# **Université** Gustave Eiffel

# Boosted optimal weighted least-squares for the approximation of high-dimensional functions in tree tensor networks

Cécile Haberstich<sup>1</sup>, Anthony Nouy<sup>2</sup>, Guillaume Perrin<sup>3</sup>

Workshop on *Optimal Sampling for Approximation* | 10 Mars 2022

CEA,DAM,DIF, F-91297, Arpajon, France
 Centrale Nantes, LMJL, UMR CNRS 6629, France
 <sup>3</sup> Univ Gustave Eiffel, COSYS-LISIS, F-77454 Marne-la-Vallée, France, guillaume.perrin@univ-eiffel.fr



- Taking advantage of always increasing computational resources, the importance of simulation keeps increasing.
- It is now completely integrated in most of the decision making processes of our society.
- Thus, simulation has not only to be descriptive, but needs to be **predictive**.
- In the following, let us focus on a system whose design (dimensions, materials, initial conditions...) is characterized by  $d \ge 1$  parameters gathered in a vector x, and whose behavior is analyzed through the real-valued response function y.
- x is supposed to live in the space  $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_d \subset \mathbb{R}^d$ , which is equipped with a product measure  $\mu \coloneqq \mu_1 \times \cdots \times \mu_d$ .

$$y: \begin{cases} \mathcal{X} \to \mathbb{R} \\ \boldsymbol{x} \mapsto \boldsymbol{y}(\boldsymbol{x}) \end{cases}, \quad \|\boldsymbol{y}\|^2 \coloneqq \int_{\mathcal{X}} \boldsymbol{y}(\boldsymbol{x})^2 d\mu(\boldsymbol{x}) < +\infty.$$



**Objective** : based on *n* couples gathered in  $S_n := (x^{(i)}, y(x^{(i)}))_{i=1}^n$ , construct a predictor  $\hat{y}$  such that  $\|\hat{y} - y\|$  is minimal.

#### Context

- y is in  $L^2_{\mu}(\mathcal{X})$  the Hilbert space of square-integrable real-valued functions defined on  $\mathcal{X} \subset \mathbb{R}^d$ .
- y is modeled by a deterministic black-box code (point-wise approach), whose response is supposed to be **costly**  $\rightarrow$  **constraint on the maximal budget**.
- d may be high → we need additional assumptions on y to avoid the curse of dimensionality.
- $\rightarrow$  y has a (more or less known) **low-dimensional structure**.
- $\rightarrow$  class of tree-based tensor formats to exploit this low-rank structure.



**Objective** : based on *n* couples gathered in  $S_n := (x^{(i)}, y(x^{(i)}))_{i=1}^n$ , construct a predictor  $\widehat{y}$  such that  $\|\widehat{y} - y\|$  is minimal.

#### Context

- y is in  $L^2_{\mu}(\mathcal{X})$  the Hilbert space of square-integrable real-valued functions defined on  $\mathcal{X} \subset \mathbb{R}^d$ .
- y is modeled by a deterministic black-box code (point-wise approach), whose response is supposed to be **costly**  $\rightarrow$  **constraint on the maximal budget**.
- d may be high → we need additional assumptions on y to avoid the curse of dimensionality.
- $\rightarrow$  y has a (more or less known) **low-dimensional structure**.
- $\rightarrow$  class of tree-based tensor formats to exploit this low-rank structure.

 $\Rightarrow$  This structured approximation class implies a highly structured learning design !

| Introduction<br>○○● | Tree-based tensor formats | Hierarchical boosted least-squares | Conclusions and prospects |
|---------------------|---------------------------|------------------------------------|---------------------------|
| ),(                 | Outline                   |                                    |                           |

#### 1 Introduction

- 2 Tree-based tensor formats
- 3 Hierarchical boosted least-squares
- 4 Conclusions and prospects



- → The structure of y is characterized by a dimension tree T defined over  $D \coloneqq \{1, \ldots, d\}.$
- → **Approximation class** ↔ the set  $\mathcal{F}^T$  of functions written as a series of compositions of functions defined on subspaces of  $\mathcal{X}$  controlled by T.

Ex. for 
$$d = 5 : y \in \mathcal{F}^T$$
 if  $\exists f_{\{1,2,3,4,5\}}, f_{\{1,2,3\}}, f_{\{2,3\}}, f_{\{4,5\}}$  s.t.  

$$y(\boldsymbol{x}) = f_{\{1,2,3,4,5\}}(f_{\{1,2,3\}}(x_1, f_{\{2,3\}}(x_2, x_3)), f_{\{4,5\}}(x_4, x_5)) \qquad \bigcirc_{(1)}^{(1,2,3,4,5)} \bigoplus_{(4)}^{(1,2,3,4,5)} \bigoplus_{(4)}^{(1,2,3$$

**Objective** : construct  $\widehat{y}$  as a projection (empirical) of y on  $\mathcal{F}^T$  (using  $\mathcal{S}_n$ ).



- For each tuple  $\alpha \in D := \{1, \ldots, d\}$ , we note  $\boldsymbol{x}_{\alpha} = (x_i)_{i \in \alpha}$  and  $\boldsymbol{x}_{\alpha^c} = (x_i)_{i \notin \alpha}$ .
- For each  $\alpha \in D$ , function y can be identified with the bivariate function  $y(x_{\alpha}, x_{\alpha^c})$ , whose truncated SVD can be written :

$$y(\boldsymbol{x}) \approx \sum_{j=1}^{r_{\alpha}} \sigma_{\alpha}^{j} v_{j}^{\alpha}(\boldsymbol{x}_{\alpha}) v_{j}^{\alpha^{c}}(\boldsymbol{x}_{\alpha^{c}}).$$

- $\rightarrow r_{\alpha} \ge 1$  is a **chosen** truncation parameter,
- $\rightarrow \sigma_{\alpha}^{1} \geq \sigma_{\alpha}^{2} \geq \cdots$  are the singular values,
- $\rightarrow v_i^{\alpha}$  and  $v_i^{\alpha^c}$  are respectively the left and right singular functions,
- $\rightarrow U_{\alpha} = \operatorname{span}\{v_{1}^{\alpha},...,v_{r_{\alpha}}^{\alpha}\}$  is the  $\alpha$ -principal subspace of y solution of

$$\min_{\dim(U_{\alpha})=r_{\alpha}}\|y-\mathcal{P}_{U_{\alpha}}y\|$$

where  $\mathcal{P}_{U_{\alpha}}y$  is the orthogonal projection of y onto  $U_{\alpha} \otimes \mathbb{H}_{\alpha^{c}}$ .







**Desired predictor** :  $\widehat{y} \leftrightarrow$  orthogonal projection of y on  $W^{(1)}$ ,

with  $W^{(L)} \supset W^{(L-1)} \supset \cdots \supset W^{(1)}$  a nested sequence of tensor product subspaces with decreasing dimensions, associated with the tree T, from the leaves to the root, and  $V_i$  a finite dimensional subspace of  $L^2_{\mu_i}(\mathcal{X}_i)$ .

 $V \supset W^{(3)} \supset W^{(2)}.$ 





**Desired predictor** :  $\widehat{y} \leftrightarrow$  orthogonal projection of y on  $W^{(1)}$ ,

with  $W^{(L)} \supset W^{(L-1)} \supset \cdots \supset W^{(1)}$  a nested sequence of tensor product subspaces with decreasing dimensions, associated with the tree T, from the leaves to the root, and  $V_i$  a finite dimensional subspace of  $L^2_{\mu_i}(\mathcal{X}_i)$ .

 $V \supset W^{(3)} \supset W^{(2)} \supset W^{(1)}.$ 





**Proposed predictor** :  $\widehat{y} \leftrightarrow$  empirical projection of y on  $\widehat{W}^{(1)}$ ,

with  $\widehat{W}^{(L)} \supset \widehat{W}^{(L-1)} \supset \cdots \supset \widehat{W}^{(1)}$  a nested sequence of products of approximated  $\alpha$ -principal subspace  $\widehat{U}_{\alpha}$ , such that :

$$\frac{1}{n_{\alpha^c}} \sum_{k=1}^{n_{\alpha^c}} \| Q_{V_{\alpha}} y(\cdot, x_{\alpha^c}^k) - P_{\widehat{U}_{\alpha}} Q_{V_{\alpha}} y(\cdot, x_{\alpha^c}^k) \|_{L^2_{\mu_{\alpha}}}^2$$
(1)

is minimum, where :

- $\rightarrow \{x_{\alpha^c}^k\}_{k=1}^{n_{\alpha^c}} \text{ are } n_{\alpha^c} \text{ i.i.d samples of the variables } X_{\alpha^c} \sim \mu_{\alpha^c}.$
- →  $Q_{V_{\alpha}}$  is an empirical projector onto the space  $V_{\alpha}$  based on  $n_{\alpha}$  (potentially chosen) values of  $x_{\alpha}$ ,
- $\rightarrow P_{\widehat{U}_{\alpha}}$  is the orthogonal projector on  $\widehat{U}_{\alpha}$ .

Remark : the problem associated with Eq. (1) can be solved by an SVD.



#### Theorem

- Assume that for all  $\alpha \in T$ ,  $Q_{V_{\alpha}}$  verifies quasi-optimality properties in expectation (more details in the next section).
- Assume that for all  $\alpha \in T \setminus D$ , the reconstruction error of the empirical  $\alpha$ -principal subspace of  $Q_{V_{\alpha}}y$  is controlled by the one associated to the  $\alpha$ -principal subspace of  $Q_{V_{\alpha}}y$  (in expectation).

Then, the error of approximation is bounded as follows

$$\mathbb{E}(\|y - \widehat{y}\|^2) \le C_1 \varepsilon_{svd}^2 + C_2 \varepsilon_{dis}^2$$

- ε<sup>2</sup><sub>svd</sub> is the error due to the SVD computed at each intermediate node,
   ε<sup>2</sup><sub>dis</sub> is the discretization error due to the introduction of finite-dimensional subspaces in the leaves (the spaces V<sub>1</sub>,...,V<sub>d</sub>).
- $C_1$  and  $C_2$  are in  $\mathcal{O}(dC^{l(d)})$ , with l(d) the depth of the tree.





(a) SF design for stand. surr. modeling



- (b) Adapted design for TBTA
- Focusing on the leaves, we notice an important structure in the positions where function *y* is evaluated .
- Even if *d* is high, the idea is to exploit the tree structure to carry out approximations in **small dimensional spaces** only.

| Introduction<br>000 | Tree-based tensor formats | Hierarchical boosted least-squares | Conclusions and prospects |
|---------------------|---------------------------|------------------------------------|---------------------------|
| )                   | Outline                   |                                    |                           |
|                     |                           |                                    |                           |

#### 1 Introduction

2 Tree-based tensor formats

#### 3 Hierarchical boosted least-squares

4 Conclusions and prospects



- The former strategy strongly relies on the empirical projector  $Q_{\alpha}$ .
- This operator must be able to take advantage of the nested spaces identified at each step → **least squares** approaches seem particularly adapted.

#### Context

- We focus on the node  $\alpha = (\beta, \beta^c)$ .
- We have access to a *m*-dimensional orthonormal basis of  $V_m \coloneqq U_\beta \otimes U_{\beta^c}$  (by tensorization of their finite-dimensional bases), noted  $\varphi_1, \ldots, \varphi_m$ .

For each  $\boldsymbol{x}_{\alpha^c}^k$ , we can define  $Q_{V_{\alpha}}y(\cdot, \boldsymbol{x}_{\alpha^c}^k) = Q_{V_m}y(\cdot, \boldsymbol{x}_{\alpha^c}^k) = \sum_{j=1}^m c_j^{\star}\varphi_j$ , with

$$(c_1^{\star},\ldots,c_m^{\star}) \in \arg\min_{(c_1,\ldots,c_m)} \sum_{i=1}^n w(\boldsymbol{x}_{\alpha}^i) \left( y(\boldsymbol{x}_{\alpha}^i,\boldsymbol{x}_{\alpha^c}^k) - \sum_{j=1}^m c_j \varphi_j(\boldsymbol{x}_{\alpha}^j) \right)^2.$$

**Problematics** : how to choose n, the weight function  $w \ge 0$ , and the  $(x_{\alpha}^{i})_{i=1}^{n}$ ?



- The stability of  $Q_{V_m}$  is measured by the properties of the empirical Gram matrix  $\hat{G}_n$  (which depends on w).
- **The empirical Gram matrix**  $\hat{G}_n$  associated to the sample  $\{ m{x}^i_{lpha} \}_{i=1}^n$  is given by

$$(\hat{\boldsymbol{G}}_n)_{k,l} = \frac{1}{n} \sum_{i=1}^n w(\boldsymbol{x}^i_{\alpha}) \varphi_k(\boldsymbol{x}^i_{\alpha}) \varphi_l(\boldsymbol{x}^i_{\alpha}).$$

- The smaller  $\|\hat{\boldsymbol{G}}_n \boldsymbol{I}\|$  is, the more stable is the projection.
- The minimum projection error is written  $\|y(\cdot, \boldsymbol{x}_{\alpha^c}^k) P_{V_m}y(\cdot, \boldsymbol{x}_{\alpha^c}^k)\|$ .



Hierarchical boosted least-squares

Conclusions and prospects 0000

# Optimal least-squares [Cohen and Migliorati., 2017]

#### Theorem (Optimal weighted least-squares)

Let  $d\rho(x) = w(x)^{-1}d\mu(x)$  with  $w(x)^{-1} = \frac{1}{m}\sum_{j=1}^{m}\varphi_j(x)^2$ . Let  $\eta \in (0,1)$  and  $\delta \in (0,1)$ , and  $\boldsymbol{x}^1_{\alpha}, \dots, \boldsymbol{x}^n_{\alpha}$  be i.i.d from  $\rho$ . For  $n \ge \delta^{-2}m \log(2m\eta^{-1})$ , it holds :

$$\mathbb{P}(\|\hat{\boldsymbol{G}}_n - \boldsymbol{I}\| \le \delta) \ge 1 - \eta.$$

The approximation  $Q_{V_m}^C y$  defined by  $Q_{V_m} y$  if  $\|\hat{G}_n - I\| < \delta$  and 0 otherwise satisfies

$$\mathbb{E}(\|y(\cdot, \boldsymbol{x}_{\alpha^{c}}^{k}) - Q_{V_{m}}^{C} y(\cdot, \boldsymbol{x}_{\alpha^{c}}^{k})\|^{2}) \leq (1-\delta)^{-1} \|y(\cdot, \boldsymbol{x}_{\alpha^{c}}^{k}) - P_{V_{m}} y(\cdot, \boldsymbol{x}_{\alpha^{c}}^{k})\|^{2} + \eta \|y(\cdot, \boldsymbol{x}_{\alpha^{c}}^{k})\|^{2}.$$





#### Theorem (Optimal weighted least-squares)

Let  $d\rho(x) = w(x)^{-1}d\mu(x)$  with  $w(x)^{-1} = \frac{1}{m}\sum_{j=1}^{m}\varphi_j(x)^2$ . Let  $\eta \in (0,1)$  and  $\delta \in (0,1)$ , and  $\boldsymbol{x}_{\alpha}^1, \dots, \boldsymbol{x}_{\alpha}^n$  be i.i.d from  $\rho$ . For  $n \ge \delta^{-2}m\log(2m\eta^{-1})$ , it holds :

 $\mathbb{P}(\|\hat{\boldsymbol{G}}_n - \boldsymbol{I}\| \leq \delta) \geq 1 - \eta.$ 

The approximation  $Q_{V_m}^C y$  defined by  $Q_{V_m} y$  if  $\|\hat{\boldsymbol{G}}_n - \boldsymbol{I}\| < \delta$  and 0 otherwise satisfies  $\mathbb{E}(\|y(\cdot, \boldsymbol{x}_{\alpha^c}^k) - Q_{V_m}^C y(\cdot, \boldsymbol{x}_{\alpha^c}^k)\|^2) \le (1-\delta)^{-1} \|y(\cdot, \boldsymbol{x}_{\alpha^c}^k) - P_{V_m} y(\cdot, \boldsymbol{x}_{\alpha^c}^k)\|^2 + \eta \|y(\cdot, \boldsymbol{x}_{\alpha^c}^k)\|^2.$ 

More stability / more chance to be stable  $\Rightarrow$  lower  $\delta, \eta \Rightarrow$  much higher n.

 $\Rightarrow$  next, another measure is proposed :

 $\rightarrow$  to impose  $\eta = 0$  (to recover quasi-optimality properties in expectation),

→ to make  $n \sim m$  without too much increasing  $\delta$  (costly evaluations).



Figure – Distribution of  $\|\hat{G}_n - I\|$  for  $\delta = 0.9$ : resampling improves the stability for a given probability  $\eta$ .

2. Conditioning by rejection : Repeat step 1 until  $\|\hat{G}_n - I\| < \delta \rightarrow$  output sample  $\tilde{x} = (\tilde{x}^1, \dots, \tilde{x}^n)$ . This ensures stability almost surely.



Figure – Distribution of  $\|\hat{G}_n - I\|$  for  $\delta = 0.9$ : removing samples worsens stability while remaining bounded by  $\delta$ .



#### Theorem (Control of the error bound in expectation)

Let  $\eta \in (0,1)$ ,  $\delta \in (0,1)$ , and  $Q_{V_m} y(\cdot, \boldsymbol{x}_{\alpha^c}^k)$  be the s-BLS projection with  $n_{\alpha} \geq \delta^{-2} m \log(2m\eta^{-1})$  and  $\#K \geq n_0$ . It holds :

$$\mathbb{E}(\|y(\cdot, \boldsymbol{x}_{\alpha^c}^k) - Q_{V_m}y(\cdot, \boldsymbol{x}_{\alpha^c}^k)\|^2) \le C \|y(\cdot, \boldsymbol{x}_{\alpha^c}^k) - P_{V_m}y(\cdot, \boldsymbol{x}_{\alpha^c}^k)\|^2$$

with  $C = (1 + \frac{n_{\alpha}}{n_0}(1 - \delta)^{-1}(1 - \eta^M)^{-1}M)$  (better bounds can be obtained when adding assumptions on y).

- → If  $n_0 = \frac{n}{\beta}$ , for some  $\beta \ge 1$  → quasi-optimality property (in expectation).
- → C increases with M (number of repetitions) and  $\beta$  (greedy reduction coefficient).
- $\rightarrow$  When  $n_0 = m$ ,  $C \sim \mathcal{O}(\log(m))$

Tree-based tensor formats

Hierarchical boosted least-squares

Conclusions and prospects

### Illustration on a simple example

$$u(x) = \frac{1}{(1 - \frac{0.5}{2d}\sum_{i=1}^{d} x_i)^{d+1}} \text{ defined on } \mathcal{X} = [-1, 1]^d, \ \mu \sim U([-1, 1]^d)$$

• Hyperbolic cross polynomial approximation spaces with Legendre polynomials for different m with d = 2.



- Guaranteed stability with probability greater than 0.99 for the OWLS method and almost surely for the s-BLS method.
- → With subsampling (OWLS → s-BLS) n (or  $n_{\alpha}$ ) is significantly decreased.



Hierarchical boosted least-squares

Conclusions and prospects 0000

# Hierarchical boosted least-squares

Considering the former s-BLS method at each node of the tree, it is possible to recover a bound in expectation for the TBTA  $\hat{y}$  of y:

$$\mathbb{E}(\|y-\widehat{y}\|^2) \leq C_1 \varepsilon_{svd}^2 + C_2 \varepsilon_{dis}^2.$$

- We observed empirically that this bound was often very **loose**, in the sense that to get a desired precision  $\varepsilon^2$ , choosing  $\varepsilon_{svd}^2$  and  $\varepsilon_{dis}^2$  such that  $\varepsilon^2 = C_1 \varepsilon_{svd}^2 + C_2 \varepsilon_{dis}^2$  is very likely to lead to values of  $\mathbb{E}(\|y \widehat{y}\|^2)$  much lower than  $\varepsilon^2$ .
- ⇒ Using cross validation techniques, it is however possible to adapt  $n_{\alpha^c}$ , dim $(V_i)$  to impose at each leaf of the tree a chosen discretisation error  $\varepsilon_{dis}^2$ , and at each node of the tree a chosen SVD error  $\varepsilon_{svd}^2$ .
- ⇒ Given a desired precision  $\varepsilon^2$ , constants  $C_1$  and  $C_2$  can then be replaced by heuristic values  $C_1^*$  and  $C_2^*$  to adapt these errors so that :

$$\varepsilon_{svd}^2 \leq \frac{\varepsilon^2}{2C_1^\star}, \quad \varepsilon_{dis}^2 \leq \frac{\varepsilon^2}{2C_2^\star}.$$

Tree-based tensor formats

Hierarchical boosted least-squares

Conclusions and prospects 0000

# Illustration of the conservative character of $C_1$ and $C_2$

Borehole function (water flow)

$$y(x_1, \dots, x_8) = \frac{2\pi x_3(x_4 - x_6)}{(x_2 - \log(x_1))(1 + \frac{2x_7 x_3}{(x_2 - \log(x_1))x_1^2 x_8} + \frac{x_3}{x_5})}$$

**Desired precision** 
$$\varepsilon = 10^{-2}$$

• 
$$\varepsilon_{svd}^2$$
 and  $\varepsilon_{dis}^2$  chosen such that  $\varepsilon_{svd}^2 \leq \frac{\varepsilon^2}{2C_1^*}$ ,  $\varepsilon_{dis}^2 \leq \frac{\varepsilon^2}{2C_2^*}$ .

|                                       | (randomly chosen) Balanced tree                     |              |               |
|---------------------------------------|-----------------------------------------------------|--------------|---------------|
| $C_1^\star$ and $C_2^\star$           | $\log_{10}(\sqrt{\mathbb{E}(\ y-\widehat{y}\ ^2)})$ | $m^{tot}$    | $n^{tot}$     |
| = $C_1$ , = $C_2$                     | -9.4                                                | [1349; 2459] | [1597 ; 2742] |
| in $\mathcal{O}(d\widehat{C}^{l(d)})$ | -3.7                                                | [141; 177]   | [342; 379]    |
| in $\mathcal{O}(1)$                   | -2.0                                                | [34;51]      | [168; 188]    |

Table – Different heuristics for the control of the precision, and associated confidence intervals of levels 10% and 90% for the total storage complexity  $m^{\rm tot}$  and the total number of evaluations  $n^{\rm tot}$ .

Tree-based tensor formats

Hierarchical boosted least-squares

Conclusions and prospects 0000

# Empirical control of the approximation error

• 
$$y(x) = \frac{1}{(10+2x_1+x_3+2x_4-x_5)^2}, \ \mathcal{X} = [-1,1]^6, \ \mu \sim U([-1,1]^6).$$

- Polynomial approximation spaces  $V_i = \mathbb{P}_p(\mathcal{X}_i)$ , with p chosen adaptively to reach a negligible discretization error using adaptive s-BLS.
- T is a (randomly chosen) balanced binary tree.
- Adaptive strategy for choosing  $n_{\alpha}, n_{\alpha^c} + C_1^{\star}$  and  $C_2^{\star}$  chosen in  $\mathcal{O}(\widehat{C}^{l(d)})$ .

| $\log_{10}(\varepsilon)$ | $\log_{10}(\sqrt{\mathbb{E}(\ y-\widehat{y}\ ^2)})$ | $m^{tot}$    | $n^{tot}$    |
|--------------------------|-----------------------------------------------------|--------------|--------------|
| -2                       | -3                                                  | [193; 290]   | [328; 403]   |
| -3                       | -4.1                                                | [309; 430]   | [455 ; 579]  |
| -4                       | -4.4                                                | [385 ; 531]  | [534 ; 697]  |
| -5                       | -5.3                                                | [588; 805]   | [751 ; 985]  |
| -6                       | -6.1                                                | [827 ; 1268] | [1028; 1503] |
| -7                       | -7.0                                                | [1203; 1861] | [1463; 2230] |

- $\rightarrow\,$  The observed error matches with the desired precision.
- $\rightarrow$  We find values of  $n^{\text{tot}}$  (code evaluations) close to  $m^{\text{tot}}$  (complexity).

| Introduction<br>000 | Tree-based tensor formats | Hierarchical boosted least-squares | Conclusions and prospects<br>•000 |
|---------------------|---------------------------|------------------------------------|-----------------------------------|
| )                   | Outline                   |                                    |                                   |
|                     |                           |                                    |                                   |

#### 1 Introduction

- 2 Tree-based tensor formats
- 3 Hierarchical boosted least-squares
- 4 Conclusions and prospects



We proposed an algorithm that constructs, at a reasonable computational cost (close to the model complexity), a stable and controlled approximation (in expectation) of a function y in tree-based tensor format. It relies on :

- → the **BLS projection** [Haberstich et al., 2022b],
- → adapt. strategies for controlling the discretization error [Haberstich et al., 2022a],
- → adapt. strategies for controlling the construction of the  $\alpha$ -principal subspaces  $U_{\alpha}$  [Haberstich et al., 2021].

However...

- → Theoretical bounds  $C_1, C_2$  are high compared to what we observe in numerical experiments (what hypotheses to add to better match theory and practice?).
- → The offline cost remains important compared to an interpolation method for example (generation of  $n_{\alpha}$  times a  $n_{\alpha^c}$ -samples + greedy strategy).



