process ξ
- Restricting ξ to be a Gaussian process makes it possible to derive the posterior distribution of ξ after n evaluations
- Consider the estimator

$$\widehat{q}_{\alpha,n} = \mathsf{E}_n(q_{\alpha,m}(\xi))$$

- How to compute $\widehat{q}_{\alpha,n}$?
- Contrarily to the case of the probability of failure, $\hat{q}_{\alpha,n}$ does not have a simple expression as a function of the kriging predictor and kriging variance.
- In practice, $\hat{q}_{\alpha,n}$ can be approximated by simulation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summer School CEA-EDF-INRIA, 2011 135 / 141

Computation of the sampling criterion J_{n+1}

In practice, the sampling criterion J_n can be computed at x using the fact that

$$J_{n}(x) = \mathsf{E}_{n} \Big\{ (q_{\alpha,m}(\xi) - \widehat{q}_{\alpha,n+1})^{2} \mid X_{n+1} = x \Big\} \\ = \mathsf{E}_{n} \Big\{ \mathsf{E}_{n} \Big\{ (q_{\alpha,m}(\xi) - \widehat{q}_{\alpha,n+1})^{2} \Big\} \mid X_{n+1} = x \Big\}$$

→ the numerical approximation of the inner expectation can be carried out as follows:

1- Compute quantiles $q_{\alpha}^{(n+1,i)}$ (by simulation, as above), conditioning the sample paths by $\xi(X_1), \ldots, \xi(X_{n-1})$ and $\xi(x) = z$

2- Define
$$\hat{q}'_{\alpha,n+1}(x,z) = \frac{1}{M} \sum_{i=1}^{M} q^{(n+1,i)}_{\alpha}$$
 and $\gamma_{n+1}(x,z) = \frac{1}{M-1} \sum_{i=1}^{M} (q^{(n+1,i)}_{\alpha} - \hat{q}'_{\alpha,n+1}(x,))^2$.

- The numerical approximation of the outer expectation consists in approximating the integral

$$\int_{\mathbb{R}} \gamma_{n+1}(x,z) \, \mathrm{d} \mathsf{Q}_{n,x}(z)$$

Extreme events modeling IV

which can be carried out as in the case of the estimation of a probability of failure.

E. Vazquez

SUR strategy to estimate a quantile Example

5.3 Example

æ

500

(日)

▲□▶▲□▶▲□▶▲□▶ ■ めんら

Summer School CEA-EDF-INRIA, 2011 139 / 141
