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Abstract:

Kriging has become a popular metamodel when it comes to emulating computer code. In addition
to being easy to implement, it has the advantage of yielding confidence intervals regarding its
predictions. However, it operates under the assumption that the code it is trying to emulate is
a realisation of a stationary Gaussian process. Of course, the impact of this assumption on the
prediction declines when the number of observation points increases, because Kriging operates
conditionaly to the observations and is therefore able to adapt to them. But in a context where
observation points are scarce (for example, when the emulated code is time-consuming), this as-
sumption needs to be checked if the confidence intervals yielded at the end of the process are to
mean anything.

In some cases the assumption is patently false. When the emulated code is known to yield only
nonnegative values, one cannot expect it to follow a Gaussian distribution, be it stationary or not.
The goal of this thesis is therefore to review all existing approaches to moving Kriging beyond its
classical stationary Gaussian framework and to refine an existing one or to invent another one en-
tirely. The chosen approach will then be applied to a code developed by EDF (Code_Carmel3D) in
order to estimate probabilities of defect detection for certain components of nuclear power plants.
We are currently favouring trans-Gaussian Kriging, where it is assumed that one member of a
family of transformations indexed by a parameter A must be applied to the code in order to get
a stationary Gaussian process.

Let us set up some notations regarding classical Kriging. The emulated code is assumed to follow a
Gaussian distribution whose mean function is (in most cases) assumed to be a linear combination
of a few known functions hi, hg, ... , hp, with linear coefficients grouped in the unknown p-
dimensional vector 3 and whose covariance function is unknown but assumed to be the product
of the unknown one-dimensional variance parameter o2 and an unknown member of a known
family of stationary correlation functions indexed by a (likely multidimensional) parameter 6.
The code is observed at n > p observation points, and y is the n-dimensional vector containing
the observations. H is the known n x p full-ranked matrix whose p columns contain the values
of the functions hi, he, ..., hy at every observation point. Therefore, H3 is the mean vector of
the Gaussian vector y. In order to fully determine the Kriging model, one must thus estimate the
mean parameter 3, the variance parameter o and the correlation parameter 8. Noting Xg the
correlation matrix of the Gaussian vector y, as it naturally depends on correlation parameter 0,
the likelihood of y is :
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Let us note gy a generic member of the transformation family we are using, Jy the absolute value
of the Jacobian determinant of g, at the observation points. If z is the vector containing the
observations, its likelihood can be thus written :
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How are the parameters 3,02,0,\ to be estimated ? Using a Maximum Likelihood Estimator
(MLE) may seem straightforward, but is not a very robust option, especially with few observation
points. This problem could be remedied by using some prior distribution on parameters 3, 02,8, A
to "help the MLE out”.

At this point, we believe we had best separate the ”Gaussian parameters” 3,02,0 from the
”transformation parameter” A, and that the prior distribution on the parameters should be writ-
ten as m(83,02,0 | A\) m()\). This allows for a more generic definition of the prior distribution, as
7(B,0%,0 | \) does not actually depend on the chosen transformation family.

The prior distribution on transformation parameter A will of course depend on the chosen trans-
formation family. It is thus impossible to specify a generic prior 7(A) that would fit all cases.
However, as far as Gaussian parameters 3,02, 8 are concerned, there has been some research by
[BDOSO01] and [Pau05]. They recommend the use of the Bernardo reference prior with the ”mean
parameter” (3 as a nuisance parameter to ” covariance parameters” o2, 8. We would argue that the
covariance parameters should be further split, because there is no reason the variance parameter
o2 should play the same role as the correlation parameter 8. Indeed, we would consider o2 to
be a nuisance parameter with respect to 8. Of course, the greatest difficulty lies in determining
the prior distribution on correlation parameter 8. In order to do that, we will focus on the case
where the covariance function belongs to the tensorized Matérn class with fixed regularity. In this
context, @ is the vector containing the correlation lengths in every direction. We will then derive
the Jeffreys independence prior on the correlation lengths with respect to the integrated likelihood
LY(z|0,)) = [ L(2|8,0%,0,)\) n(B,0% | 6,)) dB do*. The Jeffreys independence prior strikes us
as a better choice than the Jeffreys-rule prior because of the known problems of the Jeffreys-rule
prior when the dimension increases and because the assumption of independence on the different
correlation lengths does not seem unreasonable. After deriving this prior, we will endeavour to
establish the propriety of the posterior distribution.
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