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Global sensitivity analysis for stochastic models
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A first step to GSA for stochastic models

We assume that for any x = (x1, . . . , xd) ∈ X = X1 × . . .Xd ,
M (x) is random with values in Y.

The stochastic model is fully described by the stochastic process

{M (x) , x ∈ X}.

Typical stochastic models are agent-based models or models driven
by stochastic differential equations.

A first way to perform global sensitivity analysis for stochastic
models is to focus on deterministic quantities of interest (QoI)
obtained by integrating the model output w.r.t. the intrisic noise,
then to perform standard GSA (see, e.g., Etoré et al., 2020 and
references therein).
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Let us rewrite the stochastic model in the form M(X,D) with X

the vector of uncertain inputs and D an extra unobserved random
input (corresponding to the intrinsic noise).

Such a decomposition is exploited in Janon et al. (2014), to
quantify the metamodeling error in the estimation of Sobol’ indices.

Mazo (2021) studies two different variance-based indices.

1. The first approach consists in substituting M(X,D) for
M(X) in the definition of first order Sobol’ indices, leading to

Si =
Var[E(M(X,D)|Xi)]

Var(M(X,D))
·

In this case, D is considered as an additional input, even
though it is not observable.
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2. The second approach consists in substituting E(M(X,D)|X)
for M(X) in the definition of first-order Sobol’ indices. The
model output is thus averaged w.r.t. the intrinsic noise.

In Hart et al. (2017), the authors consider random first-order
Sobol’ indices: Si(D), i = 1, . . . , d . From a set of n realizations
Si(D

(j)), j = 1, . . . , n, they compute r th order empirical moments:

µ̂i ,r =
1

n

n∑

j=1

(
Si(D

(j))
)r

.

Note that

ED[µ̂i ,r ] = ED[(Si)
r ] and VarD(µ̂i ,r ) =

1

n
VarD((Si)

r ).

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Correlated Inputs



Let us now assume that Y = R. In Fort et al.(2021), the authors
note that to any stochastic model corresponds two deterministic
applications:

1. (x, d) 7→ M(x, d) which takes values in R,

2. x 7→ M2(x) = µx, with µx the probability distribution of
M(x,D). This second application takes values in the set of
probability distributions on R.

On the set of probability measures on R, one defines the
2-Wasserstein distance W2 as:

∀ µ, ν probability measures on R with c.d.f. Fµ and Fν resp.,

W 2
2 (µ, ν) =

∫ 1
0 (F

−1
µ (t)− F−1

ν (t))2dt = E[
(
F−1
µ (U)− F−1

ν (U)
)2
]

with F−1
µ (resp. F−1

ν ) the generalized inverse of Fµ (resp. Fν) and
U ∼ U([0, 1]).
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Let’s assume that for any x, the probability measure µx belongs to
Y = W2 (R) the space of all probability distributions on R with
finite second-order moment w.r.t. the 2-Wasserstein distance W2.
We consider the r.v. µX with values in Y. We denote by P its
probability distribution.

Let µ̃ and ˜̃µ be two elements in W2(R). The general metric space
indices in this framework Su

2,W2
can be defined as in (Fort et al.,

2021):

∫
W2(R)×W2(R)

Var

[
E

(
1W2(µ̃,µX)≤W2(µ̃, ˜̃µ)

|Xu

)]
dP

⊗2(µ̃, ˜̃µ)
∫
W2(R)×W2(R)

Var(1W2(µ̃,µX)≤W2(µ̃, ˜̃µ)
)dP⊗2(µ̃, ˜̃µ)

·
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In practice one can only obtain an empirical approximation of the
measure µx computed from n evaluations M(x, d (j)), j = 1, . . . , n.
Note that in general, the d (j) are not observed.

Finally, the general design of experiments is the following:

x
(1), d(1,1), . . . , d(1,n) −→ M(x(1), d(1,1)), . . . ,M(x(1), d(1,n))

. . .

x
(N), d(N,1), . . . , d(N,n) −→ M(x(N), d(N,1)), . . . ,M(x(N), d(N,n))

For any k = 1, . . . ,N, we define the approximations of µ
x(j)

as:

µ̂
x(k)

=
1

n

n∑

j=1

δM(x(k),d(k,j)) .

Then the indices Su

2,W2
can be estimated either with a pick-freeze

scheme, either with U-statistics or with a rank-based approach (for
u a singleton and for scalar inputs).

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Correlated Inputs



Pick-freeze estimation procedure

1. Generate two samples x
(k), d (k,j) and x

′(k), d ′(k,j),
k = 1, . . . ,N, j = 1, . . . , n.

2. Generate a pick-freeze sample of size N:(
x
(k), xu,(k)

)
=

(
x
(k), x

(k)
u : x

′(k)
−u

)
, k = 1, . . . ,N.

3. For each input, compute the corresponding output n times:
M(x(k), d (k,j)) , M(xu,(k), d ′(k,j)) , k = 1, . . . ,N , j =
1, . . . , n .

4. Approximate the measures by empirical measures:

µ(k) ≈ µ̂ (k) = 1
n

∑n
j=1 δM(x(k),d (k,j)),

µu,(k) ≈ µ̂ u,(k) = 1
n

∑n
j=1 δM(xu,(k)

,d′(k,j)).

5. We also need two additional samples of the output, indendent
from the pick-freeze scheme:

M(x̃(k), d̃ (k,j)) , M(˜̃x
(k)

, ˜̃d
(k,j)

) , k = 1, . . . ,N , j = 1, . . . , n

leading to ̂̃µ (k)
, ̂̃̃µ (k), k = 1, . . . ,N.

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Correlated Inputs



Pick-freeze estimation procedure
The cost in terms of number of evaluations of M is 4Nn.
In order to compute explicitly our estimator, it remains to compute
terms of the form:

W2(µ̂
(ℓ), µ̂(k)).

The quantity W2(ν1, ν2) is easy to compute if ν1 and ν2 are two
discrete measures on R supported on a same number of points.
Namely, for

ν1 =
1

n

n∑

k=1

δak
, ν2 =

1

n

n∑

k=1

δbk
,

the Wasserstein distance between ν1 and ν2 simply writes

W 2
2 (ν1, ν2) =

1

n

n∑

k=1

(a(k) − b(k))
2,

where z(k) is the k-th order statistics of z .
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Illustration on a toy model
Let us define the stochastic simulator (see Da Veiga, 2021;
Moutoussamy et al., 2015) as

Y = (X1 + 2X2 + U1) sin (3X3 − 4X4 + G) + U2 + 5X5 B +
∑5

i=1 i Xi

where the intrisic noise is modeled by U1 ∼ U([0, 1]),
U2 ∼ U([1, 2]), G ∼ N (0, 1) and B ∼ Bernoulli(1/2), and the
uncertain parameters Xi are uniformly distributed on [0, 1].

With Sébastien’s code we compute, for each input Xi , 50
independent realizations of the pick-freeze estimator of S i

2,W2
with

N = 200 and n = 100.
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Variance-based sensitivity analysis with dependent inputs
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Introduction

Introduction

In this talk, we consider

M :

{
X = X1 × . . .Xd → Y
x = (x1, . . . , xd) 7→ y = M(x)

with

• M : mathematical or numerical model,
• x : uncertain input parameters,
• y : output.

We model the uncertain input parameters by a probability
distribution P on X and get

Y = M(X1, . . . ,Xd)

with the vector X = (X1, . . . ,Xd) distributed as P.
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Introduction

Introduction

Independent framework: P(dx) = P1(dx1) . . .Pd(dxd)

Why is the independent framework not always the right one?

In the following, we consider an application to long-term avalanche
hazard assessment. The model under consideration is:

◮ a snow avalanche model, joint work with INRAE (Grenoble,
FRANCE).
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Limits of variance based SA in the general framework

Variance based SA in the general framework

We still consider M :

{
R

d → R

x = (x1, . . . , xd) 7→ y = M(x)

Uncertain parameters are no longer assumed independent, thus
P(dx) is not necessarily equal to P1(dx1) . . .Pd(dxd). We have
FX(x) = C (FX1(x1), . . . ,FXd

(xd)) (Sklar’s Theorem) with FXi (·)
and FX(·) the cdf of Xi , X . If the FXi are continuous, then the
copula C is unique.

We still define, for any i ∈ {1, . . . , d}: Si =
V [E [Y |Xi ]]

V [Y ]
and

Stot
i =

E [V [Y |X−i ]]

V [Y ]
·

However, nice properties due to orthogonality are lost.

Clémentine PRIEUR Shapley Effects for Sensitivity Analysis with Correlated Inputs



An alternative, the Shapley effects Definition

An alternative, the Shapley effects

Let D = {1, . . . , d}. Let team u ⊆ D create value val(u). Total
value is val(D). We attribute φi of this to i ∈ D.

Shapley axioms [Shapley, 1953]

◮ Efficiency
∑d

i=1 φi = val(D)

◮ Dummy If val(u ∪ {i}) = val(u) for all u ⊆ D, then φi = 0

◮ Symmetry If val(u ∪ {i}) = val(u ∪ {j}) for all u ∩ {i , j} = ∅,
then φi = φj

◮ Additivity If games val, val’ have values φ, φ′, then val + val’

has value φ+ φ′

Unique solution

φi =
1

d

∑

u⊆−{i}

(
d − 1

|u|

)−1(
val(u + i)− val(u)

)
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An alternative, the Shapley effects Definition

Let X1, . . . ,Xd be the team members trying to explain the
variability of M. The value of any u ∈ D is how much can be
explained by Xu.

We choose val(u) =
V [E [Y |Xu]]

V [Y ]
which leads to the definition of

Shapley effects [Owen, 2014]:

φi =
1

d

∑

u⊆−{i}

(
d − 1

|u|

)−1 (
V [E [Y |Xu,Xi ]]

V [Y ]
−

V [E [Y |Xu]]

V [Y ]

)

It is equivalent to consider to choose ṽal(u) =
E [V [Y |X−u]]

V [Y ]
[Song et al., 2016].
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An alternative, the Shapley effects Main properties

Main properties

Independent framework: ∀ i = 1, . . . , d , φi =
∑

u:i∈u

1

|u|
Su

We also have: ∀ i = 1, . . . , d , 0 ≤ Si ≤ φi ≤ Stot
i ≤ 1 and∑d

i=1 φi = 1.
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An alternative, the Shapley effects Main properties

Main properties

Independent framework: ∀ i = 1, . . . , d , φi =
∑

u:i∈u

1

|u|
Su

We also have: ∀ i = 1, . . . , d , 0 ≤ Si ≤ φi ≤ Stot
i ≤ 1 and∑d

i=1 φi = 1.

Dependent framework:

In this framework, we still have 0 ≤ φi ≤ 1 and
∑d

i=1 φi = 1

We do not necessarily have Si ≤ φi ≤ Stot
i

The Shapley allocation rule is based on an equitable principle,
which ensures that φi ≈ 0 ⇒ Xi has no significant contribution to
Var[Y ], neither by its interactions nor by its dependencies with
other inputs.
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An alternative, the Shapley effects Aggregated Shapley effects

If output is multivariate or the discretization of a functional output
Y = (Y1, . . . ,Yp), we define aggregated Shapley effects as:

∀ 1 ≤ j ≤ p , ∀ 1 ≤ i ≤ d , φagg
i =

∑p
j=1 V [Yj ]φ

j
i∑p

j=1 V [Yj ]

with φj
i defined as the Shapley effect of Yj associated to input Xi

[Heredia et al., 2020] (see also [Lamboni et al., 2011]).

Proposition [Heredia et al., 2020, Prop. 2.1]

The set of aggregated Shapley effects
(
φagg

i , i ∈ {1, . . . , d}
)

correspond to the set of Shapley values with characteristic function:

u ⊆ {1, . . . , d} 7→ val(u) =

∑p
j=1 V [Yj ]valj(u)∑p

j=1 V [Yj ]

with valj(u) =
V [E [Yj |Xu]]

V [Yj ]
or valj(u) =

E [V [Yj |X−u]]

V [Yj ]
.
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Algorithms

What about algorithms?

Algorithms to compute Shapley effects [Castro et al., 2009] are

based on the value function u 7→
E[V [Y |X−u]]

V [Y ]
· Note that

φi =
1

d !

∑

π∈Π({1,...,d})

(
ṽal(Pi(π) ∪ {i}))− ṽal(Pi(π))

)

with Π({1, . . . , d}) the set of all possible permutations of the
inputs and for a permutation π ∈ Π({1, . . . , d}), the set Pi(π) is
defined as the inputs that precede input i in π.

Exact permutation algo. (moderate d) all possible permutations
are covered.

Random permutation algo. (d >> 1) it randomly sample
permutations of the inputs.
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Algorithms

In [Song et al., 2016], ṽal(u) →
̂̃
val(u).

For each iteration of the loop on the inputs’ permutations, the
expectation of a conditional variance must be computed.

The cost C of these algorithms is the following:

C = Nv + m(d − 1)N0Ni

with Nv the sample size for the variance computation, N0 the
outer loop size for the expectation, Ni the inner loop size for the
conditional variance and m the number of permutations according
to the selected method.

Bootstrap confidence intervals can be computed. A costly model
can be replaced by a metamodel. [Iooss and Prieur, 2019,
Benoumechiara and Elie-Dit-Cosaque, 2019]
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Algorithms

Those algorithms require the ability to sample from the
distribution of Xu |X−u, ∀u ( {1, . . . , d}. In [Broto et al., 2020],
a given data procedure based on nearest neighbors is introduced.

It is possible to plug algorithms presented in
[Castro et al., 2009, Song et al., 2016, Broto et al., 2020] in the
estimation of aggregated Shapley effects [Heredia et al., 2020].
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Application: snow avalanche modeling
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c)

Aggregated Shapley effects of velocity and flow depth curves calculated over space

intervals [x , 2412m] where x ∈ {1600m, 1700m, . . . , 2412m}
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b)

We have n = 6152, Ntot = 2002, B = 500. Effects are estimated using the first (2,

resp. 4) fPCs [Yao et al., 2005, Ramsay and Silverman, 2005] explaining more than

95% of the variance. Local slope is drawn with a gray line. A gray dotted rectangle is

drawn at [2017m, 2412m] where avalanche return periods vary from 10 to 10 000 years.
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Application: snow avalanche modeling

In summary,

◮ it is fundamental to have a good approximation of the
released volume and abscissa for velocity forecasting, while for
flow depth forecasting, a good approximation of released
volume is desirable;

◮ nevertheless, none of the other inputs are negligible.

To outperform the estimation accuracy at the end of the path
generating a larger initial sample of avalanches is possible, but the
computational burden is prohibitive.
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