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Introduction

Parametric Uncertainty Quantification

• uncertainties in input quantities (model parameters,

initial and boundary conditions)

• uncertain quantities parametrized by random variables

with known distribution functions

Stochastic spectral methods

• decompose random quantities on suitable

approximation bases (Ghanem and Spanos 91)

• Stochastic expansion of the solution :

U(x , t , ξ) ≈ UP(x , t , ξ) =

P∑

α=1

uα(x , t)Ψα(ξ).

uα(x , t) stochastic modes of the solution.
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Different computational strategies

• probabilistic collocation : stochastic modes evaluated

by polynomial interpolation

• non-intrusive projection : stochastic modes evaluated

by numerical integration

• stochastic Galerkin : reformulated deterministic

problem for the stochastic modes

Stochastic Galerkin methods :

• rely on a weak form of the problem

• well suited for mathematical analysis

• design of adaptive methods
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Euler equations (Sod Shock Tube)

Stochastic density ρ(x , t , ξ) at t = 0.25 and t = 3.25.

Two main difficulties :

• solutions discontinuous in physical as well as in

stochastic spaces

• nonlinearities in the flux functions
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State of the art

Stochastic spectral methods applied to a large variety of

engineering problems (elasticity, thermal science, fluid

flows, chemical/biological systems,...) governed by elliptic,

parabolic ,ODE or incompressible NS models.

Hyperbolic models

• non-intrusive approaches : multi-element probabilistic

collocation methods (Lin et al. 08)

• pseudo-intrusive methods : stochastic modes of flux

computed by quadrature methods (Ge et al. 08,

Poette et al. 09)

• fully intrusive methods : scalar linear wave equation

(Gottlieb and Xiu 08), mean flux upwinding

(Lin et al. 06)
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Objectives

• Develop fully intrusive stochastic Galerkin method

• Investigate hyperbolicity of the Galerkin system

• Design a Roe-type solver with entropy corrector

• Account for non-smooth solutions
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Stochastic parametrization

ξ = (ξ1, . . . , ξN) ∼ U(Ξ = [0, 1]N) → L2(Ξ) corresponding

space of the second-order random variables with the

expectation operator 〈H〉 =
∫

Ξ
H(y)dy .

Stochastic hyperbolic systems

We seek for U(x , t , ξ)∈ R
m ⊗ L2(Ξ, pξ) solving a.s.







∂

∂t
U(x , t , ξ) +

∂

∂x
F (U(x , t , ξ); ξ) = 0,

U(t = 0, x , ξ) = U0(x , ξ).

(x , t , ξ) ∈ Ω × [0, T ] × Ξ,

∇UF ∈ R
m,m stochastic Jacobian matrix R-diagonalizable

almost surely.
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Stochastic discretization

We approximate U(x , t , ξ) in the stochastic space of fully

tensorized piecewise polynomial functions SNo,Nr :

• Nr : resolution level,

• No : expansion order.

Remark : Also possible to work with smaller stochastic

approximation spaces, using for instance sparse

tensorization.

Case N = 1.

Exemple pour Nr = No = 3 : U(ξ) ∈ S3,3.
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Stochastic discretization

We approximate U(x , t , ξ) in the stochastic space of fully

tensorized piecewise polynomial functions SNo,Nr :

• Nr : resolution level,

• No : expansion order.

Case N = 1.

dimSNo,Nr = (No + 1)2Nr=: PπPσ := P.

Select the Stochastic Element (SE) orthonormal basis

{Ψα}α=1,...,P, which corresponds to local (rescaled)

Legendre polynomial bases , s.t.

span(Ψ1, . . . ,ΨP) = SNo,Nr.

α = (ασ, απ), where ασ refers to the stochastic element and

απ to the polynomial function in the stochastic element.
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Stochastic discretization

General case N > 1 obtained by full tensorization.

dimSNo,Nr = (No + 1)N2NNr=: PπPσ := P.

Select the Stochastic Element (SE) orthonormal basis

{Ψα}α=1,...,P, which corresponds to local fully tensorized

(rescaled) Legendre polynomial bases , s.t.

span(Ψ1, . . . ,ΨP) = SNo,Nr.

α = (ασ, απ), where ασ refers to the stochastic element and

απ to the polynomial function in the stochastic element.

Stochastic expansion of the solution :

U(x , t , ξ) ≈ UP(x , t , ξ) =
P∑

α=1

uα(x , t)Ψα(ξ).

uα(x , t) ∈ R
m stochastic modes of the solution.
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The Galerkin system

Galerkin projection of the original stochastic problem :







〈

Ψα
∂UP

∂t

〉

+

〈

Ψα
∂F (UP; ·)

∂x

〉

= 0, ∀α = 1, . . . , P,

〈
ΨαUP

〉
(t = 0) = 〈ΨαU0(x , ·)〉 , ∀α = 1, . . . , P.

We seek for u(x , t) solving

∂

∂t
u(x , t) +

∂

∂x
f (u(x , t)) = 0, u(x , t = 0) = u0(x),

u(x , t) = (u1(x , t), . . . , uP(x , t))T ∈ R
mP,

u0(x) = (
〈

ΨαU0
〉

),

f (u(x , t)) = (f1(u), . . . , fP(u))T ∈ R
mP,

fα(u) :=
〈
ΨαF

(
UP; ·

)〉
, α = 1, . . . , P.
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Hyperbolicity of the Galerkin system

(∇uf (u))α,β=1,...,P =
〈
∇UF (UP; ·)ΨαΨβ

〉

α,β=1,...,P
.

Is the Galerkin system hyperbolic ?

⇔ ∇uf (u) ∈ R
mP,mP

R-diagonalizable ?

Diagonal block structure owing to the decoupling of the

problem over different stochastic elements :

∇uf (u) =











[∇uf ]1 · · · 0 · · · 0
...

. . .
...

0 · · · [∇uf ]ασ · · · 0
...

. . .
...

0 · · · 0 · · · [∇uf ]Pσ











.

→ It suffices to consider Pσ = 1 and ∇uf of size mPπ.



MASCOT
NUM 2010

Julie Tryoen

Galerkin
projection

Stochastic hyperbolic

systems

Stochastic

discretization

The Galerkin system

Hyperbolicity of the

Galerkin system

Numerical
method

Numerical scheme

Roe linearized matrix

Absolute value of a

matrix

The upwind scheme

Results

Periodic Burgers

equation

Euler equations

Entropy corrector

Hyperbolicity of the Galerkin system

HYPERBOLICITY proven in two specific cases :

Theorem

HYPERBOLICITY, if the original stochastic system is a

scalar conservation law.

Theorem

HYPERBOLICITY, if the stochastic Jacobian matrix

∇UF (·; ξ)
• is either symmetric (almost surely)

• or its eigenvectors are deterministic

(independent of the uncertainty).

Applications : Scalar wave equation with uncertain sound

velocity. / Linear hyperbolic systems with uncertainty only on

initial or boundary counditions.
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Hyperbolicity of the Galerkin system

In the general case, we consider the approximate Galerkin

Jacobian matrix ∇uf whose coefficients are obtained by

approaching the coefficients of ∇uf by a Gauss quadrature

(

∇uf (u)
)

απ ,βπ=1,...,Pπ

=




Pπ∑

γ=1

̟γ∇UF (UP(ξγ); ξγ)Ψαπ
(ξγ)Ψβπ

(ξγ)





απ ,βπ=1,...,Pπ

,

{ξγ}γ=1,...,Pπ
set of the Gauss points, with associated

weights {̟γ}γ=1,...,Pπ
.
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Hyperbolicity of the Galerkin system

Assume ∇UF (UP(ξ); ξ) = L(ξ)Λ(ξ)R(ξ),

Theorem

∇uf (u) is R-diagonalizable with eigenvalues {λ′
γ}γ=1,...,mPπ

and right and left eigenvectors {r ′γ}γ=1,...,mPπ
and

{l ′γ}γ=1,...,mPπ
given by







{λ′
γ}γ=1,...,mPπ

= λ′
kη = Λk (ξη),

{r ′γ}γ=1,...,mPπ
=

(
r ′kη

)

β
=

(

̟ηRk (ξη)Ψβ(ξη)
)

β
,

{l ′γ}γ=1,...,mPπ
=

(
l ′kη

)

β
=

(

̟ηLk (ξη)Ψβ(ξη)
)

β
,

where k = 1, . . . , m, η = 1, . . . , Pπ, β = 1, . . . , Pπ.

→ {λ′
γ}γ=1,...,mPπ

, {r ′γ}γ=1,...,mPπ
, and {l ′γ}γ=1,...,mPπ

approximations of the eigenvalues and eigenvectors of ∇uf .
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Numerical scheme

Discretization of the Galerkin system using a FV method :

un+1
i = un

i − ∆nt

∆x

(
ϕ(un

i , un
i+1) − ϕ(un

i−1, un
i )

)
,

• ∆x (uniform) spatial step,

• ∆nt time step,

• ϕ(·, ·) 1st order numerical flux function :

ϕ(un
i , un

i+1) =
f (un

i ) + f (un
i+1)

2
︸ ︷︷ ︸

↑

− |a(un
i , un

i+1)|
︸ ︷︷ ︸

↑

un
i+1 − un

i

2
.

centered part of the flux upwind matrix

chosen as explained below
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Roe linearized matrix

• Assume that the original stochastic problem possesses

a Roe linearized matrix and a Roe state a.s.,

(UL, UR) → ARoe(UL, UR) = ∇UF (URoe

LR ; ·).
• Given two states uL and uR of the Galerkin system,

uL → UP

L

uR → UP

R

〉

→ URoe

LR ,

→ aRoe(uL, uR) =
〈
∇UF (URoe

LR ; ·)ΨαΨβ

〉
.

Theorem

aRoe is a Roe linearized matrix for the Galerkin system.

Choice of upwinding :

ϕ(un
i , un

i+1) =
f (un

i ) + f (un
i+1)

2
− |aRoe(un

i , un
i+1)|

un
i+1 − un

i

2
.

→ Consistency of the numerical scheme

→ Conservativity through shocks
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Efficient approximation of the absolute value of a matrix

A deterministic R-diagonalizable matrix of size NA.

Known data : {λi}i=1,...,NA
eigenvalues of A.

A =
∑

NA

i=1 λi li ⊗ ri , |A| =
∑

NA

i=1 |λi |li ⊗ ri .

For a polynomial q

q(A) =
∑

NA

i=1 q(λi)li ⊗ ri .

→ Determination of a polynomial qd ,{λi} with low degree

d ≪ NA which minimizes the least-square error
∑

NA

i=1(|λi | − qd ,{λi}(λi))
2.

In fact, determination of qd ,{λ′

i
}(A) from {λ′

i}i=1,...,NA

approximate eigenvalues of A.

→ |A| ≈ qd ,{λ′

i
}(A).
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The upwind scheme

At each interface LR in physical space,

uRoe

i,i+1 :=
(〈

ΨαURoe

i,i+1

〉)

α=1,...,P
, projected Roe state in SNo,Nr.

Parallelisation of the procedure on each stochastic element

ασ, 1 ≤ ασ ≤ Pσ,

→ Evaluate approximate eigenvalues {λ′
γ}γ=1,...,mPπ

{λ′
γ}γ=1,...,mPπ

= spec(∇uf (uRoe

i,i+1)).

→ Determine the local polynomial qd ,{λ′

γ
} fitting

{λ′
γ}γ=1,...,mPπ

.

→ Approximate the absolute value of aRoe(un
i , un

i+1)

|aRoe(un
i , un

i+1)| ≈ qd ,{λ′

γ
}(∇uf (uRoe

i,i+1)).
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The upwind scheme

un+1
i = un

i − ∆nt

∆x

(
ϕ(un

i , un
i+1) − ϕ(un

i−1, un
i )

)
,

where the numerical flux ϕ(un
i , un

i+1) is computed in this way

ϕ(un
i , un

i+1) =
f (un

i ) + f (un
i+1)

2
− qd ,{λ′

γ
}(∇uf (uRoe

i,i+1))
un

i+1 − un
i

2
.

CFL condition :

∆ntασ

∆x
=

CFL

max
LR∈I,γ=1,...,mPπ

|λ′
γ |

, ∆nt = min
1≤ασ≤Pσ

∆ntασ .
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Periodic Burgers equation

∂U

∂t
+

∂F (U)

∂x
= 0, F (U) =

U2

2
,

initial random shock locations :

X1,2 = 0.1 + 0.1ξ1, X2,3 = 0.3 + 0.1ξ2, ξ1, ξ2 ∼ U [0, 1].

t = 0 s t = 0.2 s

t = 0.4 s t = 0.6 s



MASCOT
NUM 2010

Julie Tryoen

Galerkin
projection

Stochastic hyperbolic

systems

Stochastic

discretization

The Galerkin system

Hyperbolicity of the

Galerkin system

Numerical
method

Numerical scheme

Roe linearized matrix

Absolute value of a

matrix

The upwind scheme

Results

Periodic Burgers

equation

Euler equations

Entropy corrector

Periodic Burgers equation

x = 0.35, t = 0.2 s x = 0.45, t = 0.4 s x = 0.55, t = 0.6 s

Stochastic solution U(x , t , (ξ1, ξ2)) at observation point

x0(t) = 0.25 + 0.5t as a function of (ξ1, ξ2) and for different times.

Computations with No = Nr = 3.
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Periodic Burgers equation

Expectation Standard Deviation

Space-time diagrams of the expectation 〈U(x , t , ·)〉 and standard

deviation σ(U(x , t , ·)) of the stochastic solution. No = Nr = 3.
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Burgers equation
Nr = 3, No = 1 Nr = 3, No = 2 Nr = 3, No = 3

Nr = 1, No = 3 Nr = 2, No = 3 Nr = 4, No = 3

Stochastic solution of the Burgers equation as a function of

(ξ1, ξ2) at x = 0.5 and t = 0.5 for different Nr and No.
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Euler equations

(Sod Shock Tube)∂U

∂t
+

∂F (U)

∂x
= 0,

U = (ρ, q, E)T , F (U) = (ρv , ρv2 + p, v(E + p))T ,

v =
q

ρ
, p = (γ − 1)

(

E − 1

2
ρv2

)

.

γ(ξ) = 1.4 + 0.2 ξ, ξ ∼ U[0, 1].

Computation of the Galerkin flux : using a pseudo-spectral

approximation (Debusschere et al. 04)

• a × b ≈ a ∗ b =
∑

P

α=0(a ∗ b)αΨα,

(a ∗ b)α =
∑

P

β,δ=0 aβbδMαβδ, Mαβδ = 〈ΨαΨβΨγ〉
• 1/a ≈ a−∗ obtained by solving a ∗ a−∗ = 1

• p ≈ (γ − 1) ∗ (E − (q ∗ q) ∗ (1/ρ)/2)

•
√

a ≈ a∗/2 obtained by solving (a∗/2) ∗ (a∗/2) = a
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Deterministic problem (γ = 1.5) Expected density

Standard deviation (early times) Standard deviation (longer times)

Space-time diagrams of the deterministic density for γ = 1.5, the

expected density, and the standard deviations in the density for

early and longer times. Nr = 3 and No = 2.
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t = 0.25 s t = 0.75 s t = 1.25 s

t = 1.50 s t = 3.25 s t = 5 s

Stochastic density as a function of (x , ξ). Nr = 3 and No = 2.
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Nr = 2 Nr = 3 Nr = 4

No = 0
No = 1
No = 2
No = 3
No = 4

TCPU dimSNr,No

4.0 (4)
6.9 (8)

11.8 (12)
17.1 (16)
24.8 (20)

TCPU dimSNr,No

8.1 (8)
13.9 (16)
23.2 (24)
34.1 (32)
49.3 (40)

TCPU dimSNr,No

16.1 (16)
27.8 (32)
46.5 (48)
68.1 (64)
98.0 (80)

Normalized computational times TCPU for different stochastic

discretization parameters Nr and No. Nc = 250.

→ computational costs scale as dim SNo,Nr at least for

moderate No.
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Entropy corrector

Euler equations (Sod Shock Tube)

Stochastic density ρ(x , t , ξ) at t = 1 obtained without entropy

corrector (using Nr = 3 and No = 2) :

Entropy-violating shock ! → Need for an entropy corrector !
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Entropy corrector

Non-parametrized entropy corrector proposed by Dubois

and Mehlmann (96) for Roe solver in the deterministic case

• Avoid entropy-violating shocks

• Nonlinear modification of the numerical flux in the

vicinity of sonic points

• Detection of sonic expansion waves based on

reconstruction of intermediate states for each couple of

left and right states and test on sign of eigenvalues of

the Roe linearized matrix

→ Adaptation to the present context
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Euler equations (Sod Shock Tube)

Stochastic density ρ(x , t , ξ) at t = 1 obtained without (left) and

with (right) the entropy corrector using Nr = 3 and No = 2.

Comparaison of the mean and standard deviation of the

numerical density at t = 1, computed with a Galerkin method

(using Nr = 3 and No = 2) and a MC method.
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Some details

• Parallelisation of the procedure on each stochastic

element ασ, 1 ≤ ασ ≤ Pσ

• Compute the mPπ characteristic variables {β′
γ}γ=1,...,mPπ

uL − uR ≈ ∑mPπ

γ=1 β′
γr ′γ(uRoe

LR ).

• Reconstruct the mPπ intermediate states at each

physical interface

u′
γ = u′

γ−1 + β′
γr ′γ(uRoe

LR ).

• Determine the set of sonic indices :

S′ = {γ, λ′
γ(u′

γ−1) < 0 < λ′
γ(u′

γ)}.

• The indexing of {λ′
γ}γ and {r ′γ}γ , γ = 1, . . . , mPπ,

provides a correspondence between approximate

eigenvalues and eigenvectors and is central to

determine S′.
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Euler equations (Sod Shock Tube)

x = 0.15 x = 0.2 x = 0.25

x = 0.9, v − c x = 0.9, v x = 0.9, v + c

Approximate eigenvalues (vRoe,∗

LR − c
Roe,∗

LR )(ξη)η=0,...,No (red),

v
Roe,∗

LR (ξη)η=0,...,No (green), and (vRoe,∗

LR + c
Roe,∗

LR )(ξη)η=0,...,No (blue)

corresponding to each stochastic element together with their

density functions. Computations at t = 1 with Nr = 3 and No = 2.
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CPU improvements

• Only the eigenvalue v − c can change its sign.

• Mean value averaged criterium → portions of (x , ξ)
actually selected for the entropy correction :

]xL−1/2, xR+1/2[×ασ such that Eασ [vRoe,∗
LR − c

Roe,∗
LR ]

changes its sign at the physical interface LR.

• Use a numerical tolerance ctol (= Cvref )

Eασ [(v∗
L − c∗

L)] − ctol < 0 < Eασ [(v∗
R − c∗

R)] + ctol .
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Euler equations (Sod Shock Tube) CPU improvements

Portion of the domain (x , ξ) selected for the entropy correction

and card S′. Value=-1 if no correction. Value=0 if test. Card S′

else. Computations with ctol = 1e−2 (left) and ctol = 1e−5 (right).

No = 1, Nr = 3 No = 2, Nr = 3 No = 3, Nr = 3
dimSNr,No 16 24 32

ctol = +∞
ctol = 1e−1

ctol = 1e−2

ctol = 1e−3

ctol = 0

TCPU factor

11.7 1.0e-0
8.2 3.7e-1
6.5 7.1e-2
6.1 2.8e-3

6 2.5e-3

TCPU factor

16.1 1.0e-0
11.8 3.7e-1
9.8 7.1e-2
9.3 2.8e-3
9.2 2.5e-3

TCPU factor

21.6 1.0e-0
16.4 3.7e-1
13.9 7.1e-2
13.5 2.8e-3
13.4 2.5e-3

ǫh 1.32e-3 7.17e-4 2.88e-4
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Conclusion

• fully intrusive multi-resolution scheme

• Roe-type solver with upwind matrices efficiently

computed by an original and fast method

• accurate and robust method

• entropy correction in the presence of sonic points only

requiring marginal costs

• yet, computational costs scale as dim SNo,Nr (at least

for moderate No)

• savings in computational costs for problems with higher

stochastic dimensions

→ adaptive stochastic mesh refinement
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Case of random variables with

non-uniform distribution functions

Stochastic parametrization

ξ = (ξ1, . . . , ξN) vector of random variables with known

independent distribution functions.

Change of variables

x(ξ) = (x1(ξ1), . . . , xN(ξN)) = (p1(ξ1), . . . , pN(ξN)) with

(pd(ξd))d=1,...,N cumulative density functions

→ x(ξ) ∼ U([0, 1]N).

Expansion of a process

H(ξ) = H̃(x(ξ)) =
∑

P

α=1 H̃αΨα(x(ξ)).
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Burgers equation

∂U

∂t
+

∂F (U)

∂x
= 0, F (U) =

U2

2
,

U+(ξ1) = 1 + 0.1(2ξ1 − 1), ξ1 ∼ U [0, 1],

U−(ξ2) = −1 + 0.05(2ξ2 − 1), ξ2 ∼ U [0, 1].
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Error L2 on the eigenvalues of |∇uf (uRoe

LR )| at t = 0.4.

Error L∞ on the eigenvalues of |∇uf (uRoe

LR )| at t = 0.4.

Stochastic error at t = 0.6 on the semi-discrete solution.
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Euler equations

t = 0.20 t = 6.5

Stochastic error ǫh(x , t) for early (left) and longer (right) times.

Nr = 3 No = 1

Stochastic error ǫh(x , t = 6.5) for various No and Nr.

Computations with Nc = 250.
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