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Objective The objective of this study is to establish a model for the risk of
accidents of decompression sickness arising in the context of underwater diving.

Let the binary random variable DCS(X) ∈ {0, 1} represent the occurrence
of an accident (DCS ≡ decompression sickness) during dive X, with X charac-
terizing in particular the depth-duration profile. Our goal is to predict the risk

of accident y(X) during that dive, with

X −→ y(X) = Prob {DCS(X) = 1} ∈ [0, 1] .

Besides predicting this risk we will need to assess its confidence, ideally in a
form of a confidence interval.

Learning data and existing knowledge

Data The model will be learned from existing data sets gathering, for a
large number M of distinct diving profiles:

- the bottom depth, dive duration and mixed gas breathed,

- the decompression procedure followed,

- the numbers of dives ni and of occurrences ai of DCS, i = 1, . . . ,M .

Jointly, the first two items above specify Xi for each of the M dives, while the
last gives information about {y(Xi)}

M
i=1

.

Model A dynamical model for the production of gas bubbles in the diver’s
body during the decompression phase of the dive — widely believed to be the
cause of occurrence of DCS — is available. Denote by V (t|X, θ) the output
of the model at time t for dive X, where θ is a set of biological parameters
characteristic of each diver.

X −→ Model −→ V (t|X, θ) (1)

↑

parameters θ
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Previous work done in the project has identified a probability distribution (for
a given population of interest) for θ, θ ∝ p(dθ), inducing a random process
structure in V (t).

Approach Our approach is based on the definition of a hazard rate ρ(V )
over the phase space of the biophysical model (1), which yields a family of
binary Markov random processes DCS(t|X, θ) ∈ {0, 1} that always start at
DCS(0|X, θ) = 0, state 1 (indicating the presence of DCS symptoms) being an
absorbing state:

✫✪
✬✩

✫✪
✬✩

✲

ρ[V (t|X, θ)]

0 1

The parameter vector θ being itself random, DCS(t|X, θ) is in fact a Cox pro-

cess, i.e., a Poisson process with random intensity function. The times of acci-
dent tDCS(X, θ) are the instants of transition to 1 of DCS(t|X, θ).

The probability of a DCS accident during dive X, assuming a given hazard
rate field ρ(·), is then

y(X|ρ) = Prob {DCS(X) = 1|ρ} = 1−

∫
Θ

exp {−Mρ(∞|X, θ)} p(dθ) ,

where Mρ(T |X, θ) is the cumulative hazard function

Mρ(T |X, θ) =

∫ T

0

ρ [V (t|X, θ)] dt .

This gives a parametrization of the risk of the different dives in terms of ρ(·), a
function defined over the output space of the biophysical model.

Data likelihood/estimation criterion We will consider both classical and
Bayesian methods for estimating ρ(·). The hazard rate must be non-negative:
ρ(V ) ≥ 0 for all V . Several approaches can be used to deal with this constraint:

1. One may model z(V ) = log ρ(·). This approach is commonly used to
impose positivity of estimated functions, see for instance [2]. In the con-
text of Bayesian estimation, where Z(V ) is modeled as a realization of a
Gaussian process, this leads to the notion of log-Gaussian Cox processes,
see [3]. Several authors used non-parametric approaches to identify these
models, see [4, 5].

2. One may add a penalty term to the estimation criterion, for instance
P (ρ) = α

∫
V
1{ρ(V ) < 0} dV where 1{A} is the indicator of set A.

3. One may impose constraints directly on the predictor via a suitable choice
of observation weights, see, e.g., [6].
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The problem at hand in this study presents an additional difficulty, that is
related to the fact that the point process itself is not observed, but only the
number of realizations (at most one for the pure death process with a single
individual) along a one-dimensional curve. Our goal is thus to perform tomog-
raphy in the state space, with a complex observer whose geometry is induced by
the biophysical model. This is expected to raise important problems of observ-
ability that should be overcome by a convenient regularization of the hazard
rate.

Required expertise The candidate should have a strong background in statis-
tics (candidates familiar with Point Process models and/or non-parametric
statistics are preferred) and have a past experience of use of numeric inten-
sive simulation and optimization methods (MCMC, simulated annealing. . . ).

All software will be developed under Matlab; the candidate is expected to
be proficient in this mathematical programming language.
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