
Post-doctoral position at EDF R&D, CHATOU, FRANCE:

Bayesian model selection
for the valdation of computer codes

1 Industrial context

An industrial company such as EDF bases many of its decisions on the results
of quantitative models.

More generally, increasing efforts are devoted to numerical simulations in
industrial studies. Indeed, they tend to complement, or even replace, physical
experiments, when these are too costly or dangerous.

Such simulations are used for design (or, more generally, optimization) tasks,
as well as reliability assessment and risk analysis.

Because the stakes motivating such studies can be considerable, it is im-
portant to guarantee that the computer code used for the simulation ‘predicts
well enough’ in a certain sense the physical phenomena under study. Adressing
this task is the object of code validation, an active field of research within the
communities of engineering and computer experiments.

At EDF R&D, especially inside the department of industrial risk man-
agement (MRI), continuous efforts have been made toward this goal over the
last years. In particular, a PhD on this subject has been recently completed
[Damblin, 2015], leading to the proposition of a generic approach for computer
code validation. This includes the calibration of uncertain code parameters,
the quantification of prediction errors and their impact on the final use of the
simulations.

Several challenges in the implementation of this approach were addressed.
Specifically, a statistical calibration procedure adapted to costly computer codes
was developped, based on a sequential experimental design strategy. Then, a
test was introduced to detect a bias in the predictions of a computer code, due
to a lack of accuracy of the underlying physical model. Taking into account
such a bias thus allows to improve code-based predictions.

The two above contributions, though important, are far from exhaustive.
These may be seen as a first step in the development of a truly generic code
vaidation methodology, which could ideally treat all identified sources of uncer-
tainty, in the most automated fashion possible.

The objective of this post-doc is to contribute to the development of this ap-
proach, focusing on the bias detection test, limited for now to the simplified case
of a low-dimensional computer code that is linear with respect to the uncertain
parameters
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2 Model selection for the validation of computer

codes

2.1 Statistical modeling

We assume that the physical system under study can be assimilated to a func-
tion:

r : x ∈ R
q 7→ r(x) ∈ R

d, (1)

where x is a vector of controlable (observable) experimental variables, and r(x)
the output of interest. Likewise, the computer code is assumed to take the form
of a parametric function:

yθ : x ∈ R
q 7→ yθ(x) ∈ R

d, (2)

where θ ∈ R
p is a vector of unknown parameters, which we can interpret as

physical constants controlling the behavior of the system under study.
Moreover, let Z = (z1, . . . , zn)⊤ ∈ Mn,d be a series of available measures of

the response of interest, for a certain set X = [x1, . . . , xn]⊤ ∈ Mn,q of input
values.

A first statistical model derives from the assumption that the computer code
can mimic the physical system perfectly, and that the measurement errors ǫi

are independently and identically distributed (iid), following a zero-mean normal
law with covariance matrix Σ2, so that we can write:

zi = yθ∗(xi) + ǫi, (3)

ǫi ∼ N (0, Σ2)

where θ∗ is the ‘true’ value of the parameter vector θ. It is worth noting that
(3) is in fact a regression model of the data Z with respect to the inputs X,
where the code yθ defines the regression function, which can be non-linear and
costly.

This first model is to date the most used in practice, though it relies on
the rather strong assumption that the code can predict the physical system
perfectly. To relax this assumption, [Kennedy and O’Hagan, 2000] suggest to
add a term b(x), usually called model error or model bias. Consequently, (3) is
replaced by the following, more general, model:

zi = yθ∗(xi) + b(xi) + ǫi. (4)

In [Kennedy and O’Hagan, 2000], θ∗ and b(x) are simultaneously estimated
from both the experimental data Z and a limited number N of runs (x̃i, θ̃i, ỹi)i=1,...,N

of the compute code yθ(x), used to build a Gaussian process emulator in order
to reduced the computation time. A second Gaussian process is used as a prior
disribution for the model bias b(x).
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The reason usually advocated for the introduction of this additional term
is that it allows to correct pure code predictions, considered as insufficiently
accurate approximations of the quantity of interest r(x). Such an advantage for
predictions has been illustrated for instance in [Kennedy and O’Hagan, 2000],
[Bayarri et al., 2007] and [Higdon et al., 2008], among others, on several real-life
case-studies.

However, to date we have found no formal justification to the introduction
of a model bias, even though it raises several important issues:

• Such a bias makes the statistical model much more complicated to estimate
and interpret. In particular, model (4) is not identifiable, in the sense that
it does not allow to estimate both θ∗ and b(x) from the data alone1. As a
matter of fact, it is the Gaussian process prior distribution on b(x) which
makes this estimation possible, by imposing additional constraints; hence
the prior choice is a crucial and delicate task.

• Accounting for model bias is controverisal in the engineering community.
This is especially true among numerical analysts who develop computer
codes, and who expect them to predict interest quantities in a sufficiently
satisfying way, so that adding a bias-correcting term is in general unnec-
essary.

In view of these questions, it seems important to develop statistical proce-
dures allowing to test the presence or absence of a nonzero model bias between
the code outputs an the interest quantities we wish to predict. In [Loeppky et al., 2006],
a maximum likelihood ratio test has been proposed to this end. Still, as is usu-
ally the case of frequentist tests, this procedure can detect with good certainty
an existing model bias, but not conclude to its absence.

This is why we advocate a Bayesian model selection approach, simpler to
interpret, and which allows to conclude with similar confidence levels to both the
presence and the absence of a model bias. Another advantage of this approach
is that it allows, in absence of a clear model choice, to combine predictions from
both pure code and bias-corrected predictions.

2.2 Proposed approach

Informally, Bayesian model selection consists in computing the posterior proba-
bility that each model is the ‘true’ one, given the available data. More precisely,
note M0 the model without bias defined by (3), and M1 the model with bias, de-
fined by (4). Then, after Bayes’ theorem, the posterior probability of model Mj

for j = 0, 1 is proportional to :

P[Mj |Z] ∝ m(Z|Mj) × P[Mj],

1To see this, note that θ∗ and b(x) can be replaced by arbitrary values θ̃
∗

and b̃(x) =
b(x) + (y

θ̃
∗ (x) − yθ∗ (x)) without changing the sampling distribution of the zi’s.
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where m(Z|Mj) is the marginal likelihood, or evidence, for model Mj , obtained
by integrating the likelihood Lj(Z|pj) over the prior distribution of model pa-
rameters pj :

m(Z|Mj) =

∫

pj

Lj(Z|pj)πj(pj)dpj .

P[Mj ] can be interpreted as the prior probability of model Mj , which we will
take equal to 1/2, meaning that we consider both models equally probable a

priori. This also means that we believe one of them to be the true generative
model of the data.

The test then consists to compute the Bayes factor, defined as the ratio of
marginal likelihoods of both models, which boils down here to the ratio of their
posterior probabilities, also know as the posterior odds:

B0,1(Z) :=
m(Z|M0)

m(Z|M1)

(

=
P[Z|M0]

P[Z|M1]

)

=

∫

pj
L0(Z|p0)π0(p0)dp0

∫

p
1

L1(Z|p1)π1(p1)dp1

.

It can also be seen as a Bayesian version of the maximum likelihood ratio test
in [Loeppky et al., 2006], wherein each model likelihood Lj(Z|pj) is averaged
rather than maximised with respect to pj . A Bayes factor greater than 1 means
that the absence of a model bias is a posteriori more probable than its pres-
ence. Furthermore, one can also avoid selecting a single model, for instance
if the Bayes factor is too close to 1. In this case, posterior mean predictions
of the interest quantities under each model can be added, weighted by the
corresponding probabilities P[Z|Mj ], effectively integrating out model uncer-
tainty [Hoeting et al., 1999].

From a more practical point of view, the main difficulty consists in evaluating
the integrals defining the marginal likelihoods m(Z|Mj). In general, these have
no closed-form, except in very special cases, for instance when the code is linear
with respect to its parameters, and in the absence of model bias; this is why in
[Damblin, 2015] we have restricted ourselves to such linear codes.

the choice of prior laws raises other issues, due to their decisive influence on
the model selection process, and to the impossibility to use minimally informa-
tive reference priors, as suggested in [Berger et al., 2001], when these are im-
proper. The intrinsinc Bayes factor, as introduced in [Berger and Pericchi, 1996],
was adopted to circumvent this second problem.

2.3 Results

The approach described above was validated through intensive numerical exper-
iments. In particular, we have shown that our Bayesian test identifies correctly
the presence or absence of a model bias, simulated as the realization of a Gaus-
sian process, when the correlation length which controls the regularity of its
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paths is moderate. On the other hand, when the correlation length is compara-
ble or exceeds the length of the observation interval, we have observed that the
model bias tends to become indistinguishable from the low-order polynomial
used in our simulations to represent the code. We stress that this limit is not
inherent to our approach, but rather serves to illustrate the always present risk
of confounding a computer model and a very regular bias.

3 Post-doctoral work program

3.1 General goal

After these first encouraging results, many questions remain:

• How to implement the Bayesian test of of the presence of a mode bias for
a costly, nonlinear compute code?

• How can we perform the Bayes factor computation when it entails a high-
dimensional integral with no closed-form?

• What are the numerical and/or physical designs of experiments most
adapted to our model selection framework?

The main goal of this post-doc is to contribute some answers to these questions,
and to implement them on several case studies, using both simulated and real-
life datasets.

3.2 Suggested progression

The following steps may be followed, though the order may be changed, all tasks
being strongly inter-dependent:

• Generalization to computer codes that are non-linear with respect to their
calibration parameters is one of the main difficulties. Indeed, this means
that likelihood integration cannot be done through either closed-form
calculations or elementary quadrature formulas. Reasonable approxima-
tions will need to be found, either analytically (through Laplace approx-
imations), or numerically, using Monte-Carlo or quasi Monte-Carlo tech-
niques, probably combined with Monte-Carlo Markov chains (MCMC) or
Importance sampling in a posterior-guided approach (see [Kass and Raftery, 1995]
for a recap of marginal likelihood evaluation methods).

• The extension to costly computer codes, requiring to be approximated by
cheap emulators, typically based on Gaussian processes [Sacks et al., 1989],
is a very common case which will have to be addressed. The choice of an
apropriate design of experiments will need to be treated then, in order to
make the Bayes factor estimate as accurate as possible, given the addi-
tional uncertainty due to code emulation. One possiblity is to extend the
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sequential design strategy adopted in [Damblin, 2015] for the code cali-
bration in the bias-free model, and extend it to the biased model setting.
Another possiblity would be to consider the stepwise uncertainty reduc-
tion (SUR) approach, as in [Chevalier et al., 2014], based on an iterative
reduction of the Bayes factor’s expected variance. Finally, for codes with
high-dimensional outputs, a pre-processing dimension reduction step will
potentially be needed, as suggested in [Higdon et al., 2008].

• The work on prior elicitation needs also to be extended. To begin with,
the extension to nonlinear codes may question the validity of the current
reference priors on the code parameters, as well as on the hyperparameters
of the Gaussian process used to represent the model bias term. Indeed,
these priors are well adapted to linear codes, but their behaviour in a
non-linear setting needs to be investigated. It is worth noting that a
similar work on prior elicitation is being conducted in the context of a
PhD in progress in the MRI department, concerning non Gaussian kriging
emulation. Another open question concerns the reference prior for the
ratio k between the variance λ2

1 of measurement errors and that σ2 of
the Gaussian process describing the model bias. Indeed, the current Beta
prior is an ad-hoc choice with no formal justification, though it has been
shown to give good results in practice.

3.3 Case studies

Several applications are envisionned for the time being, concerning several in-
dustrial computer codes developed by EDF:

• A computational fluid dynamics model, developed using Code_Saturne,
is used for the numerical simulation of a welding process, in view of opti-
mizing the settings of the welding operation. The calibration, as well the
validation of this model, are made difficult by its high computational cost
(several hours per run on multiple cores)

• A hydraulic model, developed using TELEMAC 2D, is used to assess the
reliability of industrial installations located next to water bodies, such
as rivers or lakes. Its calibration using sequential planing strategies is
currently being studied, and can be considered as a preliminary step to
its validation.

• Photovoltaic panel models, developed using the systems simulation lan-
gage MODELICA, is currently being developed for a PhD thesis on the
long-term prediction of power production for photovoltaic plants. Vali-
dating such models is crucial in order to guarantee the accuracy of such
predictions.
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4 Required skills

The questions raised by this subject need to be addressed both from theoretical
and operational perspectives. Hence the candidate will have to manipulate
complex mathematical tools and methods, while always keeping in mind the
expected results on real-life applications.

For these reasons, the post-doctoral fellow will need to possess the following
human and technical abilities:

• A good knowledge of probability and statistical theory, and in particular
a very firm background in Bayesian approaches. Experience in the field of
high-dimensional numerical integration would be an appreciable asset;

• Ease in numerical analysis, computational statistics and programming,
with a good knowledge of both R and Python scientific programing envi-
ronments;

• Curiosity, independence, and a taste for working in multidisciplinary teams;

• Good oral and written communication skills, with a capability to under-
stand and explain with clarity a problem and the methods deployed in
order to solve it;

5 Practical information and contacts

• Advisors: Merlin KELLER and Nicolas BOUSQUET (EDF R&D), Guil-
laume DAMBLIN (CEA), Pierre BARBILLON and Eric PARENT (AgroParis-
Tech)

• Location: EDF R&D, MRI department, 6, quai Watier, CHATOU and
AgroParisTech, 16, rue Claude Bernard, PARIS, FRANCE

• Duration: one year, starting October 2016

• Contacts : merlin.keller@edf.fr, nicolas.bousquet@edf.fr, guillaume.damblin@cea.fr,
pierre.barbillon@agroparistech.fr, eric.parent.agroparistech@gmail.com
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