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General framework

@ Variable of Interest: Y, density f, probability measure Q unknown

@ Quantity of Interest (Qol): Density distribution, mean, threshold probability, quantile etc...

@ Experimental data: Y. = Y, .., Y. (a priori training data) supposed i.i.d from Q

- Link to history

- Arise from experiments, complex codes etc...
- Small number

- Difficult to obtain

@ Simulated data: Y$i™ = Y™, .. Y™ depend on the model h and the parameter @
- YSM = h(X;,0), i=1,..,m, X; iidrandom variables (density px).
- h € H (set of models), 8 € © (set of parameters)
@ Goal: Use Simulated data to improve Qol estimation of Y:
= 1. Calibration procedure: choice of the model h, and parameter 6

= 2. Study of the Qol based on (Y&, ..., YZ¥, Ysim .. Y§im) (a posteriori training data)
to compare with Qol based on (Y*?, ..., V)
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Simulated data calibration

@ lllustration of Experimental & Simulated Data: Example of a 2D-Performance Y — (Y'. Y2)




Simulated data calibration

@ lllustration of Experimental & Simulated Data: Example of a 2D-Performance Y = (Y1, Y?)

@ Choice of he€ H and 6 € © ? = driven by the Qol
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@ Quantity of Interest (Qol):

Let (22, A, P) be a probability space, D a metric space, and W a random variable defined on
(22, A, P), the Qol of W is defined as the function

p: (,4P) — D
W —  o(W).

@ Some Qol:

- (W) =E(W),qy =D=R /
- p(W)=P(W>s) =D=]0,1]
- o(W)=1fw = D= {setof distributions}
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Choice of (h, 8) for a Qol ¢

@ Minimization of a criterion :

M(h, ) = D(en,e,¢Y), D : distance on D x D

- ¢n,e and py are Qol of h(X,0) and Y (resp.)
- suppose (h*, 8*) is the unique minimum of M
@ GOAL:
- (Current work) Minimize M(h, 8) over © for fixed h € H

Oo(h) = Aregen(;in M(h, )

- (Later) Minimize M(h, 6¢(h)) over H
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@ We use the form:
M(n.6) = D(cna.ov) — M(.0)= [ 1mo(y)y)dy
- the function ~j, ¢ is called contrast of (h, 6):

Yo =V (¢n,g) With W some function

- recall that f is the density of Y (unknown)

@ Example of contrasts:

If the Qol is the density ¢p e = fao
- Y= ne(y) =—In(fre(y)) = M(h 8)=K(f fre)

- Y ane(y) = lfell2 —2fhe(y) = M(h,6) = ||f — f,ell2.
- efc...

If the Qolis the mean ¢p ¢ = Ex(h(X,8))
-y = me(y) = (v —Ex(h(X,0)))? = M(h,6) =Ey (Y —Ex(h(X,0)))?
Etc ...
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@ Criterion to minimize:
M(n.6) = [ no() () o
@ Difficulties:

- The density function f of Y is unknown

- For complex models h, the Qol ¢, g can be unreachable with reasonable CPU time —
Yo = W (¢n,g) unreachable.

@ Alternative: Use of Experimental & Simulated data
- Replace f by its empirical version — 15 >, dyexp (depends on n-Experimental data

ex|
)

- Replace v, ¢ (precisely ¢ g) by its simulated version — 'y;,’je =V <<p%> (depends
on m-Simulated data Y5im).

@ Practical criterion

1 n
M(n.8) = [ no) (N > Mon(h.6) = =5 oo(Y)
i=1
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@ Criterion to minimize in practice:

Mn,m(h, 0) Z’Yh g(Yexp)

@ Estimator of y(h) = Argming.g M(h, 6)
On.m(h) = Argmin M m(h, 6) .
6co

Values of Criterian
{ For b= X fixed )

First question: Consistency

Onm(h) — 6o(h)?
ks S

Parameter space ©
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Source of errors

Proposition: Oracle inequality

We prove

= 1
M(h, 6n,m(h)) — M(h*,0") < 2- %HGWZZ. llo + 2 [I€4"le + An

risk excess of (h, §n,m(h))

@ Variance terms :

1 1
- —=1Gmp. |le = sup |-
ﬁl\ nh,- || 2B 2

Z (,Y’To(yiexp) - ]Ey('y,’,’je(Y))) ’ (deviation)

= Estimation Error of Statistical Data — depends on contrast (i.e Qol)

- Hgfran@:SUBH'YiTe_'Yh,GHLQs with lgll1,@ = Jr 191 f(y) dy
€

= Simulation Error

@ Biasterm:
- Ap = M(h,0o(h)) — M(h*,6%)

= Approximation Error of the model h
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Representation of the errors

@ Risk minimization :

_ 1
M(h, 8n,m) — M(h*,0%) < 2 %H Gnvh lle + 2- |1Ef|le + An

Model © (fixed h e H)

(h*.0°)

Variance

@ Work: study the simulation effect on the calibration procedure.
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Link with classical methods

Oracle Inequality
Recall M(h,0) = [ vne(y)f(y)dy, we have

~ 1
M(h, 6n(h)) — M(h*,0%) < %H Gnn,. llo + An

@ For no complex models: (Linear model etc...)
= the Qol ¢, ¢ is reachable = Simulation is useless

Model © (fixed h € H)

Advantages
- Well studied (6
- Maximum Likelihood etc... .
Drawback

- Ay can be large (due to simplification of h)
Trade-off Bias-Variance

Variance

@ For Input/Output data: Z; = (X, Y{%), ..., Zh = (Xn, Y7*)

z=(x,y) ne(z)=(y— h(x, 0))? = Simulation is useless
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Result: Consistency of Calibration

Theorem: Consistency

We prove that 8, m(h) oy 0o(h) , under some conditions in terms of :
m—+oo
- Model Complexity (Bracketing Numbers) = depending on the quantity of interest
- Simulation Speed (Size of Simulated Data set, m)
- Control of Simulated contrasts (Modified Lindeberg conditions)

@ Consequence: Compute a Qol based on (Y2, ..., YS¥, Ysim . Ysim) is better than a
Qol based on (Y7, ..., Y7*) in some typical cases.

- Key tool : -Empirical process theory- V.d.Vaart (1996,2000), V.d Geer (2000) etc ...
- We give practical conditions for a wide range of applications.
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Theorem
Let I := {7y, @ € ©} and denote by Fr, an envelope function, assume that

@ R'(6,0') = Qg 1e — Q[ Q[ cONVerges on © x ©

2
@ supy(g,0/)<sm, @ (v,’{jg fv,’,’j,,/) e 0, Vém L O
@ () QF2=0(1)
(i) QFfU1{Fm>vne} — 0 Ve>0.
o
gy (6m, T7 L2(Q)) =2 0, Vém L0,

then || Gnl\rhm converges (n, m — +o0) to the supremum of a centered Gaussian process with

covariance function ,
Rrh(0,0") = Qvh,0 Yh,0r — QVh,0 Qyvn,er -

| A

Corollary

If ' satisfies to conditions of this Theorem, the calibration procedure is consistent, i.e

d (én,m(h), eo(h))

P
—
n,m—+oo

0.

o’
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Theorem
Letry := {«/hmﬂ, 6 € ©} and denote by F, an envelope function, assume that

@ R'(6,0') = Qg 1e — Q[ Q[ cONVerges on © x ©

2
o SUpd(oygl)Sam Q (’Y,Te *’YITB/) m:}oo O, V6m J, 0
@ () QF2=0(1)

(i) QF2A{Fn>+/ne} oo 0 Ve>0 (Control of Simulated contrasts)

o
Jjj (6m, T, L2(Q)) v 0, Vém | 0 (Complexity condition)

then || Gnl\rhm converges (n, m — +o0) to the supremum of a centered Gaussian process with
covariance function ,
Rrh(0,0") = Qvh,0 Yh,0r — QVh,0 Qyvn,e -

| A

Corollary

If ' satisfies to conditions of this Theorem, the calibration procedure is consistent, i.e

d (én,m(h), eo(h))

P
—
n,m— -oo

0.

o’
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@ Risk excess < Variance terms + Bias term

@ What could happen ?

- On one hand, a numerician only focuses on minimizing the bias term (Ap),

- on the other hand, a statistician can control the variance term and ignore the bias
term.

@ We propose a simultaneous approach driven by Simulations
= Control of variability + Representativity of the model h

@ Consequences :

- The variance (= %H Gnp. lle + 1I€4"lle) depends on

= the Experimental data
= the Quantity of Interest (contrast)
= and the Simulated data

- We expect a better estimation procedure for limited amount of experimental data and
complex models.
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Example of the Range study

Phenomenon : Y = Range (distance an aircraft can travel), Qol = density distribution

@ A priori training data : Experimental data, n =20, Y. = Y, ., v7*¥

(obtained from complex model h* supposed to be the "true")

@ Additional knowledge : Simulated data, m = 3000, Y™ = Ysim __ Y#im from

FV 1 < 1 ) - Uncertain Inputs X = (F, V, Cs)T

h(X,8) = <. 0 log | 7— o - Parameters 6 = (6,6,) € ©

@ Choiceof 6 ? 0y(h) = Argmin /'yhﬁ(y) f(y)dy
6co Jr

1 n
Yo =—In(fhe) fro ¢ filg (Kernel) f ¢ — ;ayl_exp

n m
0n.m(h) = Argmin _1 S i 1 > Knp (V2P — Y™
6co N5 mi3

@ A posteriori training data : (Y, ..., VS, Y™ YEM)— n+ m = 3020!
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@ Qol with a priori (Experimental) and a posteriori (Experimental + Simulated) training data

True distribution vs Experimental

True_pdf
— Exp_pdr

T
4500 5000 5800 5000 (km)
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@ Qol with a priori (Experimental) and a posteriori (Experimental + Simulated) training data

Experimental distribution vs Simulation

True_pdf
Exp_pdf
Sirnu_pdf

T
4500 5000 5800 5000 {kim)
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@ Qol with a priori (Experimental) and a posteriori (Experimental + Simulated) training data

Confidence bands

True_pdf
— BExp_pdf
— Simu_pdf

TNT N W [T TR
4500 5000 5500 g000 (km)
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Other example: Mean study

Suppose that Y ~ h(X,8y) with 8y € ©

Recall that  YS™ = h(X, 6) with € ©
Let Qol = E(Y) = wy= ¢h,0,

@ vne = Ex(h(X,0)), D(¢h,6,he,) = E(ne — ©n,e,)? (quadratic risk)
@ letp(V®*) =17, v and

I
(yeXP S/m) —

n+m(yexp Tt Yexp + YS/m + o+ YSIITI)
\—,_/
dependon 6 !
@ Question: Is (Y, Ysim) "petter" than p(VeP) ?

= turns out to have Rnm(0) = (@(yexp’ s:m)

2
©h,60)% < Rn =E (0(V7?) — ¢h.0,)

Let n € N. We show that 3 Ogm(n, 89) C © and 3 ¢p,9,9, € N such that
for all @ € O4m(n, )

Rn,m(0) < Rn forall m > Cn,0,6,
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Mapping of m — Rn,m (@) and m — Rp
For = 6 in ©g(n,Hp)

Risk behaviour with simulation

©
=
=
w 2
= 1 -
B
=
B
]
# 2 — Risk_Exp
[ 3 <+« Risk_Exp+Simu
2
=i
o
2
=
T T T T T T
1} \ 100 200 300 400 a00 600
Cn.B.6g

m = number of simulated data
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Mapping of m — Rn,m (@) and m — Rp
For = 6 in ©g(n,Hp)

Risk behaviour with simulation

—— Risk_Exp
<+« Risk_Exp+Simu

0.08
1

Risk
0.06
1

Cn,f.60

'

T T T T T T
0 a0 100 150 200 250 300

m = number of simulated data
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Mapping of m — Rn,m (@) and m — Rp
For = 6 notin Ogj,(n, O))

Risk behaviour with simulation

o
2
g
=
o
2
£
=
=
=
E 2
=27 a
2
-
-
o
2
£ .
)
-
- -
a C — Risk_Exp
v 0% --- Risk_Exp+Simu
T T T T T T
0 50 100 180 200 250 300

m = number of simulated data
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Mapping of m — Rn,m (@) and m — Rp
For = 6 notin Ogj,(n, O))

Risk behaviour with simulation

-+
Z
~
=
# — Risk_Exp
[ <=+ Rigk_Exp+Simu
z
F
= H
=21 a
= g
a
E
F
£ ,Cn0,00
s e
= [l T T T T
1} a0 100 150 200 280 300
= number of simulated data
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Simulate or not to Simulate ?

@ The only 6 we dispose is §n,m
@ Question: Does 5,1,,1, belong to Ogjm(n, Og) ?

@ Need of Central Limit Theorem !
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Future Work

@ Rate of Convergence of the calibration procedure: fonction of nand m ...

- Impact of Experimental and Simulated data on the estimation
- For a given Quantity of Interest = how many n ? and how many m ?

- etc...

@ Asymptotic Normality

- Statistic studies
- Confidence bands

- etc...

@ Sensitivity of this uncertainty analysis in relation to the a priori distribution of X.

@ Robustness study: influence of the Qol on the Model Selection.
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Thank you for your attention !
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