P. Pernot⁽¹⁾, S. Plessis⁽¹⁾,
 N. Carrasco⁽²⁾, E. Hébrard⁽³⁾,
 M. Dobrijevic⁽³⁾ & V. Wakelam⁽³⁾

⁽¹⁾Labo. de Chimie Physique, CNRS/UPS 11, Orsay
 ⁽²⁾Service d'Aéronomie du CNRS, Verrières
 ⁽³⁾Labo. d'Astrophysique de Bordeaux, CNRS/UB1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Plan

Uncertainty in low-T kinetic modeling

- Low-temperature chemistry?
- Why do we care about uncertainty?
- Example

2 Management of uncertainties for branching ratios

Luncertainty in low-T kinetic modeling

Low-temperature chemistry?

Extra-terrestrial and early-earth chemistry

▲日▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Tholin formation in Titan's upper atmosphere

Luncertainty in low-T kinetic modeling

Low-temperature chemistry?

Extra-terrestrial and early-earth chemistry

Chimie des hydrocarbures

$CH + H \rightarrow C + H_{1}$	1.4×10
$CH_{2} + H \rightarrow CH + H_{2}$	3.55×10 ⁻¹³ T ^{0.12}
CH-+H+M -+ CH-+M	3.5×10 ⁻²⁴ , 3×10 ¹⁸
2CH+ C.H. + 2H	2×10 ⁻¹⁰ e ^{-400/2}
$CH_+H+M \rightarrow CH_+M$	10-29 c 25 MT 4=1013
CH.+CH. (CH.+H	7 - 10 11
$2CH_{+} + M_{-} + C_{+}H_{+} + M_{-}$	0.0028 T-425
$CH_{+} + CH_{-+} C_{-}H_{+} + H_{-}$	3×10 ⁻¹ /T.e ⁻³⁸⁷
$C \rightarrow C \Pi \rightarrow C \Pi \rightarrow \Pi$	10-00 T 8.00 -15T
C + C H + C H + H	1.0.10 7 1 18 107
C + C H - C H + H	5-10 # T-50 -SVT
$C_1 = C_1 U_1 = C_1 U_2 = U_1$	DOUTOT THE OUT
$C_2 + C_2 H_1 \rightarrow C_2 H_2 + C_2 H_1$	3 9×10 7 T 1.1 × 947
$C_{2} + C_{11} + C_{312} + C_{213}$	1.2.10.10 - 1997
$C H + C H \rightarrow C H + C H$	1.2010 0
Carrena - Cange Chi	5 5 10-30 -10a7 1 c 101
$C_2H_2 + H + M \rightarrow C_2H_1 + M$	3.3×10 C ,1.0×10
$C_2H_2 + CH \rightarrow C_3H_2 + H$	1.6×10 1 C
$C_2 n_2 = C_2 n \rightarrow C_4 n_2 + n$	8.0×10 1 C
$C_2H_2 + C_3H \rightarrow C_4H_2 + H$	7.6×10 1 e
$C_2H_3 + H \rightarrow C_2H_2 + H_3$	0.0010022.0.1010
$C_2H_1 + H + M \rightarrow C_2H_2 + M$	8×10 1 , 3×10
$C_2H_3 + CH_2 \rightarrow C_2H_2 + CH_3$	3×10
$C_2\Pi_1 + C\Pi_5 \rightarrow C_3\Pi_2 + C\Pi_6$	3,3×10
$C_2H_3 + CH_3 + M \rightarrow C_3H_8 + M$	5×10 1, 10
$C_2H_1 + C_2H_2 \rightarrow C_4H_4 + H$	3.3×10 e
$C_2H_1 + C_2H_1 + M \rightarrow C_4H_5 + M$	1.5×10 ⁻¹² T * e -540°, 10
$2C_2H_3 \rightarrow C_2H_4 + C_2H_2$	3.5×10 ⁻¹¹
$2C_2H_5 + M \rightarrow C_4H_6 + M$	R118
$C_2H_4 + H + M \rightarrow C_2H_4 + M$	8×10 ⁻¹⁰ e ⁻¹⁰²⁵ , 1.3×10 ¹³
$C_2H_1 + C \rightarrow C_2H + CH_3$	4.6×10 ⁻¹⁰ T -cor

Uncertainty in low-T kinetic modeling

Low-temperature chemistry?

Extra-terrestrial and early-earth chemistry

The big picture

- Origins
 - complexification of molecules in cold environments
 - formation of biomolecules or their bricks in the interstellar medium

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- atmosphere of the early earth (Titan as a model)
- apparition of life...

At our modest level

predictivity of low-T chemistry models?

Low-temperature chemistry : modelling with very large uncertainties
Uncertainty in low-T kinetic modeling
Why do we care about uncertainty?

Uncertainty in low-T kinetic modeling

- photochemical models of interstellar or planetary atmospheres are complex (1[-3]D reaction-transport codes with 100s to 1000s of stiff coupled nonlinear equations)
- the chemical equations are based on **empirical parameters** $A + B \longrightarrow C + D$; $k_{AB}(T, P)$;

 $\frac{da(t)}{dt} = -k_{AB}(T, P) a(t) b(t)$

- empirical parameters are obtained from experiments and/or extrapolations
 - \longrightarrow they are always evaluated with [[very] large] uncertainty
 - → in some models, estimated parameters are numerous
 - → in Titan atmospheric model, less than 10% of reaction rates are measured at relevant temperatures

Low-temperature chemistry : modelling with very large uncertainties
Uncertainty in low-T kinetic modeling
Why do we care about uncertainty?

Uncertainty in low-T kinetic modeling

- photochemical models of interstellar or planetary atmospheres are complex (1[-3]D reaction-transport codes with 100s to 1000s of stiff coupled nonlinear equations)
- the chemical equations are based on **empirical parameters** $A + B \longrightarrow C + D$; $k_{AB}(T, P)$;

 $\frac{da(t)}{dt} = -k_{AB}(T, P) a(t) b(t)$

- empirical parameters are obtained from experiments and/or extrapolations
 - \longrightarrow they are always evaluated with [[very] large] uncertainty
 - → in some models, *estimated* parameters are numerous
 - → in Titan atmospheric model, less than 10% of reaction rates are measured at relevant temperatures

Low-temperature chemistry : modelling with very large uncertainties
Uncertainty in low-T kinetic modeling
Why do we care about uncertainty?

Uncertainty in low-T kinetic modeling

- photochemical models of interstellar or planetary atmospheres are complex (1[-3]D reaction-transport codes with 100s to 1000s of stiff coupled nonlinear equations)
- the chemical equations are based on **empirical parameters** $A + B \longrightarrow C + D$; $k_{AB}(T, P)$;

 $\frac{da(t)}{dt} = -k_{AB}(T, P) a(t) b(t)$

• empirical parameters are obtained from experiments and/or extrapolations

- \longrightarrow they are always evaluated with [[very] large] uncertainty
- \longrightarrow in some models, <code>estimated</code> parameters are numerous
- \longrightarrow in Titan atmospheric model, less than 10% of reaction rates are measured at relevant temperatures

Luncertainty in low-T kinetic modeling

Why do we care about uncertainty?

Uncertainty due to extrapolation Arrhenius law for $N(^{2}D) + C_{2}H_{4}$

Luncertainty in low-T kinetic modeling

Why do we care about uncertainty?

Uncertainty due to extrapolation Arrhenius law for $N(^{2}D) + C_{2}H_{4}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Uncertainty in low-T kinetic modeling

- What is the impact of empirical parameters uncertainty on the outputs of photochemical models?
- Which are the prioritary lab. experiments to perform in order to reduce prediction uncertainty?
 - Iow-T, Iow-P kinetics experiments are very heavy (time, money)
 - Goal : experimental design alternating simulations and experiments, based on maximization of information gain for target species

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Luncertainty in low-T kinetic modeling

Why do we care about uncertainty?

The Framework

Sussesses e SQC

UP on 1D photochemical model

Nominal run

UP on 1D photochemical model

Uncertainty propagation with "Hébrard et al. (JPPC 2006)" database

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 ● の久で

Sensitivity Analysis

Which input parameters are most affected by the filtering of low $\mathsf{C}_2\mathsf{H}_4$ densities ?

Cross-entropy analysis : only 2 reactions involved !

- $CH + CH_4 \longrightarrow C_2H_4 + H$; $F_a = 12.7$
- $CH + H \longrightarrow C + H_2$; $F_b = 6.8$

Sensitivity Analysis

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Alternative filtering methods

- "Chemical Filtering": $k_a[CH_4] > k_b[H]$
- Uncertainty reduction : $F_a = F_b = 2$

Checking the identified reactions

Uncertainty propagation with "Hébrard *et al.*" database (M. Dobrijevic *et. al.*, 2008)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q @

Checking the identified reactions

Uncertainty propagation with filtering

(M. Dobrijevic et. al., 2008)

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Update of database in favor of low-T experiments

Reduction of uncertainty on all reaction rates measured at low temperature

Update of database in favor of low-T experiments

Reduction of uncertainty on all reaction rates measured at low temperature

Effect of the database update

Uncertainty propagation with "Hébrard *et al.*" database (E. Hébrard *et. al.*, in prep)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q @

Effect of the database update

Uncertainty propagation updated database

(E. Hébrard et. al., in prep)

Sensitivity Analysis

Which reaction(s) responsible for residual bimodality at high altitude?

- Cross-entropy analysis : only 1 reactions involved
 - $\bullet \ \mathsf{C}\mathsf{H} + \mathsf{H} \quad \longrightarrow \mathsf{C} + \mathsf{H}_2$
- This is clearly a key reaction to be better studied...

Parametric uncertainties of branching ratios

$A + B \longrightarrow P_1; k$

▲日▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Partial rate constants k_i = k ∗ b_i; ∑_i b_i = 1
Usual representation in databases ("1 line, 1 reaction")

Parametric uncertainties of branching ratios

$$\begin{array}{rcl} A+B \longrightarrow P_1 \; ; \; k, \; b_1 \\ \longrightarrow P_2 \; ; \; k, \; b_2 \end{array}$$

▲日▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Partial rate constants k_i = k ∗ b_i; ∑_i b_i = 1
Usual representation in databases ("1 line, 1 reaction")

Parametric uncertainties of branching ratios

$$\begin{array}{rcl} A+B \longrightarrow P_1; & k, & b_1 \\ & \longrightarrow P_2; & k, & b_2 \end{array}$$

▲日▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

- Partial rate constants $k_i = k * b_i; \sum_i b_{,i} = 1$
- Usual representation in databases ("1 line, 1 reaction")

Parametric uncertainties of branching ratios

 $\begin{array}{ccc} A+B \longrightarrow P_1 \, ; \ k, \ b_1 \\ \longrightarrow P_2 \, ; \ k, \ b_2 \end{array}$

- Reaction rates and branching ratios are mostly measured by different experiments/techniques
 - larger uncertainties for branching ratios (more difficult to measure than rates);
- Keep an explicit separation of uncertainty sources
 - T-dependence of k different from b_i ;
 - more pertinent sensitivity analysis (key parameters);
 - easier to manage the sum rule wrt. uncertainties.

Parametric uncertainties of branching ratios

 $\begin{array}{ccc} A+B \longrightarrow P_1 \, ; \ k, \ b_1 \\ \longrightarrow P_2 \, ; \ k, \ b_2 \end{array}$

- Reaction rates and branching ratios are mostly measured by different experiments/techniques
 - larger uncertainties for branching ratios (more difficult to measure than rates);
- Keep an explicit separation of uncertainty sources
 - T-dependence of k different from b_i;
 - more pertinent sensitivity analysis (key parameters);
 - easier to manage the sum rule wrt. uncertainties.

Branching ratios and the sum rule

$$\begin{split} I_1 + M_1 &\longrightarrow P_1; \ k_1, \ b_{11} \\ I_1 + M_1 &\longrightarrow P_2; \ k_1, \ b_{12} \\ I_1 + M_2 &\longrightarrow P_3; \ k_2 \end{split}$$

 $[M_i] \gg [I_i]$ $F_k \ll F_b$

Low-temperature chemistry : modelling with very large uncertainties Management of uncertainties for branching ratios

Branching ratios and the sum rule

Uncorrelated partial rates : $b_{11} = 0.33 \pm 0.12$, $b_{12} = 0.67 \pm 0.12$

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆□ >

Low-temperature chemistry : modelling with very large uncertainties Management of uncertainties for branching ratios

Branching ratios and the sum rule

Correlated partial rates : $\{b_{11}, b_{12}\} \sim \text{Diri}(45 \times \{0.33, 0.67\})$

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 ● の久で

Effect of sum constraint on UP for a complex system

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Effect of sum constraint on UP for a complex system

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Low-temperature chemistry : modelling with very large uncertainties Management of uncertainties for branching ratios

PDFs for branching ratios

Implementing the sum constraint

Preferred values and precision

$$\{b_i\} \sim \mathsf{Diri}\left(\{lpha_i\}
ight) \quad \propto \prod_i b_i^{lpha_i-1}$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � @ @

PDFs for branching ratios

Implementing the sum constraint

No preference : total uncertainty

 $\{b_i\} \sim \mathsf{Diri}(1, 1, ..., 1)$

_ ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q @

Low-temperature chemistry : modelling with very large uncertainties Management of uncertainties for branching ratios

PDFs for branching ratios

Implementing the sum constraint

Preferred intervals

 $\{b_i\} \sim \text{Diut}\left(\{b_i^{min}, b_i^{max}\}\right)$

PDFs for branching ratios

Implementing the sum constraint

Partial "total uncertainty"

 $\{b_1, b_2, b_3\} \sim \mathsf{Diri}(\alpha_1, \alpha_2 * \mathsf{Diri}(1, 1))$

_ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → のへの

Elicitation of Dirichlet pdf (1)

From data $\{\overline{b}_i\}$ and global relative uncertainty x

$$\{b_i\} \sim \text{Dirichlet}\left(\gamma \times \left\{\overline{b}_i\right\}\right)$$

• γ is obtained by least squares

$$\gamma = \frac{1}{x^2} \left(\frac{\sum_i \overline{b}_i (1 - \overline{b}_i)}{\sum_i \overline{b}_i \sqrt{\overline{b}_i (1 - \overline{b}_i)}} \right)^2 - 1$$

with additional constraint for unimodality

$$\gamma \geq \left\{ \min\left(\max\left(\overline{b}_{1}, 1 - \overline{b}_{1}\right), \dots, \max\left(\overline{b}_{n}, 1 - \overline{b}_{n}\right)\right) \right\}^{-1}$$

• **sampling** by direct algorithm : draw *n* independent variates $B_i \sim \text{Gamma}(\hat{\gamma}\bar{b}_i, 1)$, and normalize $b_i = B_i / \sum_i B_i$.

Carrasco et Pernot, JPCA 2007

Elicitation of Generalized Dirichlet pdf (2)

From data $\{\overline{b}_i\}$ and standard uncertainties $\{u_i\}$ $\{b_i\} \sim \text{DirG}(\{\nu_i, \mu_i\})$

• with parameters

$$u_i = rac{\overline{b}_i}{u_i^2} ext{ and } \mu_i = rac{\overline{b}_i^2}{u_i^2}$$

- **sampling** by direct algorithm : draw *n* independent variates $B_i \sim \text{Gamma}(\nu_i, \mu_i)$, and normalize $b_i = B_i / \sum_i B_i$.
 - much more efficient than rejection algorithm to sample over prescribed intervals;

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

• but no strict boundaries...

Partial determination of dissociative recombination products

Products	Branching Ratio
 $C_3N + D$	0.44 ± 0.04
 $DCC + CN$, $D + C_2 + CN$, $DCN + C_2$	0.48 ± 0.05
 $C_2N + DC, N + C_3D$	0.02 ± 0.01
 $D + C + C_2 N$	0.04 ± 0.02
 $DC_2N + C$	0.02 ± 0.01
 $ND + C_3$	0.00 ± 0.01

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

BRANCHING RATIOS OF THE DR OF DCCCN⁺

W. D. Geppert at al., Astroph. J. (2004)

Partial determination of dissociative recombination products

Hierarchical Dirichlet modeling (Carrasco et Pernot, JPCA 2007)

 $\{b_{i,j}\} \sim \mathsf{Diri}(99 * \{0.48, 0.52 * \mathsf{Diri}(1, 1, 1)\})$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Low-temperature chemistry : modelling with very large uncertainties
Management of uncertainties for branching ratios

Hierarchical vs. all-at-once

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ● ●

Low-temperature chemistry : modelling with very large uncertainties
Management of uncertainties for branching ratios

Hierarchical vs. all-at-once

Conclusions

Uncertainty and photochemical modeling @ low-T

- we have to handle very large uncertainties
 - due to the necessity to extrapolate from room-T measurements
 - due to unspecified products distributions
- explicit enforcement of conservation equations is a necessity for reliable Uncertainty Propagation and Sensitivity Analysis
- we are exploring various elicitation techniques of chemical information through Dirichlet distributions and variants
 - all advices wrt. elicitation, sampling, optimization... are welcomed !

Conclusions

Uncertainty and photochemical modeling @ low-T

- we have to handle very large uncertainties
 - due to the necessity to extrapolate from room-T measurements
 - due to unspecified products distributions
- explicit enforcement of conservation equations is a necessity for reliable Uncertainty Propagation and Sensitivity Analysis
- we are exploring various elicitation techniques of chemical information through Dirichlet distributions and variants
 - all advices wrt. elicitation, sampling, optimization... are welcomed !

Conclusions

Uncertainty and photochemical modeling @ low-T

- we have to handle very large uncertainties
 - due to the necessity to extrapolate from room-T measurements
 - due to unspecified products distributions
- explicit enforcement of conservation equations is a necessity for reliable Uncertainty Propagation and Sensitivity Analysis
- we are exploring various elicitation techniques of chemical information through Dirichlet distributions and variants
 - all advices wrt. elicitation, sampling, optimization... are welcomed !

Beloved collaborators and funding agencies

- N. Carrasco, E Hébrard (SA, Verrières-le-Buisson)
- S. Plessis thesis (LCP, Orsay)
- M. Dobrijevic, V. Wakelam (LAB, Bordeaux)

- CNRS
- CNES
- EuroPlaNet
- Programme National de Planétologie

▲日▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ