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Abstract:

The failure of a dynamical system often corresponds to a physical variable of the system (tem-
perature, pressure, water level) entering a critical region. Reliability assessment of such a system
requires an accurate model of the physical variable’s trajectory. These physical variables are of-
ten determined by simple differential equations but those equations depend on the status of the
multiple components of the systems (on, off, or out-of-order). Thus the model should incorporate
the dynamics of the status of components, which rely on deterministic feedback mechanisms and
on random failures and repairs. One difficulty is that the time to the next change in components
status can be random or deterministic, whether it is due to a failure/repair or to an automatic
activation/deactivation, consequently its associated random variable has a continuous part and a
discrete one. We propose to model the trajectories of the physical variables of such systems, by
a piecewise deterministic Markovian process (PDMP) introduced by M.H.A. Davis [3]. PDMP
allows to take into account the interplay between components status and the trajectory and the
hybrid aspect of the jump times of the components status.

A PDMP is a general kind of Markovian process that does not include diffusion. Many Markovian
systems used in reliability analysis can be seen as PDMPs (as for instance colored petri nets [4]). A
PDMP describes the trajectory of a pair (X, m;) that is called ‘state’. X; is an element of R% and
is referred to as the 'position’, and m; is referred to as the 'mode’ and takes a countable number of
values. In our cases the mode represents the current components status and the position represents
the values of physical variables. In a PDMP the mode follows a discrete jump process, and between
two jumps of the mode the position X; follows a simple differential equation which depends on the
current value of the mode. At a jump time, it is possible to allow position to jump simultaneously
with the mode. The arrival state of the jump is given by a Markovian kernel which depends on the
departure state. In a PDMP the position can be restricted to evolve in a bounded domain which
depends on the mode. When the differential equation leads the position at the boundary of the
domain, a jump called ’deterministic’ is triggered. This is used to model automatic activations
and deactivations of components in our model. ‘Random’ jumps can also occur before position
hits the boundary of the domain, their law is given through a hazard function which depends on
the current position and current mode. These are used to model failures and repairs. Note that
with this model, failure times do not necessarily follow an exponential distribution, for instance it
is easy to included aging effect of components by adding components ages in the position vector
and choosing a suitable hazard function.

As an example of multicomponent system which can be modeled by a PDMP, one can consider
a dam [5]: the position refers to the water level, system failure corresponds to water level going
above a given threshold, components correspond to evacuation valves, which open and close auto-
matically depending on water level, but may be stalled (out-of-order) in open or closed positions,
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and the water level is given by a debit equations which depends on valves opening status.

The probability of failure can rarely be calculated analytically and when system failure is a rare
event, a precise estimation using a crude Monte-Carlo method is too intensive from a compu-
tational point of view. A well-known way to reduce this computational burden is to decrease
the necessary number of simulations by using a variance reduction technique. Amongst variance
reduction techniques we may think of the multilevel techniques and the importance sampling
techniques. Multilevel techniques assume that it is possible to build a nested sequence of sets of
states (A;),.,<, such that A;41 C A; , with a final A, corresponding to the critical region. These
techniques work well if the probability of having a trajectory passing through A;,; knowing it
passes through A; is not too small, but this practical condition is not always easy to fulfill when
PDMP involve boundaries. Indeed if one considers the probability that the position passes below
a threshold as a function of this threshold, then this function can present discontinuities near
boundaries. If these discontinuities are large then the choice of A;’s is difficult. For this reason
we focus on importance sampling.

Importance sampling consists in simulating from a more fragile system (with higher failure rates)
while eliminating the induced bias by weighting each simulation by a likelihood ratio. To define
a likelihood ratio for PDMP trajectories it is necessary to dispose of a measure dominating both
the law of the trajectories of our system and the law of the importance system (i.e. the weaker
system used for simulations). We first define the law of PDMP trajectories as an image law of
the embedded Markov chain of a PDMP. Then, using this definition we show a way to construct
a dominant measure on the trajectory space by changing the reference measure of the jump
times. We deduce from this dominant measure the possible kinds of importance processes and
their densities. We then apply our adaptation of importance sampling to PDMP on a two-
component system, where we use the cross entropy method[1] to optimize the variance reduction.
A comparison between our importance sampling estimate and a crude Monte-Carlo estimate shows
we gain a factor ten in terms of standard deviation. The simulation of the PDMP is carried on
by the python library “PytCATSHOQO” developed by EDF R&D [2].
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