Low-temperature chemistry : modelling with very large uncertainties

P. Pernot ${ }^{(1)}$, S. Plessis ${ }^{(1)}$,
N. Carrasco ${ }^{(2)}$, E. Hébrard ${ }^{(3)}$, M. Dobrijevic ${ }^{(3)}$ \& V. Wakelam ${ }^{(3)}$

${ }^{(1)}$ Labo. de Chimie Physique, CNRS/UPS 11, Orsay
${ }^{(2)}$ Service d'Aéronomie du CNRS, Verrières
${ }^{(3)}$ Labo. d'Astrophysique de Bordeaux, CNRS/UB1

Plan

(1) Uncertainty in low-T kinetic modeling

- Low-temperature chemistry?
- Why do we care about uncertainty?
- Example
(2) Management of uncertainties for branching ratios
(3) Conclusions

Extra-terrestrial and early-earth chemistry

Tholin formation in Titan's upper atmosphere

Extra-terrestrial and early-earth chemistry

Chimie des hydrocarbures

$1.4-10^{11}$
$3.55 \times 10^{-12} \mathrm{~T}^{011}$
$3.5 \times 10^{70}, 3 \times 10^{11}$
$2 \cdot 10^{-36} e^{-3072}$
$10^{-3} c^{\sin \pi}, 4 \times 10^{13}$
$10^{-10} c^{5 / T}, 4 \times 10^{17}$
$7=10$
$0.0028 \mathrm{~T}^{-13} \mathrm{e}^{-\operatorname{san}}, 10^{2}$
$3 \times 10^{-1} / \mathrm{Te}^{-2 \mathrm{ot}}$
$10^{-20} \mathrm{~T}^{-20} \mathrm{e}^{-3 \Delta \mathrm{~T}}$
$1.9 \times 10^{-} \mathrm{T}^{\text {t/ }} \mathrm{e}^{-\mathrm{tar}}$
$1.9 \times 10^{6} \mathrm{~T}^{-100} e^{-9 / 2} \mathrm{~T}$
$2.8 \times 10^{-2} \mathrm{~T}^{-4} \mathrm{e}^{-4 \mathrm{tar}}$
$3.9 \times 10^{-7} \mathrm{~T}^{211} e^{241}$
$1.2 \times 10^{-11} \mathrm{e}^{-1605}$
${ }_{8}^{8}{ }_{3}$
$3.3 \times 10^{-30} \mathrm{c}^{-2 \mathrm{ier}}, 1.6 \times 10^{17}$ $1.6 \times 10^{-7} T^{20} e^{-2 \pi}$ $8.6 \times 10^{-15} T^{13} e^{\text {ow }}$
$7.6 \cdot 10^{-2} \mathrm{~T}^{-106} \mathrm{e}^{\mathrm{wn}}$
7.6×10^{2}
7.5×10^{11}
$7.5 \times 10^{3 \prime}$
$8 \times 10^{-1} \mathrm{~T}^{3 ?}, 3 \times 10^{10}$
3×10^{-11}
3.3×10^{-12}
$5 \times 10^{-2 \pi}, 10^{13}$
$\$ \times 10^{-2}, 10^{18}$
3.3×10^{-12}
1.2031
$1.5 \times 10^{-18} \mathrm{~T}^{-x} \mathrm{e}^{-2007 \pi}, 10^{2}$ 3.5×10^{11}
$k_{i \alpha}=$

$4.6 \times 10^{-12} T^{-1.3}{ }^{-1.30}$

Extra-terrestrial and early-earth chemistry

The big picture

- Origins
- complexification of molecules in cold environments
- formation of biomolecules or their bricks in the interstellar medium
- atmosphere of the early earth (Titan as a model)
- apparition of life...
- At our modest level
- predictivity of low-T chemistry models?

Uncertainty in low-T kinetic modeling

- photochemical models of interstellar or planetary atmospheres are complex (1[-3]D reaction-transport codes with 100 s to 1000 s of stiff coupled nonlinear equations)
- the chemical equations are based on empirical parameters $A+B \longrightarrow C+D ; k_{A B}(T, P)$; $\frac{d a(t)}{d t}=-k_{A B}(T, P) a(t) b(t)$
- empirical parameters are obtained from experiments and/or extrapolations \longrightarrow they are always evaluated with [[very] large] uncertainty \longrightarrow in some models, estimated parameters are numerous \longrightarrow in Titan atmospheric model. less than 10% of reaction rates are measured at relevant temperatures

Uncertainty in low-T kinetic modeling

- photochemical models of interstellar or planetary atmospheres are complex (1[-3]D reaction-transport codes with 100 s to 1000 s of stiff coupled nonlinear equations)
- the chemical equations are based on empirical parameters $A+B \longrightarrow C+D ; k_{A B}(T, P)$; $\frac{d a(t)}{d t}=-k_{A B}(T, P) a(t) b(t)$
- empirical parameters are obtained from experiments and/or extrapolations
\longrightarrow they are always evaluated with [[very] large] uncertainty
\longrightarrow in some models, estimated parameters are numerous \longrightarrow in Titan atmospheric model, less than 10\% of reaction rates are measured at relevant temperatures

Uncertainty in low-T kinetic modeling

- photochemical models of interstellar or planetary atmospheres are complex (1[-3]D reaction-transport codes with 100 s to 1000 s of stiff coupled nonlinear equations)
- the chemical equations are based on empirical parameters $A+B \longrightarrow C+D ; k_{A B}(T, P)$;
$\frac{d a(t)}{d t}=-k_{A B}(T, P) a(t) b(t)$
- empirical parameters are obtained from experiments and/or extrapolations
\longrightarrow they are always evaluated with [[very] large] uncertainty
\longrightarrow in some models, estimated parameters are numerous
\longrightarrow in Titan atmospheric model, less than 10% of reaction rates are measured at relevant temperatures

Uncertainty due to extrapolation

Arrhenius law for $\mathrm{N}\left({ }^{2} \mathrm{D}\right)+\mathrm{C}_{2} \mathrm{H}_{4}$

Uncertainty due to extrapolation

Arrhenius law for $\mathrm{N}\left({ }^{2} \mathrm{D}\right)+\mathrm{C}_{2} \mathrm{H}_{4}$

Uncertainty in low-T kinetic modeling

(1) What is the impact of empirical parameters uncertainty on the outputs of photochemical models?
(2) Which are the prioritary lab. experiments to perform in order to reduce prediction uncertainty?
(1) low-T, low-P kinetics experiments are very heavy (time, money)
(2) Goal : experimental design alternating simulations and experiments, based on maximization of information gain for target species

The Framework

UP on 1D photochemical model

Nominal run

UP on 1D photochemical model

Uncertainty propagation with "Hébrard et al. (JPPC 2006)" database

Sensitivity Analysis

Which input parameters are most affected by the filtering of low $\mathrm{C}_{2} \mathrm{H}_{4}$ densities?

Cross-entropy analysis : only 2 reactions involved!

- $\mathrm{CH}+\mathrm{CH}_{4} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} ; \mathrm{F}_{\mathrm{a}}=12.7$
- $\mathrm{CH}+\mathrm{H} \longrightarrow \mathrm{C}+\mathrm{H}_{2} \quad ; F_{b}=6.8$

$\log \left(\left[\mathrm{C}_{2} \mathrm{H}_{4}\right] / \mathrm{cm}^{3}\right)$

Sensitivity Analysis

Alternative filtering methods

- "Chemical Filtering": $k_{a}\left[\mathrm{CH}_{4}\right]>k_{b}[\mathrm{H}]$
- Uncertainty reduction: $F_{a}=F_{b}=2$

Checking the identified reactions

Uncertainty propagation with "Hébrard et al." database
(M. Dobrijevic et. al., 2008)

Checking the identified reactions

Uncertainty propagation with filtering
(M. Dobrijevic et. al., 2008)

Update of database in favor of low-T experiments

 Reduction of uncertainty on all reaction rates measured at low temperature

Update of database in favor of low-T experiments

 Reduction of uncertainty on all reaction rates measured at low temperature

Effect of the database update

Uncertainty propagation with "Hébrard et al." database
(E. Hébrard et. al., in prep)

Effect of the database update

Uncertainty propagation updated database
(E. Hébrard et. al., in prep)

Sensitivity Analysis

Which reaction(s) responsible for residual bimodality at high altitude?

- Cross-entropy analysis: only 1 reactions involved
- $\mathrm{CH}+\mathrm{H} \longrightarrow \mathrm{C}+\mathrm{H}_{2}$
- This is clearly a key reaction to be better studied...

Parametric uncertainties of branching ratios

$$
A+B \longrightarrow P_{1} ; k
$$

- Partial rate constants $\quad k_{i}=k * b_{i} ; \quad \sum_{i} b_{, i}=1$
- Usual representation in databases ("1 line, 1 reaction")

Parametric uncertainties of branching ratios

$$
\begin{aligned}
A+B & \longrightarrow P_{1} ; k, b_{1} \\
& \longrightarrow P_{2} ; k, b_{2}
\end{aligned}
$$

- Partial rate constants

$$
k_{i}=k * b_{i} ; \quad \sum_{i} b_{, i}=1
$$

- Usual representation in databases ("1 line, 1 reaction")

Parametric uncertainties of branching ratios

$$
\begin{aligned}
A+B & \longrightarrow P_{1} ; k, b_{1} \\
& \longrightarrow P_{2} ; k, b_{2}
\end{aligned}
$$

- Partial rate constants $\quad k_{i}=k * b_{i} ; \sum_{i} b_{, i}=1$
- Usual representation in databases (" 1 line, 1 reaction")

Parametric uncertainties of branching ratios

$$
\begin{aligned}
A+B & \longrightarrow P_{1} ; k, b_{1} \\
& \longrightarrow P_{2} ; k, b_{2}
\end{aligned}
$$

- Reaction rates and branching ratios are mostly measured by different experiments/techniques
- larger uncertainties for branching ratios (more difficult to measure than rates) ;
- Keep an explicit separation of uncertainty sources
- T-dependence of k different from b_{i};
- more pertinent sensitivity analysis (key parameters)
- easier to manage the sum rule wrt. uncertainties.

Parametric uncertainties of branching ratios

$$
\begin{aligned}
A+B & \longrightarrow P_{1} ; k, b_{1} \\
& \longrightarrow P_{2} ; k, b_{2}
\end{aligned}
$$

- Reaction rates and branching ratios are mostly measured by different experiments/techniques
- larger uncertainties for branching ratios (more difficult to measure than rates);
- Keep an explicit separation of uncertainty sources
- T-dependence of k different from b_{i};
- more pertinent sensitivity analysis (key parameters);
- easier to manage the sum rule wrt. uncertainties.

Branching ratios and the sum rule

$$
\begin{aligned}
& I_{1}+M_{1} \longrightarrow P_{1} ; k_{1}, b_{11} \\
& I_{1}+M_{1} \longrightarrow P_{2} ; k_{1}, b_{12} \\
& I_{1}+M_{2} \longrightarrow P_{3} ; k_{2}
\end{aligned}
$$

$$
\begin{gathered}
{\left[M_{i}\right] \gg\left[i_{i}\right]} \\
F_{k} \ll F_{b}
\end{gathered}
$$

Branching ratios and the sum rule

Uncorrelated partial rates : $b_{11}=0.33 \pm 0.12, b_{12}=0.67 \pm 0.12$

Branching ratios and the sum rule

Correlated partial rates : $\left\{b_{11}, b_{12}\right\} \sim \operatorname{Diri}(45 \times\{0.33,0.67\})$

Effect of sum constraint on UP for a complex system

Effect of sum constraint on UP for a complex system

PDFs for branching ratios

Implementing the sum constraint

b3
 b3

b2
b1
Carrasco et al., PSS (2007)

Preferred values and precision

$$
\left\{b_{i}\right\} \sim \operatorname{Diri}\left(\left\{\alpha_{i}\right\}\right) \propto \prod_{i} b_{i}^{\alpha_{i}-1}
$$

PDFs for branching ratios

Implementing the sum constraint

No preference : total uncertainty

Carrasco et al., PSS (2007)
$\left\{b_{i}\right\} \sim \operatorname{Diri}(1,1, \ldots, 1)$

PDFs for branching ratios

Implementing the sum constraint

Preferred intervals

Carrasco et al., PSS (2007)

PDFs for branching ratios

Implementing the sum constraint

Carrasco et al., PSS (2007)

Partial "total uncertainty"

Elicitation of Dirichlet pdf (1)

From data $\left\{\bar{b}_{i}\right\}$ and global relative uncertainty x

$$
\left\{b_{i}\right\} \sim \operatorname{Dirichlet}\left(\gamma \times\left\{\bar{b}_{i}\right\}\right)
$$

- γ is obtained by least squares

$$
\gamma=\frac{1}{x^{2}}\left(\frac{\sum_{i} \bar{b}_{i}\left(1-\bar{b}_{i}\right)}{\sum_{i} \bar{b}_{i} \sqrt{\bar{b}_{i}\left(1-\bar{b}_{i}\right)}}\right)^{2}-1
$$

with additional constraint for unimodality

$$
\gamma \geq\left\{\min \left(\max \left(\bar{b}_{1}, 1-\bar{b}_{1}\right), \ldots, \max \left(\bar{b}_{n}, 1-\bar{b}_{n}\right)\right)\right\}^{-1}
$$

- sampling by direct algorithm : draw n independent variates $B_{i} \sim \operatorname{Gamma}\left(\hat{\gamma} \bar{b}_{i}, 1\right)$, and normalize $b_{i}=B_{i} / \sum_{i} B_{i}$.

Carrasco et Pernot, JPCA 2007

Elicitation of Generalized Dirichlet pdf (2)

From data $\left\{\bar{b}_{i}\right\}$ and standard uncertainties $\left\{u_{i}\right\}$

$$
\left\{b_{i}\right\} \sim \operatorname{DirG}\left(\left\{\nu_{i}, \mu_{i}\right\}\right)
$$

- with parameters

$$
\nu_{i}=\frac{\bar{b}_{i}}{u_{i}^{2}} \text { and } \mu_{i}=\frac{\bar{b}_{i}^{2}}{u_{i}^{2}}
$$

- sampling by direct algorithm : draw n independent variates $B_{i} \sim \operatorname{Gamma}\left(\nu_{i}, \mu_{i}\right)$, and normalize $b_{i}=B_{i} / \sum_{i} B_{i}$.
- much more efficient than rejection algorithm to sample over prescribed intervals ;
- but no strict boundaries...

Partial determination of dissociative recombination products

Branching Ratios of the DR of DCCCN ${ }^{+}$

	Products	Branching Ratio
............	$\mathrm{C}_{3} \mathrm{~N}+\mathrm{D}$	0.44 ± 0.04
............	$\mathrm{DCC}+\mathrm{CN}, \mathrm{D}+\mathrm{C}_{2}+\mathrm{CN}, \mathrm{DCN}+\mathrm{C}_{2}$	0.48 ± 0.05
............	$\mathrm{C}_{2} \mathrm{~N}+\mathrm{DC}, \mathrm{N}+\mathrm{C}_{3} \mathrm{D}$	0.02 ± 0.01
............	$\mathrm{D}+\mathrm{C}+\mathrm{C}_{2} \mathrm{~N}$	0.04 ± 0.02
............	$\mathrm{DC}_{2} \mathrm{~N}+\mathrm{C}$	0.02 ± 0.01
..........	$\mathrm{ND}+\mathrm{C}_{3}$	0.00 ± 0.01

W. D. Geppert at al., Astroph. J. (2004)

Partial determination of dissociative recombination products

Hierarchical Dirichlet modeling (Carrasco et Pernot, JPCA 2007)

$$
\begin{aligned}
& \left\{b_{i, j}\right\} \sim \operatorname{Diri}(99 *\{0.48,0.52 * \operatorname{Diri}(1,1,1)\})
\end{aligned}
$$

Hierarchical vs. all-at-once

Hierarchical vs. all-at-once

Conclusions

Uncertainty and photochemical modeling @ low-T

- we have to handle very large uncertainties
- due to the necessity to extrapolate from room-T measurements
- due to unspecified products distributions
- explicit enforcement of conservation equations is a necessity for reliable Uncertainty Propagation and Sensitivity Analysis
- we are exploring various elicitation techniques of chemical
information through Dirichlet distributions and variants
- all advices wrt. elicitation, sampling, optimization... are welcomed!

Conclusions

Uncertainty and photochemical modeling @ low-T

- we have to handle very large uncertainties
- due to the necessity to extrapolate from room-T measurements
- due to unspecified products distributions
- explicit enforcement of conservation equations is a necessity for reliable Uncertainty Propagation and Sensitivity Analysis
- we are exploring various elicitation techniques of chemical information through Dirichlet distributions and variants
- all advices wrt. elicitation, sampling, optimization... are welcomed!

Conclusions

Uncertainty and photochemical modeling @ low-T

- we have to handle very large uncertainties
- due to the necessity to extrapolate from room-T measurements
- due to unspecified products distributions
- explicit enforcement of conservation equations is a necessity for reliable Uncertainty Propagation and Sensitivity Analysis
- we are exploring various elicitation techniques of chemical information through Dirichlet distributions and variants
- all advices wrt. elicitation, sampling, optimization... are welcomed!

Beloved collaborators and funding agencies

- N. Carrasco, E Hébrard (SA, Verrières-le-Buisson)
- S. Plessis - thesis (LCP, Orsay)
- M. Dobrijevic, V. Wakelam (LAB, Bordeaux)
- CNRS
- CNES
- EuroPlaNet
- Programme National de Planétologie

