Modeling Uncertainties by Simulation

Nabil Rachdi (PhD Student)

nabil.rachdi@eads.net

► GdR MASCOT-NUM (17, 18, 19 of March – Avignon) ◄

Advisors:

Jean-Claude Fort (Paris V), Thierry Klein (Toulouse III) Fabien Mangeant (EADS IW), Régis Lebrun (EADS IW).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

Motivations and notations

2 Model Selection

æ

イロン イヨン イヨン イヨン

General framework

- Variable of Interest: Y, density f, probability measure Q unknown
- Quantity of Interest (QoI): Density distribution, mean, threshold probability, quantile etc...
- Experimental data: $\mathcal{Y}_n^{exp} = Y_1^{exp}, ..., Y_n^{exp}$ (a priori training data) supposed i.i.d from \mathbb{Q}
 - Link to history
 - Arise from experiments, complex codes etc...
 - Small number
 - Difficult to obtain
- Simulated data: $\mathcal{Y}_m^{sim} = Y_1^{sim}, ..., Y_m^{sim}$ depend on the model *h* and the parameter θ
 - $Y_i^{sim} = h(X_i, \theta), i = 1, ..., m, X_i$ i.i.d random variables (density p_X).
 - $h \in \mathcal{H}$ (set of models), $\theta \in \Theta$ (set of parameters)
- Goal: Use Simulated data to improve QoI estimation of Y:
 - \Rightarrow 1. Calibration procedure: choice of the model h, and parameter θ
 - ⇒ 2. Study of the Qol based on (Y^{exp}₁, ..., Y^{exp}_n, Ŷ^{sim}₁, ..., Ŷ^{sim}_m) (*a posteriori* training data) to compare with Qol based on (Y^{exp}₁, ..., Y^{exp}_n)

◆□▶ ◆□▶ ◆臣▶ ★臣▶ = 臣 = のへの

Simulated data calibration

Illustration of Experimental & Simulated Data: Example of a 2D-Performance Y = (Y¹, Y²)

• Choice of $h \in \mathcal{H}$ and $\theta \in \Theta$? \Rightarrow driven by the Qol

Simulated data calibration

• Illustration of Experimental & Simulated Data: Example of a 2D-Performance $Y = (Y^1, Y^2)$

• Choice of $h \in \mathcal{H}$ and $\theta \in \Theta$? \Rightarrow driven by the Qol

Quantity of Interest (QoI):

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, \mathbb{D} a metric space, and W a random variable defined on $(\Omega, \mathcal{A}, \mathbb{P})$, the QoI of W is defined as the function

Some Qol:

-
$$\varphi(W) = \mathbb{E}(W), q_W^{lpha} \Rightarrow \mathbb{D} = \mathbb{R}$$

-
$$\varphi(W) = \mathbb{P}(W > s) \Rightarrow \mathbb{D} = [0, 1]$$

-
$$\varphi(W) = f_W \Rightarrow \mathbb{D} = \{set of distributions\}$$

イロト イヨト イヨト イヨト

Choice of (h, θ) for a *QoI* φ

Minimization of a criterion :

 $M(h, \theta) = \mathcal{D}(\varphi_{h, \theta}, \varphi_Y), \qquad \mathcal{D} : distance on \mathbb{D} \times \mathbb{D}$

- $\varphi_{h,\theta}$ and φ_Y are Qol of $h(X,\theta)$ and Y (resp.)
- suppose (h^*, θ^*) is the unique minimum of M

GOAL:

- (Current work) Minimize $M(h, \theta)$ over Θ for fixed $h \in \mathcal{H}$

$$heta_0(h) = \operatorname*{Argmin}_{oldsymbol{ heta}\in\Theta} M(h,oldsymbol{ heta})$$

- (Later) Minimize $M(h, \theta_0(h))$ over \mathcal{H}

臣

・ロン ・回 と ・ 回 と ・ ・

We use the form:

$$M(h, \theta) = \mathcal{D}(\varphi_{h, \theta}, \varphi_Y) \longrightarrow M(h, \theta) = \int_{\mathbb{R}} \gamma_{h, \theta}(y) f(y) dy$$

- the function $\gamma_{h,\theta}$ is called contrast of (h,θ) :

 $\gamma_{h,\theta} = \Psi(\varphi_{h,\theta})$ with Ψ some function

- recall that f is the density of Y (unknown)

Example of contrasts:

If the *Qol* is the density $\varphi_{h,\theta} = f_{h,\theta}$

- $y \mapsto \gamma_{h,\theta}(y) = -\ln(f_{h,\theta}(y)) \quad \Rightarrow \quad M(h,\theta) = K(f,f_{h,\theta})$
- $\begin{array}{rcl} -& y\mapsto \gamma_{h,\theta}(y)=||f_{h,\theta}||_2^2-2f_{h,\theta}(y) & \Rightarrow & M(h,\theta)=||f-f_{h,\theta}||_2^2.\\ -& \text{etc...} \end{array}$

If the *QoI* is the mean $\varphi_{h,\theta} = \mathbb{E}_X(h(X,\theta))$ - $y \mapsto \gamma_{h,\theta}(y) = (y - \mathbb{E}_X(h(X,\theta)))^2 \Rightarrow M(h,\theta) = \mathbb{E}_Y(Y - \mathbb{E}_X(h(X,\theta)))^2$

Etc ...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Criterion to minimize:

$$M(h, \theta) = \int_{\mathbb{R}} \gamma_{h, \theta}(y) f(y) \, dy$$

Difficulties:

- The density function f of Y is unknown
- For complex models *h*, the QoI $\varphi_{h,\theta}$ can be unreachable with reasonable CPU time $\rightarrow \gamma_{h,\theta} = \Psi(\varphi_{h,\theta})$ unreachable.

Alternative: Use of Experimental & Simulated data

- Replace *f* by its *empirical* version $\rightarrow \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_{i}^{exp}}$ (depends on *n*-Experimental data \mathcal{Y}_{n}^{exp})
- Replace $\gamma_{h,\theta}$ (precisely $\varphi_{h,\theta}$) by its *simulated* version $\rightarrow \gamma_{h,\theta}^m = \Psi\left(\varphi_{h,\theta}^m\right)$ (depends on *m*-Simulated data \mathcal{Y}_m^{sim}).

Practical criterion

$$M(h,\theta) = \int_{\mathbb{R}} \gamma_{h,\theta}(y) f(y) \, dy \quad \longleftrightarrow \quad M_{n,m}(h,\theta) := \frac{1}{n} \sum_{i=1}^{n} \gamma_{h,\theta}^{m}(Y_{i}^{exp})$$

<ロ> <同> <同> < 同> < 回> < 回> = 三

• Criterion to minimize in practice:

$$M_{n,m}(h,\theta) := \frac{1}{n} \sum_{i=1}^{n} \gamma_{h,\theta}^{m}(Y_{i}^{exp})$$

• Estimator of
$$\theta_0(h) = \operatorname{Argmin}_{\theta \in \Theta} M(h, \theta)$$

 $\widehat{\theta}_{n,m}(h) = \operatorname{Argmin}_{\theta \in \Theta} M_{n,m}(h, \theta).$

First question: Consistency

$$\widehat{\theta}_{n,m}(h) \underset{\substack{n \to +\infty \\ m \to +\infty}}{\longrightarrow} \theta_0(h)?$$

臣

Source of errors

Proposition: Oracle inequality

We prove

$$\underbrace{\underline{\mathcal{M}(h,\widehat{\theta}_{n,m}(h)) - \mathcal{M}(h^*,\theta^*)}_{\textit{risk excess of }(h,\,\widehat{\theta}_{n,m}(h))} \leq 2 \cdot \frac{1}{\sqrt{n}} || \, \mathbb{G}_n \gamma_{h,\cdot}^m \, ||_{\Theta} + 2 \cdot ||\mathcal{E}_h^m||_{\Theta} + \Delta_h$$

Variance terms :

$$-\frac{1}{\sqrt{n}}||\mathbb{G}_{n}\gamma_{h,\cdot}^{m}||_{\Theta} = \sup_{\theta\in\Theta} \left|\frac{1}{n}\sum_{i=1}^{n}\left(\gamma_{h,\theta}^{m}(Y_{i}^{\exp}) - \mathbb{E}_{Y}(\gamma_{h,\theta}^{m}(Y))\right)\right| \text{ (deviation)}$$

 \Rightarrow Estimation Error of Statistical Data \rightarrow depends on contrast (i.e QoI)

$$- ||\mathcal{E}_{h}^{m}||_{\Theta} = \sup_{\theta \in \Theta} ||\gamma_{h,\theta}^{m} - \gamma_{h,\theta}||_{1,\mathbb{Q}}, \quad \text{with} \quad ||g||_{1,\mathbb{Q}} = \int_{\mathbb{R}} |g(y)| f(y) \, dy$$

⇒ Simulation Error

Bias term :

- $\Delta_h = M(h, \theta_0(h)) - M(h^*, \theta^*)$

 \Rightarrow Approximation Error of the model h

크

イロン イヨン イヨン -

Representation of the errors

Risk minimization :

$$M(h,\widehat{\theta}_{n,m}) - M(h^*,\theta^*) \leq 2 \cdot \frac{1}{\sqrt{n}} ||\mathbb{G}_n \gamma_{h,\cdot}^m||_{\Theta} + 2 \cdot ||\mathcal{E}_h^m||_{\Theta} + \Delta_h$$

• Work: study the simulation effect on the calibration procedure.

臣

<ロ> <同> <同> < 同> < 同> < 同> 、

Link with classical methods

Oracle Inequality

Recall $M(h, \theta) = \int_{\mathbb{R}} \gamma_{h, \theta}(y) f(y) dy$, we have

$$M(h,\widehat{oldsymbol{ heta}}_n(h)) - M(h^*,oldsymbol{ heta}^*) \leq rac{1}{\sqrt{n}} || \, \mathbb{G}_n \gamma_{h,\cdot} \, ||_{\Theta} + \Delta_h$$

For no complex models: (Linear model etc...)

 \Rightarrow the QoI $\varphi_{h,\theta}$ is reachable \Rightarrow Simulation is useless

Advantages

- Well studied
- Maximum Likelihood etc...

Drawback

- Δ_h can be large (due to simplification of h) Trade-off Bias-Variance
- For *Input/Output* data: $Z_1 = (X_1, Y_1^{exp}), ..., Z_n = (X_n, Y_n^{exp})$

z = (x, y) $\gamma_{h,\theta}(z) = (y - h(x, \theta))^2 \Rightarrow$ Simulation is useless

Theorem: Consistency

We prove that $\widehat{\theta}_{n,m}(h) \underset{\substack{n \to +\infty \\ m \to +\infty}}{\longrightarrow} \theta_0(h)$, under some conditions in terms of :

- Model Complexity (*Bracketing Numbers*) ⇒ depending on the *quantity of interest*
- Simulation Speed (Size of Simulated Data set, m)
- Control of Simulated contrasts (Modified Lindeberg conditions)
- **Consequence:** Compute a *Qol* based on $(Y_1^{exp}, ..., Y_n^{exp}, \hat{Y}_1^{sim}, ..., \hat{Y}_m^{sim})$ is better than a *Qol* based on $(Y_1^{exp}, ..., Y_n^{exp})$ in some typical cases.
 - Key tool : Empirical process theory- V.d. Vaart (1996,2000), V.d Geer (2000) etc ...
 - We give practical conditions for a wide range of applications.

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト … 臣

Theorem

Let $\Gamma_h^m := \{\gamma_{h,\theta}^m, \theta \in \Theta\}$ and denote by F_m an envelope function, assume that

• $R_h^m(\theta, \theta') = \mathbb{Q} \gamma_{h,\theta}^m \gamma_{h,\theta'}^m - \mathbb{Q} \gamma_{h,\theta}^m \mathbb{Q} \gamma_{h,\theta'}^m$ converges on $\Theta \times \Theta$

•
$$\sup_{d(\theta,\theta') \leq \delta_m} \mathbb{Q} \left(\gamma_{h,\theta}^m - \gamma_{h,\theta'}^m \right)^2 \xrightarrow[m \to +\infty]{} 0, \quad \forall \, \delta_m \downarrow 0$$

$$\begin{array}{ll} \bullet & (i) & \mathbb{Q} \ F_m^2 = O(1) \\ (ii) & \mathbb{Q} \ F_m^2 \ \mathbb{1} \left\{ F_m > \sqrt{n} \, \epsilon \right\} \underset{n,m \to +\infty}{\longrightarrow} 0 \quad \forall \, \epsilon > 0. \end{array}$$

$$J_{[]}\left(\delta_m,\, \Gamma_h^m,\, L_2(\mathbb{Q})\right) \underset{m \to +\infty}{\longrightarrow} 0, \quad \forall \, \delta_m \, \downarrow \, 0\,,$$

then $\|G_n\|_{\Gamma_h^m}$ converges $(n, m \to +\infty)$ to the supremum of a centered Gaussian process with covariance function

$$R_h(\boldsymbol{\theta},\boldsymbol{\theta}') = \mathbb{Q} \gamma_{h,\boldsymbol{\theta}} \gamma_{h,\boldsymbol{\theta}'} - \mathbb{Q} \gamma_{h,\boldsymbol{\theta}} \mathbb{Q} \gamma_{h,\boldsymbol{\theta}'}.$$

Corollary

If Γ_h^m satisfies to conditions of this Theorem, the calibration procedure is *consistent*, i.e

$$d\left(\widehat{\theta}_{n,m}(h), \theta_0(h)\right) \xrightarrow[n,m\to+\infty]{\mathbb{P}} 0.$$

・ロ・・ (日・・ (日・・ 日・・)

Theorem

Let $\Gamma_{h}^{m} := \{\gamma_{h,\theta}^{m}, \theta \in \Theta\}$ and denote by F_{m} an envelope function, assume that • $R_{h}^{m}(\theta, \theta') = \mathbb{Q}\gamma_{h,\theta}^{m}\gamma_{h,\theta'}^{m} - \mathbb{Q}\gamma_{h,\theta}^{m}\mathbb{Q}\gamma_{h,\theta'}^{m}$ converges on $\Theta \times \Theta$

•
$$\sup_{d(\theta,\theta') \leq \delta_m} \mathbb{Q} \left(\gamma_{h,\theta}^m - \gamma_{h,\theta'}^m \right)^2 \xrightarrow[m \to +\infty]{} 0, \quad \forall \, \delta_m \downarrow 0$$

• (i)
$$\mathbb{Q} F_m^2 = O(1)$$

(ii) $\mathbb{Q} F_m^2 \mathbb{1} \{F_m > \sqrt{n} \epsilon\} \xrightarrow[n,m \to +\infty]{} 0 \quad \forall \epsilon > 0$ (Control of Simulated contrasts)

٩

$$J_{[]}\left(\delta_{m},\, \Gamma_{h}^{m},\, L_{2}(\mathbb{Q})\right) \underset{m \to +\infty}{\longrightarrow} 0, \quad \forall \, \delta_{m} \downarrow 0 \quad (Complexity \ condition)$$

then $\|G_n\|_{\Gamma_h^m}$ converges $(n, m \to +\infty)$ to the supremum of a centered Gaussian process with covariance function

$$R_h(\boldsymbol{\theta}, \boldsymbol{\theta}') = \mathbb{Q} \gamma_{h, \boldsymbol{\theta}} \gamma_{h, \boldsymbol{\theta}'} - \mathbb{Q} \gamma_{h, \boldsymbol{\theta}} \mathbb{Q} \gamma_{h, \boldsymbol{\theta}'}.$$

Corollary

If Γ_h^m satisfies to conditions of this Theorem, the calibration procedure is *consistent*, i.e

$$d\left(\widehat{\theta}_{n,m}(h), \theta_0(h)\right) \xrightarrow[n,m\to+\infty]{\mathbb{P}} 0.$$

・ロ・・ (日・・ (日・・ 日・・)

Synthesis

- Risk excess ≤ Variance terms + Bias term
- What could happen ?
 - On one hand, a numerician only focuses on minimizing the bias term (Δ_h) ,
 - on the other hand, a statistician can control the *variance term* and ignore the *bias term*.
- We propose a simultaneous approach driven by Simulations

 \Rightarrow Control of variability + Representativity of the model h

Consequences :

- The variance $(\Rightarrow \frac{1}{\sqrt{n}} || \mathbb{G}_n \gamma_{h,\cdot}^m ||_{\Theta} + ||\mathcal{E}_h^m||_{\Theta})$ depends on
 - \Rightarrow the Experimental data
 - \Rightarrow the Quantity of Interest (contrast)
 - \Rightarrow and the Simulated data
- We expect a better estimation procedure for limited amount of experimental data and complex models.

・ロン ・回 と ・ 回 と ・ ・

Example of the Range study

Phenomenon : Y = Range (distance an aircraft can travel), Qol = density distribution

• A priori training data : Experimental data, n = 20, $\mathcal{Y}_n^{exp} = Y_1^{exp}, ..., Y_n^{exp}$

(obtained from complex model *h** supposed to be the "true")

• Additional knowledge : Simulated data, m = 3000, $\mathcal{Y}_m^{sim} = Y_1^{sim}, ..., Y_m^{sim}$ from

$$h(X,\theta) = \frac{FV}{C_s} \frac{1}{\theta_1} \log\left(\frac{1}{1-\theta_2}\right)$$
 - Uncertain Inputs $X = (F, V, C_s)^T$
- Parameters $\theta = (\theta_1, \theta_2) \in \Theta$

• Choice of
$$\theta$$
? $\theta_0(h) = \operatorname{Argmin}_{\theta \in \Theta} \int_{\mathbb{R}} \gamma_{h,\theta}(y) f(y) dy$

$$\gamma_{h,\theta} = -\ln(f_{h,\theta}) \quad f_{h,\theta} \leftrightarrow f_{h,\theta}^m (\textit{Kernel}) \quad f \leftrightarrow \frac{1}{n} \sum_{i=1}^n \delta_{Y_i^{exp}}$$

$$\widehat{\theta}_{n,m}(h) = \underset{\theta \in \Theta}{\operatorname{Argmin}} - \frac{1}{n} \sum_{i=1}^{n} \ln \left(\frac{1}{m} \sum_{j=1}^{m} K_{h_m}(Y_i^{exp} - Y_j^{sim}) \right)$$

• A posteriori training data : $(Y_1^{exp}, ..., Y_n^{exp}, \widehat{Y}_1^{sim}, ..., \widehat{Y}_m^{sim}) \rightarrow n + m = 3020!$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

• Qol with a priori (Experimental) and a posteriori (Experimental + Simulated) training data

True distribution vs Experimental

臣

<ロ> <同> <同> <同> < 同> < 同> < 同> <

• Qol with a priori (Experimental) and a posteriori (Experimental + Simulated) training data

Experimental distribution vs Simulation

Nabil Rachdi (PhD Student) nabil.rachdi@eads.net
Modeling Uncertainties by Simulation

臣

<ロ> <同> <同> < 同> < 同> < 同> 、

• Qol with a priori (Experimental) and a posteriori (Experimental + Simulated) training data

Nabil Rachdi (PhD Student) nabil.rachdi@eads.net Modeling Uncertainties by Simulation

16/21

イロト イヨト イヨト イヨト

Other example: Mean study

Suppose that $Y \sim h(X, \theta_0)$ with $\theta_0 \in \Theta$ Recall that $Y^{sim} = h(X, \theta)$ with $\theta \in \Theta$ Let $Qol = \mathbb{E}(Y) = \varphi_Y = \varphi_{h,\theta_0}$ • $\varphi_{h,\theta} = \mathbb{E}_X(h(X,\theta)),$ $\mathcal{D}(\varphi_{h,\theta}, \varphi_{h,\theta_0}) = \mathbb{E}(\varphi_{h,\theta} - \varphi_{h,\theta_0})^2$ (quadratic risk) • let $\varphi(\mathcal{Y}_n^{exp}) = \frac{1}{n} \sum_{i=1}^n Y_i^{exp}$ and $\varphi(\mathcal{Y}_n^{exp}, \mathcal{Y}_m^{sim}) := \frac{1}{n+m}(Y_1^{exp} + \dots + Y_n^{exp} + \underbrace{Y_1^{sim} + \dots + Y_m^{sim}}_{depend on \theta})$

Question: Is φ(𝔅^{exp}_n, 𝔅^{sim}_m) "better" than φ(𝔅^{exp}_n) ?

 $\Rightarrow \text{ turns out to have } \quad \mathbf{R_{n,m}}(\theta) = \mathbb{E}\left(\varphi(\mathcal{Y}_n^{exp}, \mathcal{Y}_m^{sim}) - \varphi_{h,\theta_0}\right)^2 \leq \mathbf{R_n} = \mathbb{E}\left(\varphi(\mathcal{Y}_n^{exp}) - \varphi_{h,\theta_0}\right)^2$

Lemma

Let $n \in \mathbb{N}$. We show that $\exists \Theta_{sim}(n, \theta_0) \subset \Theta$ and $\exists c_{n, \theta, \theta_0} \in \mathbb{N}$ such that for all $\theta \in \Theta_{sim}(n, \theta_0)$ $\mathbf{R}_{n, m}(\theta) \leq \mathbf{R}_n$ for all $m \geq c_{n, \theta, \theta_0}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

$\begin{array}{l} \text{Mapping of } m\longmapsto \mathbf{R_{n,m}}(\theta) \text{ and } m\longmapsto \mathbf{R_n} \\ \text{For } \Rightarrow \ \theta \ \text{ in } \ \Theta_{sim}(n,\theta_0) \end{array}$

臣

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

$\begin{array}{l} \text{Mapping of } m\longmapsto \mathbf{R_{n,m}}(\theta) \text{ and } m\longmapsto \mathbf{R_n} \\ \text{For } \Rightarrow \ \theta \ \text{ in } \ \Theta_{sim}(n,\theta_0) \end{array}$

臣

イロン イヨン イヨン イヨン

$\begin{array}{l} \text{Mapping of } m\longmapsto \mathbf{R_{n,m}}(\theta) \text{ and } m\longmapsto \mathbf{R_n} \\ \text{For } \Rightarrow \ \theta \ \text{ not in } \ \Theta_{sim}(n,\theta_0) \end{array}$

臣

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

$\begin{array}{l} \text{Mapping of } m\longmapsto \mathbf{R_{n,m}}(\theta) \text{ and } m\longmapsto \mathbf{R_n} \\ \text{For } \Rightarrow \ \theta \ \text{ not in } \ \Theta_{sim}(n,\theta_0) \end{array}$

臣

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- The only θ we dispose is $\widehat{\theta}_{n,m}$
- Question: Does $\hat{\theta}_{n,m}$ belong to $\Theta_{sim}(n,\theta_0)$?
- Need of Central Limit Theorem !

★ E ► ★ E ► ...

Future Work

- Rate of Convergence of the calibration procedure: fonction of n and m ...
 - Impact of Experimental and Simulated data on the estimation
 - For a given *Quantity of Interest* \Rightarrow how many *n*? and how many *m*?
 - etc ...
- Asymptotic Normality
 - Statistic studies
 - Confidence bands
 - etc...
- Sensitivity of this uncertainty analysis in relation to the a priori distribution of X.
- Robustness study: influence of the *QoI* on the *Model Selection*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Thank you for your attention !