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ABSTRACT

We are interested in application of UQ (Uncertainty Quantification) with Polynomial Chaos (PC) technics

for complex compressible flows such as the ones encountered in ICF (Inertial Confinement Fusion); the

general frame is uncertain systems of conservation laws:

∂tu(x, t, ξ) + ∂xf(u(x, t, ξ)) = 0 with u(x, t, ξ) ∈ R
n, where ξ parametrizes a random vector.

A basic PDE model is, for example, compressible Euler equations. PC methods were first introduced by

Ghanem and Spanos [GS91] and are based on the Homogeneous Chaos Theory of Wiener [Wie38]. They

appeared to be a good alternative to statistical methods (as Monte Carlo simulations and its modifications)

for UQ as these latters can become too expensive due to the high number of samples required and time con-

suming codes. PC methods were successfully used for accurately solving many problems (incompressible

flows [MK04], reacting flows and detonation [LEJS07]...) . However, classical approaches fail to approxi-

mate the solution in the case of ”complex” flows implying for example discontinuities with respect to the

random variable (see [PDL09, Cho74, MK04]). Conservation laws, known to generate shocks, can give

birth to those kinds of difficulties. Several directions have been investigated in order to treat the Gibbs phe-

nomenon due to polynomial order truncation as the use of Haar wavelets, adaptative methods as ME-GPC

or ENO/WENO-like reconstruction in the random space [MK04, WK06, Abg07]. All these methods rely

on a discretization of the random space: in the case of a moving discontinuity, with adaptative methods,

the number of random subdomains can quickly become important (each time step needs a new refinement

in the random space). Besides, they need interface tracking technics which are simple for one dimensional

problems but are known to become quite tricky in higher dimensions.

To overcome these issues, we have developped a new method [PDL09](IPMM for Intrusive Polyno-

mial Moment Method) which is based on a theoretical parallel between Classical PC (CIM for Classi-

cal Intrusive Method) and Theory of Moments (TM) ([MR98, CLL94]). We introduce a new variable

v, the so-called entropy variable defined for a system of conservation laws through an entropy-entropy

flux pair (s, g). In our approach, this variable becomes the main variable in the polynomial expansion

v(x, t, ξ) = ∇us(u(x, t, ξ)) ≈
∑P

i=0
vi(x, t)φi(ξ) (where (φi)i∈N is the orthogonal polynomial basis).

Several properties can then be proved for the new system as hyperbolicity (well-posedness), minoration and

majoration of eigenvalues (control of the CFL condition), minimization of entropy and preservation of the

invariant domain.

The talk will aim at the presentation of new results about the stability of IPMM, in the case of high dimension

random space (≥ 3).

The next figures shows different results obtained with our method: the first one illustrates, on the inviscid

Burgers’equation, how IPMM enables to constrain the oscillations in the random space to a certain do-

main dictated by the entropy expression. The second one presents a Sod shock tube (Euler system) with

initially uncertain interface position in 1D space coordinates and the last one shows the same test-case in

2D space coordinates, in a convergent geometry. One has to figure out that on these test-cases, CIM fails

for the presented polynomial order P : indeed, the Gibbs phenomenon occuring in the vicinity of the contact

discontinuity makes the mass density (ξ −→ ρ(xinterface, t = 0, ξ)) become negative for certain values of

ξ (see [PDL09]) and the computation crashes.
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The new IPMM system for Burgers’equation:

∂t

∫

u
(

P
∑

i=0

viφi

)





φ0

...

φP



 dw

+∂x

∫

u2
(

P
∑

i=0

viφi

)

2





φ0

...

φP



 dw = 0

where dw is the probability measure.

The entropy: s(u) = − ln(u − u
−

) − ln(u+ − u),

with (u
−

, u+) = (0.5, 12.5).
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