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Abstract: The use of surrogate models is very convenient in engineering. Their main purpose
is to replace an expensive-to-evaluate function s by a simple response surface also called surrogate
model. They are based on a given training set of n observations zj = (xj , yj) where 1 ≤ j ≤ n and
yj = s(xj). Using this training set, we build a surrogate model ŝn that mimics the behavior of s.
The accuracy of the surrogate model relies, inter alia, on the relevance of the training set. The
aim of surrogate modeling is to estimate some features of the function s using ŝ. Of course one is
looking for the best trade-off between a good accuracy of the feature estimation and the number
of calls of s. Consequently, the design of experiments (DOE), that is the sampling of (xj)1≤j≤n,
is a crucial step and an active research field.

There are two ways to sample: either drawing the training set (xj)1≤j≤n at once or building it
sequentially. Some sequential techniques are based on probabilistic surrogate models. The main
advantage of probabilistic approaches is that they provide a measure of uncertainty associated
with the surrogate model in the whole space. This uncertainty is an efficient tool to construct
strategies for various problems such as prediction enhancement, optimization or inversion. For
instance, the Expected Improvement (EI) [5] or the Expected Feasibility (EF) [2] are computed
within the Gaussian frame.

Nevertheless, several methods are generally not naturally embeddable in some stochastic frame.
Hence, they do not provide any prediction error distribution. To overcome this drawback, several
empirical design techniques have been discussed in the literature. These techniques are generally
based on resampling methods such as bootstrap, jackknife, or cross-validation. Among these tech-
niques, we can cite [3, 4, 6]. However, most of these resampling method-based design techniques
lead to clustered sets of points [1, 4].

We propose a universal method to define a measure of uncertainty suitable for any surrogate model
either deterministic or probabilistic. It relies on Cross-Validation (CV) sub-models ( (ŝn,−i),
i = 1, . . . , n) predictions. This empirical distribution may be computed in much more general
frames than the Gaussian one. So that it is called the Universal Prediction distribution (UP
distribution). It allows the definition of many sampling criteria for global refinement, optimization,
and inversion problems.

Definition 1 The Universal Prediction distribution (UP distribution) is the weighted empirical
distribution

µ(n,x)(dy) =

n∑
i=1

wi,n(x)δŝn,−i(x)(dy). (1)

Where the weights are defined below
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wi,n(x) =
1− e

− d((x,xi))
2

ρ2

n∑
j=1

(
1− e

−
d(x,xj)

2

ρ2

) (2)
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Figure 1: Illustration of the UP distribution. Left: Dashed lines: CV sub-models predictions,
solid red line: master model prediction, horizontal bars: local UP distribution at xa = −1.8
and xb = 0.2, black squares: design points. Right: Uncertainty quantification based on the
UP distribution. Red solid line: master model prediction ŝn(x), blue area: region delimited by
ŝn(x)± 3σ̂n(x).
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