Greedy algorithms for incremental design with guaranteed packing and covering performance

Luc Pronzato

Laboratoire I3S, Université Côte d'Azur (UniCA), CNRS, France

[joint work with Anatoly Zhigljavsky, Cardiff University, UK]

Nov. 2025

Outline

- Two space-filling criteria
- 2 Incremental design: Greedy Packing
- Relaxed Greedy Packing
- Boundary avoidance
- 5 Quantisation error or covering radius?
- 6 Designs in a high dimensional cube
- Conclusions
- References

```
\mathscr{X}= a compact subset of \mathbb{R}^d, \mathscr{X}=\mathrm{cl}(\mathrm{int}(\mathscr{X})) (often, \mathscr{X}=[0,1]^d) f\colon \mathscr{X}\to\mathbb{R} \longrightarrow Use pairs (\mathbf{x}_i,f(\mathbf{x}_i)),\ i=1,\ldots,n, to approximate or integrate f over \mathscr{X}
```

```
\mathscr{X}= a compact subset of \mathbb{R}^d, \mathscr{X}=\mathrm{cl}(\mathrm{int}(\mathscr{X})) (often, \mathscr{X}=[0,1]^d) f\colon \mathscr{X}\to\mathbb{R} \longrightarrow Use pairs (\mathbf{x}_i,f(\mathbf{x}_i)),\ i=1,\ldots,n, to approximate or integrate f over \mathscr{X} or for sensitivity analysis. . .
```

```
\mathscr{X}= a compact subset of \mathbb{R}^d, \mathscr{X}=\mathrm{cl}(\mathrm{int}(\mathscr{X})) (often, \mathscr{X}=[0,1]^d) f\colon \mathscr{X}\to\mathbb{R} \longrightarrow Use pairs (\mathbf{x}_i,f(\mathbf{x}_i)),\ i=1,\ldots,n, to approximate or integrate f over \mathscr{X} or for sensitivity analysis...
```

With little prior information about f

- → observe "everywhere"
- ightharpoonup choose a design $\mathbf{X}_n = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ space-filling in \mathscr{X}

```
\mathscr{X}= a compact subset of \mathbb{R}^d, \mathscr{X}=\mathrm{cl}(\mathrm{int}(\mathscr{X})) (often, \mathscr{X}=[0,1]^d) f\colon \mathscr{X}\to\mathbb{R} \longrightarrow Use pairs (\mathbf{x}_i,f(\mathbf{x}_i)),\ i=1,\ldots,n, to approximate or integrate f over \mathscr{X} or for sensitivity analysis...
```

With little prior information about f

- → observe "everywhere"
- ightharpoonup choose a design $\mathbf{X}_n = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ space-filling in \mathscr{X}

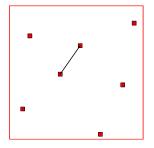
We shall consider two "classical" criteria:

- Packing radius
- Covering radius

(+ the mesh-ratio)

$\mathbf{1}/$ Maximise the packing radius $\mathsf{PR}(\mathbf{X}_n) riangleq rac{1}{2} \min_{i eq j} \|\mathbf{x}_i - \mathbf{x}_j\|$

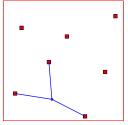
 $PR(\mathbf{X}_n) = \text{separation radius} = \frac{1}{2} \text{ Maximin distance criterion}$



- → can often be related to numerical stability issues
- \rightarrow easy to compute, but pushes points to the boundary of $\mathscr X$

2/ Minimise the covering radius $CR(\mathbf{X}_n) \triangleq \max_{\mathbf{x} \in \mathcal{X}} \min_{\mathbf{x}_i} ||\mathbf{x} - \mathbf{x}_i||$

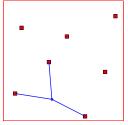
 $CR(\mathbf{X}_n) = fill distance = dispersion = miniMax distance criterion$



- → any arbitrary point in never too far from a design point
- \rightarrow CR(X_n) is more difficult to compute (and optimise) than PR(X_n)
- \rightarrow CR(X_n) often appears in bounds on the approximation error for f

2/ Minimise the covering radius $CR(\mathbf{X}_n) \triangleq \max_{\mathbf{x} \in \mathcal{X}} \min_{\mathbf{x}_i} ||\mathbf{x} - \mathbf{x}_i||$

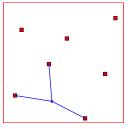
 $CR(\mathbf{X}_n) = fill distance = dispersion = miniMax distance criterion$



- → any arbitrary point in never too far from a design point
- \rightarrow CR(X_n) is more difficult to compute (and optimise) than PR(X_n)
- \rightarrow CR(X_n) often appears in bounds on the approximation error for f

2/ Minimise the covering radius
$$CR(\mathbf{X}_n) \triangleq \max_{\mathbf{x} \in \mathcal{X}} \min_{\mathbf{x}_i} ||\mathbf{x} - \mathbf{x}_i||$$

 $CR(\mathbf{X}_n) = fill distance = dispersion = miniMax distance criterion$



- → any arbitrary point in never too far from a design point
- \rightarrow CR(X_n) is more difficult to compute (and optimise) than PR(X_n)
- \rightarrow CR(X_n) often appears in bounds on the approximation error for f

3/ We may also minimise the mesh-ratio:

$$\mathsf{MR}(\mathbf{X}_n) \triangleq \frac{\mathsf{CR}(\mathbf{X}_n)}{\mathsf{PR}(\mathbf{X}_n)}$$
 (with $\mathsf{MR}(\mathbf{X}_n) \geq 1$ when \mathscr{X} is connected)

 \rightarrow sequence of points $\mathbf{x}_1, \mathbf{x}_2 \dots$, i.e., $\mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$, $k = 1, 2 \dots$

 \rightarrow sequence of points $\mathbf{x}_1, \mathbf{x}_2 \dots$, i.e., $\mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$, $k = 1, 2 \dots$

We don't know in advance when the sequence will be stopped (but before some maximum design size n)

We want all \mathbf{X}_k , $k \leq n$, reasonably space filling

```
\rightarrow sequence of points \mathbf{x}_1, \mathbf{x}_2 \dots, i.e., \mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}, k = 1, 2 \dots
```

We don't know in advance when the sequence will be stopped (but before some maximum design size n)

We want all \mathbf{X}_k , $k \leq n$, reasonably space filling

```
Greedy-Packing algorithm (= "coffee-house design" (Müller, 2007, Chap. 4))
```

 $\mathbf{x_1}$ given (center of \mathcal{X} , or random), then

 $\mathbf{x}_{k+1} \in \operatorname{Arg\,max}_{\mathbf{x} \in \mathscr{X}} d(\mathbf{x}, \mathbf{X}_k), \ \mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$

```
\rightarrow sequence of points \mathbf{x}_1, \mathbf{x}_2 \dots, i.e., \mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}, k = 1, 2 \dots
```

We don't know in advance when the sequence will be stopped (but before some maximum design size n)

We want all \mathbf{X}_k , $k \leq n$, reasonably space filling

 \mathbf{x}_1 given (center of \mathcal{X} , or random), then

$$\mathbf{x}_{k+1} \in \operatorname{Arg\,max}_{\mathbf{x} \in \mathscr{X}} d(\mathbf{x}, \mathbf{X}_k), \ \mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$$

- → at least 50% efficient (Gonzalez, 1985)
- simple proof by induction

$$\left\{ \begin{array}{ll} \mathsf{CR}(\mathbf{X}_k) & \leq & 2\,\mathsf{CR}_k^*\,,\;\forall k \geq 1 \\ \mathsf{PR}(\mathbf{X}_k) & \geq & \frac{1}{2}\,\mathsf{PR}_k^*\,,\;\forall k \geq 2 \\ \mathsf{MR}(\mathbf{X}_k) & \leq & 2\,, \qquad \forall k \geq 2 \end{array} \right.$$

```
\rightarrow sequence of points x_1, x_2 \dots, i.e., X_{k+1} = X_k \cup \{x_{k+1}\}, k = 1, 2 \dots
```

We don't know in advance when the sequence will be stopped (but before some maximum design size n)

We want all \mathbf{X}_k , $k \leq n$, reasonably space filling

 \mathbf{x}_1 given (center of \mathcal{X} , or random), then

$$\mathbf{x}_{k+1} \in \operatorname{Arg\,max}_{\mathbf{x} \in \mathscr{X}} \frac{d(\mathbf{x}, \mathbf{X}_k)}{d(\mathbf{x}, \mathbf{X}_k)}, \mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$$

- → at least 50% efficient (Gonzalez, 1985)
- simple proof by induction

$$\left\{ \begin{array}{ll} \mathsf{CR}(\mathbf{X}_k) & \leq & 2\,\mathsf{CR}_k^*\,,\;\forall k \geq 1 \\ \mathsf{PR}(\mathbf{X}_k) & \geq & \frac{1}{2}\,\mathsf{PR}_k^*\,,\;\forall k \geq 2 \\ \mathsf{MR}(\mathbf{X}_k) & \leq & 2\,, \qquad \forall k \geq 2 \end{array} \right.$$

$$d(\mathbf{x}, \mathbf{X}_{k+1}) = \min\{d(\mathbf{x}, \mathbf{X}_k), \|\mathbf{x} - \mathbf{x}_{k+1}\|\} \rightarrow \text{complexity grows linearly}$$

```
\rightarrow sequence of points \mathbf{x}_1, \mathbf{x}_2 \dots, i.e., \mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}, k = 1, 2 \dots
```

We don't know in advance when the sequence will be stopped (but before some maximum design size n)

We want all \mathbf{X}_k , $k \leq n$, reasonably space filling

 \mathbf{x}_1 given (center of \mathcal{X} , or random), then

$$\mathbf{x}_{k+1} \in \operatorname{Arg\,max}_{\mathbf{x} \in \mathscr{X}} d(\mathbf{x}, \mathbf{X}_k), \ \mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$$

- → at least 50% efficient (Gonzalez, 1985)
- simple proof by induction

$$\left\{ \begin{array}{ll} \mathsf{CR}(\mathbf{X}_k) & \leq & 2\,\mathsf{CR}_k^*\,,\;\forall k\geq 1 \\ \mathsf{PR}(\mathbf{X}_k) & \geq & \frac{1}{2}\,\mathsf{PR}_k^*\,,\;\forall k\geq 2 \\ \hline \mathsf{MR}(\mathbf{X}_k) & \leq & 2\,, \qquad \forall k\geq 2 \end{array} \right.$$

 $\limsup_{k\to\infty} \mathsf{MR}(\mathbf{X}_k) \geq 2$ for any sequence of nested designs

```
\rightarrow sequence of points x_1, x_2 \dots, i.e., X_{k+1} = X_k \cup \{x_{k+1}\}, k = 1, 2 \dots
```

We don't know in advance when the sequence will be stopped (but before some maximum design size n)

We want all \mathbf{X}_k , $k \leq n$, reasonably space filling

 $\mathbf{x_1}$ given (center of \mathcal{X} , or random), then

$$\mathbf{x}_{k+1} \in \overline{\operatorname{Arg} \max_{\mathbf{x} \in \mathscr{X}_{\operatorname{cand}}} d(\mathbf{x}, \mathbf{X}_k)}, \ \mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$$

- → at least 50% efficient (Gonzalez, 1985)
- simple proof by induction

In practice
$$\mathbf{v}_{i}$$
 , $\mathbf{c} \in \mathscr{V}_{i}$, with

$$\mathscr{X}_{\mathrm{cand}}$$

In practice, $\mathbf{x}_{k+1} \in \mathscr{X}_{cand}$ with \mathscr{X}_{cand} a finite set of candidates in \mathscr{X}

 $\left\{ \begin{array}{ll} \mathsf{CR}(\mathbf{X}_k) & \leq & 2\,\mathsf{CR}_k^*\,,\;\forall k\geq 1 \\ \mathsf{PR}(\mathbf{X}_k) & \geq & \frac{1}{2}\,\mathsf{PR}_k^*\,,\;\forall k\geq 2 \\ \mathsf{MR}(\mathbf{X}_k) & < & 2\,, \qquad \forall k\geq 2 \end{array} \right.$

Relaxed Greedy-Packing algorithm

 $\mathbf{x_1}$ given (center of \mathscr{X} , or random), $\boxed{\alpha_k} \in (0,1]$ for all k, then \mathbf{x}_{k+1} such that $d(\mathbf{x}_{k+1},\mathbf{X}_k) = \boxed{\alpha_k} \ \mathsf{CR}(\mathbf{X}_k)$, $\mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$

$$\alpha_k = \frac{d(\mathbf{x}_{k+1}, \mathbf{X}_k)}{\mathsf{CR}(\mathbf{X}_k)}$$

Relaxed Greedy-Packing algorithm

$$\alpha_k = \frac{d(\mathbf{x}_{k+1}, \mathbf{X}_k)}{\mathsf{CR}(\mathbf{X}_k)}$$

• $\alpha_k = 1$ for all k corresponds to greedy packing

Relaxed Greedy-Packing algorithm

 \mathbf{x}_1 given (center of \mathscr{X} , or random), $\boxed{\alpha_k} \in (0,1]$ for all k, then \mathbf{x}_{k+1} such that $d(\mathbf{x}_{k+1},\mathbf{X}_k) = \boxed{\alpha_k} \operatorname{CR}(\mathbf{X}_k)$, $\mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$

$$\alpha_k = \frac{d(\mathbf{x}_{k+1}, \mathbf{X}_k)}{\mathsf{CR}(\mathbf{X}_k)}$$

- $\alpha_k = 1$ for all k corresponds to greedy packing
- A lot of freedom for $\alpha_k \in [0,1]$: Let \mathbf{x}_k^* be such that $d(\mathbf{x}_k^*, \mathbf{X}_k) = \mathsf{CR}(\mathbf{X}_k)$ (furthest away point), $\alpha < 1$

Relaxed Greedy-Packing algorithm

 \mathbf{x}_1 given (center of \mathscr{X} , or random), $\boxed{\alpha_k} \in (0,1]$ for all k, then \mathbf{x}_{k+1} such that $d(\mathbf{x}_{k+1}, \mathbf{X}_k) = \boxed{\alpha_k} \operatorname{CR}(\mathbf{X}_k)$, $\mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$

$$\alpha_k = \frac{d(\mathbf{x}_{k+1}, \mathbf{X}_k)}{\mathsf{CR}(\mathbf{X}_k)}$$

- $\alpha_k = 1$ for all k corresponds to greedy packing
- A lot of freedom for $\alpha_k \in [0,1]$: Let \mathbf{x}_k^* be such that $d(\mathbf{x}_k^*, \mathbf{X}_k) = \mathsf{CR}(\mathbf{X}_k)$ (furthest away point), $\alpha < 1$

$$\mathbf{x}_{k+1} = \text{any } \mathbf{x} \text{ (e.g. random) in } \mathscr{B}_d(\mathbf{x}_k^*, (1-\alpha)\mathsf{CR}(\mathbf{X}_k)) \cap \mathscr{X}$$

Relaxed Greedy-Packing algorithm

 \mathbf{x}_1 given (center of \mathscr{X} , or random), $\boxed{\alpha_k} \in (0,1]$ for all k, then \mathbf{x}_{k+1} such that $d(\mathbf{x}_{k+1},\mathbf{X}_k) = \boxed{\alpha_k} \mathsf{CR}(\mathbf{X}_k)$, $\mathbf{X}_{k+1} = \mathbf{X}_k \cup \{\mathbf{x}_{k+1}\}$

$$\alpha_k = \frac{d(\mathbf{x}_{k+1}, \mathbf{X}_k)}{\mathsf{CR}(\mathbf{X}_k)}$$

- $\alpha_k = 1$ for all k corresponds to greedy packing
- A lot of freedom for $\alpha_k \in [0,1]$: Let \mathbf{x}_k^* be such that $d(\mathbf{x}_k^*, \mathbf{X}_k) = \mathsf{CR}(\mathbf{X}_k)$ (furthest away point), $\alpha < 1$

$$\mathbf{x}_{k+1} = \text{any } \mathbf{x} \text{ (e.g. random) in } \mathcal{B}_d(\mathbf{x}_k^*, (1-\alpha)\mathsf{CR}(\mathbf{X}_k)) \cap \mathcal{X}$$

$$\mathbf{x}_{k+1} = (1 - \alpha)\mathbf{x}_{j,k} + \alpha \mathbf{x}_k^*$$
, with $\|\mathbf{x}_{j,k} - \mathbf{x}_k^*\| = \mathsf{CR}(\mathbf{X}_k)$
 α can be random in $[a, 1]$, $0 < a < 1$

$$(\mathbf{x}_{k}^{*} \in \mathscr{X}_{\mathrm{cand}} \Rightarrow \mathbf{x}_{k+1} \in \mathscr{X}_{\mathrm{cand}})$$

Performance guarantees: (P and Zhigljavsky, 2023)

Define
$$a_0 \triangleq 1$$
, $a_k \triangleq \min\{\alpha_1, \ldots, \alpha_k\}$

 \rightarrow at least $a_{k-1} \times 50\%$ efficient

$$\left\{ \begin{array}{ll} \mathsf{CR}(\mathbf{X}_k) & \leq & (2/a_{k-1})\,\mathsf{CR}_k^*\,, \ \forall k \geq 1 \\ \mathsf{PR}(\mathbf{X}_k) & \geq & (a_{k-1}/2)\,\mathsf{PR}_k^*\,, \ \forall k \geq 2 \\ \mathsf{MR}(\mathbf{X}_k) & \leq & 2/a_{k-1}\,, \end{array} \right. \ \forall k \geq 2$$

Performance guarantees: (P and Zhigljavsky, 2023)

Define
$$a_0 \triangleq 1$$
, $a_k \triangleq \min\{\alpha_1, \dots, \alpha_k\}$

$$\rightarrow \text{ at least } a_{k-1} \times 50\% \text{ efficient}$$

$$\begin{cases} \mathsf{CR}(\mathbf{X}_k) & \leq (2/a_{k-1}) \, \mathsf{CR}_k^* \,, \ \forall k \geq 1 \\ \mathsf{PR}(\mathbf{X}_k) & \geq (a_{k-1}/2) \, \mathsf{PR}_k^* \,, \ \forall k \geq 2 \\ \mathsf{MR}(\mathbf{X}_k) & \leq 2/a_{k-1} \,, \qquad \forall k \geq 2 \end{cases}$$

random designs, of arbitrary size, with space-filling performance guarantees (not the case with determinantal point processes)

Asymptotic performance guarantees: (P and Zhigljavsky, 2023)

If
$$\alpha_k \ge a > 0$$
 for all k and $\liminf_{k \to \infty} \alpha_k = \alpha \in (0, 1]$,

ightarrow asymptotically $\alpha \times$ 50% efficient

$$\begin{cases} \limsup_{k \to \infty} \frac{\operatorname{CR}(\mathbf{X}_k)}{\operatorname{CR}^*_k} & \leq & \frac{2}{\alpha} \\ \liminf_{k \to \infty} \frac{\operatorname{PR}(\mathbf{X}_k)}{\operatorname{PR}^*_k} & \geq & \frac{\alpha}{2} \\ \limsup_{k \to \infty} \operatorname{MR}(\mathbf{X}_k) & \leq & \frac{2}{\alpha} \end{cases}$$

Asymptotic performance guarantees: (P and Zhigljavsky, 2023)

If
$$\alpha_k \geq a > 0$$
 for all k and $\liminf_{k \to \infty} \alpha_k = \alpha \in (0,1]$,

 \rightarrow asymptotically $\alpha \times$ 50% efficient

$$\begin{cases} \limsup_{k \to \infty} \frac{\operatorname{CR}(\mathbf{X}_k)}{\operatorname{CR}^*} & \leq & \frac{2}{\alpha} \\ \liminf_{k \to \infty} \frac{\operatorname{PR}(\mathbf{X}_k)}{\operatorname{PR}^*_k} & \geq & \frac{\alpha}{2} \\ \limsup_{k \to \infty} \operatorname{MR}(\mathbf{X}_k) & \leq & \frac{2}{\alpha} \end{cases}$$

- Connection with with energy minimisation
- Projections onto lower dimensional subspaces can be accounted for

→ Boundary avoidance

Energy minimisation

K a symmetric PD kernel, $\mathbf{X}_n \to \text{empirical measure } \xi_n = \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}$

discrete energy
$$\mathscr{E}_{K}^{\neq}(\xi_{n}) = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

Energy minimisation

K a symmetric PD kernel, $\mathbf{X}_n \to \text{empirical measure } \xi_n = \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}$

discrete energy
$$\mathscr{E}_{K}^{\neq}(\xi_{n}) = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

Audze and Eglais (1977) $\rightarrow \mathscr{E}_{K_2}^{\neq}(\xi_n)$, with $K_2(\mathbf{x},\mathbf{x}') = 1/\|\mathbf{x} - \mathbf{x}'\|^2$ (Riesz kernel)

Optimal design \mathbf{X}_n^* for $K_s(\mathbf{x}, \mathbf{x}') = 1/\|\mathbf{x} - \mathbf{x}'\|^s = \text{set of } s$ Fekete points asymptotically uniform in \mathscr{X} $(\xi_n \overset{\text{w}}{\to} \mu)$ for $s \geq d$

Energy minimisation

K a symmetric PD kernel, $\mathbf{X}_n \to \text{empirical measure } \xi_n = \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}$

discrete energy
$$\mathscr{E}_{K}^{\neq}(\xi_{n}) = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

Audze and Eglais (1977) $\rightarrow \mathscr{E}_{K_2}^{\neq}(\xi_n)$, with $K_2(\mathbf{x},\mathbf{x}') = 1/\|\mathbf{x} - \mathbf{x}'\|^2$ (Riesz kernel)

Optimal design \mathbf{X}_n^* for $K_s(\mathbf{x}, \mathbf{x}') = 1/\|\mathbf{x} - \mathbf{x}'\|^s = \text{set of } s$ Fekete points asymptotically uniform in \mathscr{X} $(\xi_n \overset{\text{w}}{\to} \mu)$ for $s \geq d$

Greedy energy minimisation

$$\mathbf{x}_{k+1} \in \operatorname{Arg\,min}_{\mathbf{x} \in \mathscr{X}} P_{K,\xi_k}(\mathbf{x})$$
 with

$$P_{K,\xi_k}(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^k K(\mathbf{x}, \mathbf{x}_i)$$
 = potential of ξ_k at \mathbf{x}

 \rightarrow if K is "sharp" enough, \mathbf{x}_{k+1} is far from \mathbf{X}_k

Let
$$K(k)=K_{s_k}$$
 (Riesz kernel) with $s_k/\log k\to\infty$ as $k\to\infty$, or $K(k)=K_{\nu,\ell_k}$ (Matérn kernel, $\nu=p+1/2,\ p\in N_0$) with $k^{1/d}(\log k)^2\ell_k\to 0$ as $k\to\infty$, $(\ell=0)$ correlation length, e.g., $K_{3/2,\ell}(\mathbf{x},\mathbf{x}')=(1+\sqrt{3}\|\mathbf{x}-\mathbf{x}'\|/\ell)\mathrm{e}^{-\sqrt{3}\|\mathbf{x}-\mathbf{x}'\|/\ell})$

Let
$$K(k) = K_{s_k}$$
 (Riesz kernel) with $s_k/\log k \to \infty$ as $k \to \infty$, or $K(k) = K_{\nu,\ell_k}$ (Matérn kernel, $\nu = p+1/2, \ p \in N_0$) with $k^{1/d}(\log k)^2\ell_k \to 0$ as $k \to \infty$, $(\ell = \text{correlation length, e.g., } K_{3/2,\ell}(\mathbf{x},\mathbf{x}') = (1+\sqrt{3}\|\mathbf{x}-\mathbf{x}'\|/\ell)\mathrm{e}^{-\sqrt{3}\|\mathbf{x}-\mathbf{x}'\|/\ell})$

Greedy energy minimisation with K(k): $\mathbf{x}_{k+1} \in \operatorname{Arg\,min}_{\mathbf{x} \in \mathscr{X}} P_{K(k),\xi_k}(\mathbf{x})$

⇒ a special case of relaxed greedy packing

$$ightarrow lpha_k = rac{d(\mathbf{x}_{k+1}, \mathbf{X}_k)}{\mathsf{CR}(\mathbf{X}_k)}
ightarrow 1 ext{ as } k
ightarrow \infty$$

→ asymptotically, same performance as with Greedy Packing

$$\begin{cases} \limsup_{k \to \infty} \frac{\mathsf{CR}(\mathbf{X}_k)}{\mathsf{CR}_k^*} & \leq & 2 \\ \liminf_{k \to \infty} \frac{\mathsf{PR}(\mathbf{X}_k)}{\mathsf{PR}_k^*} & \geq & \frac{1}{2} \\ \limsup_{k \to \infty} \mathsf{MR}(\mathbf{X}_k) & \leq & 2 \end{cases}$$

Let
$$K(k) = K_{s_k}$$
 (Riesz kernel) with $s_k/\log k \to \infty$ as $k \to \infty$, or $K(k) = K_{\nu,\ell_k}$ (Matérn kernel, $\nu = p+1/2, \ p \in N_0$) with $k^{1/d}(\log k)^2\ell_k \to 0$ as $k \to \infty$, $(\ell = \text{correlation length, e.g., } K_{3/2,\ell}(\mathbf{x},\mathbf{x}') = (1+\sqrt{3}\|\mathbf{x}-\mathbf{x}'\|/\ell)\mathrm{e}^{-\sqrt{3}\|\mathbf{x}-\mathbf{x}'\|/\ell})$

Greedy energy minimisation with K(k): $\mathbf{x}_{k+1} \in \operatorname{Arg\,min}_{\mathbf{x} \in \mathscr{X}} P_{K(k),\xi_k}(\mathbf{x})$

⇒ a special case of relaxed greedy packing

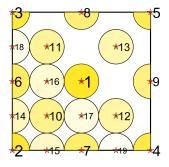
$$ightarrow lpha_k = rac{d(\mathbf{x}_{k+1}, \mathbf{X}_k)}{\mathsf{CR}(\mathbf{X}_k)}
ightarrow 1$$
 as $k
ightarrow \infty$

→ asymptotically, same performance as with Greedy Packing

$$\begin{cases} \limsup_{k \to \infty} \frac{\mathsf{CR}(\mathbf{X}_k)}{\mathsf{CR}_k^*} & \leq & 2 \\ \liminf_{k \to \infty} \frac{\mathsf{PR}(\mathbf{X}_k)}{\mathsf{PR}_k^*} & \geq & \frac{1}{2} \\ \limsup_{k \to \infty} \mathsf{MR}(\mathbf{X}_k) & \leq & 2 \end{cases}$$

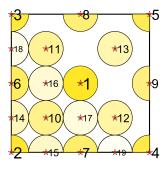
...but the sequence of design points is different from that of Greedy Packing!

Example:
$$\mathscr{X} = [0, 1]^d$$
, $d = 2$, $n = 19$

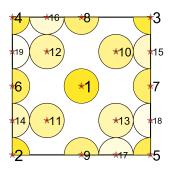


→ standard GP

Example:
$$\mathcal{X} = [0, 1]^d$$
, $d = 2$, $n = 19$



→ standard GP



 \rightarrow Riesz kernel K_5

Greedy Packing with projections

$$\mathscr{X} = [0,1]^d$$
, $\mathcal{J}_i \subseteq \{1,\ldots,d\} = \text{coordinates of a subspace of interest}$
(e.g., $\mathcal{J}_i = (1,3,5)$ for $d=5$)

 $w(|\mathcal{J}_i|) = \text{weight (importance) of subset } \mathcal{J}_i \text{ (only depends on its dimension)}$

J the set of all such index sets of interest

$$\mathbf{x}_{k+1} \in \operatorname{Arg\,max}_{\mathbf{x} \in \mathscr{X}} \, \min_{\mathcal{J} \in \mathbb{J}} \quad \underbrace{\left\{ \frac{d(\{\mathbf{x}\}_{\mathcal{J}}, \{\mathbf{X}_k\}_{\mathcal{J}})}{w(|\mathcal{J}|) \, \operatorname{CR}_{\mathcal{J}}(\mathbf{X}_k)} \right\}}$$

concerns projections onto \mathcal{J}

→ performance guarantees on projections

Greedy Packing with projections

$$\mathscr{X} = [0,1]^d$$
, $\mathcal{J}_i \subseteq \{1,\ldots,d\} = \text{coordinates of a subspace of interest}$ (e.g., $\mathcal{J}_i = (1,3,5)$ for $d=5$)

 $w(|\mathcal{J}_i|) = \text{weight (importance) of subset } \mathcal{J}_i \text{ (only depends on its dimension)}$

J the set of all such index sets of interest

$$\mathbf{x}_{k+1} \in \operatorname{Arg\,max}_{\mathbf{x} \in \mathscr{X}} \, \min_{\mathcal{J} \in \mathbb{J}} \quad \underbrace{\left\{ \frac{d(\{\mathbf{x}\}_{\mathcal{J}}, \{\mathbf{X}_k\}_{\mathcal{J}})}{w(|\mathcal{J}|) \, \operatorname{CR}_{\mathcal{J}}(\mathbf{X}_k)} \right\}}$$

concerns projections onto \mathcal{J}

→ performance guarantees on projections

Lh (random) design with d (very) small (2 or 3):

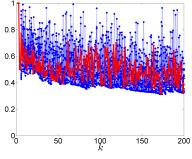
$$\mathscr{X}= \text{regular grid}=\{\frac{i-1}{n-1},\ i=1,\ldots,n\}^d,\ \mathbf{x}_1 \text{ random in } \mathscr{X}$$

 $w(d)\gg w(1)>0$ (\Rightarrow \mathbf{X}_{n} is a Lh), randomise if equivalent choices for \mathbf{x}_{k+1}

Example: $\mathcal{X} = [0,1]^d$, d = 5, n = 200 full space (weight w(5)) + 10 subspaces of dimension 2 (weight w(2))

Example: $\mathscr{X} = [0,1]^d$, d = 5, n = 200 full space (weight w(5)) + 10 subspaces of dimension 2 (weight w(2))

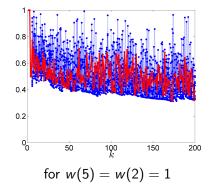
$$ightarrow$$
 plot $\alpha_{k,\mathcal{J}} = \frac{d(\{\mathbf{x}_{k+1}\}_{\mathcal{J}}, \{\mathbf{X}_k\}_{\mathcal{J}})}{\mathsf{CR}_{\mathcal{J}}(\mathbf{X}_k)}$ for $|\mathcal{J}| = 2$ and $|\mathcal{J}| = 5$

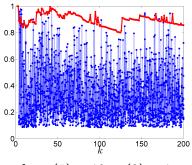


for
$$w(5) = w(2) = 1$$

Example: $\mathcal{X} = [0,1]^d$, d = 5, n = 200 full space (weight w(5)) + 10 subspaces of dimension 2 (weight w(2))

$$ightarrow$$
 plot $\alpha_{k,\mathcal{J}} = \frac{d(\{\mathbf{x}_{k+1}\}_{\mathcal{J}}, \{\mathbf{X}_k\}_{\mathcal{J}})}{\mathsf{CR}_{\mathcal{J}}(\mathbf{X}_k)}$ for $|\mathcal{J}| = 2$ and $|\mathcal{J}| = 5$



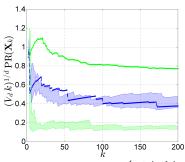


for w(5) = 10, w(2) = 1

 $a_{\mathcal{J}} = \min_k \alpha_{k,\mathcal{J}} \rightarrow a_{\mathcal{J}} \times 50\%$ guaranteed PR and CR efficiency for subspace \mathcal{J}

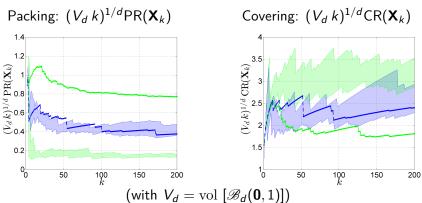
$$w(5) = w(2) = 1$$
, $w(5) = 10$, $w(2) = 1$

Packing: $(V_d k)^{1/d} PR(\mathbf{X}_k)$



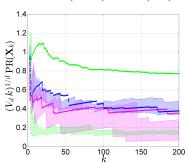
(with $V_d = \operatorname{vol} \left[\mathscr{B}_d(\mathbf{0}, 1) \right]$)

$$w(5) = w(2) = 1, w(5) = 10, w(2) = 1$$



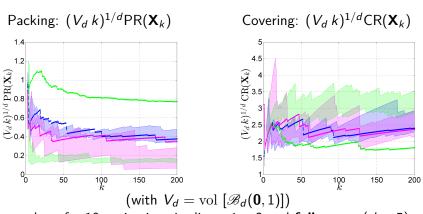
$$w(5) = w(2) = 1$$
, $w(5) = 10$, $w(2) = 1$
... and 200 point from Sobol' LD sequence

Packing: $(V_d k)^{1/d} PR(\mathbf{X}_k)$



(with $V_d = \operatorname{vol} \left[\mathscr{B}_d(\mathbf{0}, 1) \right]$)

$$w(5) = w(2) = 1$$
, $w(5) = 10$, $w(2) = 1$... and 200 point from Sobol' LD sequence



4 Boundary avoidance

GP puts many points on the boundary of \mathscr{X} for $\mathscr{X} = [0,1]^d$ with large d, vertices are selected first (up to k=256 for d=8)

4 Boundary avoidance

GP puts many points on the boundary of \mathscr{X} for $\mathscr{X} = [0,1]^d$ with large d, vertices are selected first (up to k=256 for d=8)

$$\rightarrow \mathbf{x}_{k+1} \in \operatorname{Arg\,max}_{\mathbf{x} \in \mathscr{X}} \min \left\{ d(\mathbf{x}, \mathbf{X}_n), \beta \underbrace{d(\mathbf{x}, \partial \mathscr{X})}_{\text{distance to boundary}} \right\}$$

 $\beta = \infty o ext{standard greedy packing}$

$$\beta = \infty \rightarrow \text{standard greedy packing}$$

$$\mathscr{X} = [0,1]^d$$
:

(P and Zhigljavsky, 2023):
$$\beta < \infty \Leftrightarrow$$
 particular instance of relaxed GP with $\alpha_k \geq \alpha = 1/(1+\sqrt{d}/\beta) \ \forall k \rightarrow$ performance guarantees

$$\beta = \infty \rightarrow \text{standard greedy packing}$$

$$\mathscr{X} = [0,1]^d$$
:

(P and Zhigljavsky, 2023): $\beta < \infty \Leftrightarrow$ particular instance of relaxed GP with $\alpha_k \ge \alpha = 1/(1+\sqrt{d}/\beta) \ \forall k \rightarrow$ performance guarantees

$$\beta < \infty$$
 may reduce $CR(\mathbf{X}_n)$

Shang and Apley (2021) recommend $\beta = 2\sqrt{2d}$

Nogales Gómez, P and Rendas (2021) recommend

$$\beta = \beta(n_{\text{max},d}) = \frac{d}{2(n_{\text{max}}V_d)^{-1/d}} - \sqrt{d} \text{ (with } V_d = \text{vol } [\mathscr{B}_d(\mathbf{0},1)])$$

... the choice is not crucial (try several, optimise numerically)

$$\beta = \infty \rightarrow \text{standard greedy packing}$$

$$\mathscr{X} = [0,1]^d$$
:

(P and Zhigljavsky, 2023): $\beta < \infty \Leftrightarrow$ particular instance of relaxed GP with $\alpha_k \ge \alpha = 1/(1+\sqrt{d}/\beta) \ \forall k \rightarrow$ performance guarantees

$$\beta < \infty$$
 may reduce $CR(\mathbf{X}_n)$

Shang and Apley (2021) recommend $\beta = 2\sqrt{2d}$

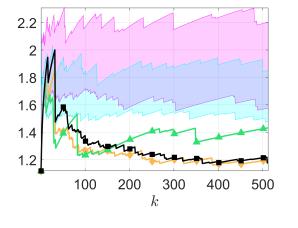
Nogales Gómez, P and Rendas (2021) recommend

$$\beta = \beta(n_{\text{max},d}) = \frac{d}{2(n_{\text{max}}V_d)^{-1/d}} - \sqrt{d} \text{ (with } V_d = \text{vol } [\mathscr{B}_d(\mathbf{0},1)])$$

... the choice is not crucial (try several, optimise numerically)

Comparison between: random points, (scrambled) Sobol' points, greedy packing $(\beta=\infty)$, greedy packing with boundary avoidance $(\beta=2\sqrt{2d})$, relaxed greedy packing with $\alpha=\alpha(n_{\max,d})=1-\frac{2(n_{\max}V_d)^{-1/d}}{\sqrt{d}}$

$$\mathscr{X} = [0,1]^d$$
, $d = 5$, $n_{\text{max}} = 2^9 = 512$
Covering radius $CR(\mathbf{X}_k)$ (as it decreases like $k^{-1/d}$, we plot $k^{1/d}CR(\mathbf{X}_k)$)



Random designs

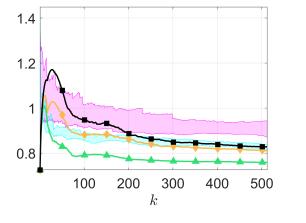
(scrambled) Sobol'

$$\triangle - \beta = 2\sqrt{2d}$$

$$- \beta = +\infty$$
 (standard GP)

$$\mathscr{X} = [0,1]^d$$
, $d = 5$, $n_{\text{max}} = 2^9 = 512$, μ uniform

Quantisation error: $k^{1/d} E_{10,\mu}(\mathbf{X}_k) = k^{1/d} \left\{ \int [d(\mathbf{x}, \mathbf{X}_k)]^{10} \mu(\mathrm{d}\mathbf{x}) \right\}^{1/10}$



Random designs (scrambled) Sobol'

$$-\beta = +\infty$$
 (standard GP)

$$\triangle - \beta = 2\sqrt{2d}$$

$$E_{s,\mu}(\mathbf{X}_n) = \{ \int [d(\mathbf{x}, \mathbf{X}_n)]^s \mu(\mathrm{d}\mathbf{x}) \}^{1/s}$$
 is more "informative" than $CR(\mathbf{X}_n)$

$$E_{s,\mu}(\mathbf{X}_n) = \{ \int [d(\mathbf{x}, \mathbf{X}_n)]^s \mu(\mathrm{d}\mathbf{x}) \}^{1/s}$$
 is more "informative" than $\mathsf{CR}(\mathbf{X}_n)$

Distance c.d.f. $F_{X_n}(r)$

Consider $d(U, \mathbf{X}_n) = \min_{\mathbf{x}_i \in \mathbf{X}_n} \|U - \mathbf{x}_i\|$ with $U \stackrel{d}{\sim} \mu$ uniform on \mathscr{X} (= [0, 1]^d) define $F_{\mathbf{X}_n}(r) = \operatorname{Prob} \{U \in \bigcup_{i=1}^n \mathscr{B}_d(\mathbf{x}_i, r)\} = \operatorname{Prob} \{d(U, \mathbf{X}_n) \leq r\}$

$$E_{s,\mu}(\mathbf{X}_n) = \{ \int [d(\mathbf{x}, \mathbf{X}_n)]^s \mu(\mathrm{d}\mathbf{x}) \}^{1/s}$$
 is more "informative" than $CR(\mathbf{X}_n)$

Distance c.d.f. $F_{X_n}(r)$

Consider $d(U, \mathbf{X}_n) = \min_{\mathbf{x}_i \in \mathbf{X}_n} \|U - \mathbf{x}_i\|$ with $U \stackrel{d}{\sim} \mu$ uniform on \mathscr{X} (= [0, 1]^d) define $F_{\mathbf{X}_n}(r) = \operatorname{Prob} \{U \in \bigcup_{i=1}^n \mathscr{B}_d(\mathbf{x}_i, r)\} = \operatorname{Prob} \{d(U, \mathbf{X}_n) \leq r\}$

 \rightarrow contains all the information about the filling of \mathscr{X} by \mathbf{X}_n $E_{s,u}^s(\mathbf{X}_n) = s$ -moment of $F_{\mathbf{X}_n}$

$$E_{s,\mu}(\mathbf{X}_n) = \{ \int [d(\mathbf{x}, \mathbf{X}_n)]^s \mu(\mathrm{d}\mathbf{x}) \}^{1/s}$$
 is more "informative" than $CR(\mathbf{X}_n)$

Distance c.d.f. $F_{X_n}(r)$

Consider $d(U, \mathbf{X}_n) = \min_{\mathbf{x}_i \in \mathbf{X}_n} \|U - \mathbf{x}_i\|$ with $U \stackrel{d}{\sim} \mu$ uniform on \mathscr{X} (= [0, 1]^d) define $F_{\mathbf{X}_n}(r) = \operatorname{Prob} \{U \in \bigcup_{i=1}^n \mathscr{B}_d(\mathbf{x}_i, r)\} = \operatorname{Prob} \{d(U, \mathbf{X}_n) \leq r\}$

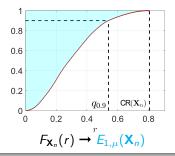
 \rightarrow contains all the information about the filling of \mathscr{X} by \mathbf{X}_n $E^s_{s,\mu}(\mathbf{X}_n) = s\text{-moment of } F_{\mathbf{X}_n}$

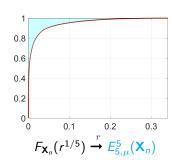
$$E_{s,\mu}(\mathbf{X}_n) = \{ \int [d(\mathbf{x}, \mathbf{X}_n)]^s \mu(\mathrm{d}\mathbf{x}) \}^{1/s}$$
 is more "informative" than $\mathrm{CR}(\mathbf{X}_n)$

Distance c.d.f. $F_{X_n}(r)$

Consider $d(U, \mathbf{X}_n) = \min_{\mathbf{x}_i \in \mathbf{X}_n} \|U - \mathbf{x}_i\|$ with $U \stackrel{d}{\sim} \mu$ uniform on \mathscr{X} (= [0, 1]^d) define $F_{\mathbf{X}_n}(r) = \operatorname{Prob} \{U \in \bigcup_{i=1}^n \mathscr{B}_d(\mathbf{x}_i, r)\} = \operatorname{Prob} \{d(U, \mathbf{X}_n) \leq r\}$

 \rightarrow contains all the information about the filling of \mathscr{X} by \mathbf{X}_n $E^s_{s,\mu}(\mathbf{X}_n) = s\text{-moment of } F_{\mathbf{X}_n}$

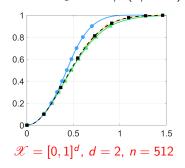




(normalised) $F_{\mathbf{X}_n}(r)$ for a random design \mathbf{R}_n with $\mathbf{x}_i \overset{d}{\sim} \mu$ and for Sobol' points \mathbf{S}_n $F_{\mathbf{S}_n}(n^{-1/d}r) \bullet - \bullet$, $F_{\mathbf{R}_n}(n^{-1/d}r) \blacktriangle - \blacktriangle$ (and $\bigstar - \bigstar$) Asymptotically $F_{\mathbf{R}_n}(n^{-1/d}r) \to 1 - \exp(-V_d r^d)$ (Weibull) as $n \to \infty$ \blacksquare - - \blacksquare with $V_d = \pi^{d/2}/\Gamma(d/2+1)$ volume of $\mathscr{B}_d(\mathbf{0},1)$

(normalised) $F_{\mathbf{X}_n}(r)$ for a random design \mathbf{R}_n with $\mathbf{x}_i \stackrel{d}{\sim} \mu$ and for Sobol' points \mathbf{S}_n $F_{\mathbf{S}_n}(n^{-1/d}r) \bullet - \bullet, F_{\mathbf{R}_n}(n^{-1/d}r) \blacktriangle - \blacktriangle \text{ (and } \bigstar - \bigstar)$

Asymptotically $F_{\mathbf{R}_n}(n^{-1/d}r) \to 1 - \exp(-V_d r^d)$ (Weibull) as $n \to \infty$ \blacksquare - - - \blacksquare with $V_d = \pi^{d/2}/\Gamma(d/2+1)$ volume of $\mathscr{B}_d(\mathbf{0},1)$



Consider the queue of the distribution rather than its support

$$(E_{s,\mu}(\mathbf{X}_n) o \mathsf{CR}(\mathbf{X}_n) \text{ as } s o \infty)$$

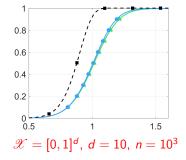
d small:

Good agreement with the asymptotic behaviour for \mathbf{R}_n

 S_n much preferable to R_n

(normalised) $F_{\mathbf{X}_n}(r)$ for a random design \mathbf{R}_n with $\mathbf{x}_i \stackrel{d}{\sim} \mu$ and for Sobol' points \mathbf{S}_n $F_{\mathbf{S}_n}(n^{-1/d}r) \bullet - \bullet, F_{\mathbf{R}_n}(n^{-1/d}r) \blacktriangle - \blacktriangle \text{ (and } \bigstar - \bigstar)$

Asymptotically $F_{\mathbf{R}_n}(n^{-1/d}r) \to 1 - \exp(-V_d r^d)$ (Weibull) as $n \to \infty$ \blacksquare - -- \blacksquare with $V_d = \pi^{d/2}/\Gamma(d/2+1)$ volume of $\mathscr{B}_d(\mathbf{0},1)$



d large:

 S_n and R_n perform similarly

 \mathbf{R}_n far from the asymptotic behaviour

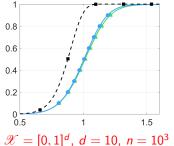
Asymptotic distribution:

neglect the boundary effect

 \rightarrow strong boundary effect for large d

(normalised) $F_{\mathbf{X}_n}(r)$ for a random design \mathbf{R}_n with $\mathbf{x}_i \stackrel{d}{\sim} \mu$ and for Sobol' points \mathbf{S}_n $F_{S}(n^{-1/d}r) \bullet - \bullet$. $F_{R_{-}}(n^{-1/d}r) \blacktriangle - \blacktriangle$ (and $\bigstar - \bigstar$)

Asymptotically $F_{\mathbf{R}_{-}}(n^{-1/d}r) \to 1 - \exp(-V_d r^d)$ (Weibull) as $n \to \infty$ with $V_d = \pi^{d/2}/\Gamma(d/2+1)$ volume of $\mathcal{B}_d(\mathbf{0},1)$



d large:

 S_n and R_n perform similarly

 \mathbf{R}_n far from the asymptotic behaviour

Asymptotic distribution:

neglect the boundary effect

 \rightarrow strong boundary effect for large d

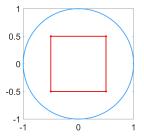
$$\mathscr{X} = [0,1]^n$$
, $d = 10$, $n = 10^n$

Random (uniform) designs in $\mathscr{X} = [-1,1]^d$ for large d: X and Y i.i.d. $\overset{d}{\sim} \mu$

$$\left\{\left|\|X\|^2 - \frac{d}{3}\right| > t\right\} \le 2 \exp\left(-\frac{2t^2}{d}\right)$$

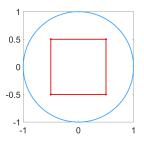
$$\left\{ \left| \|X - Y\|^2 - \frac{2d}{3} \right| > t \right\} \le 2 \exp\left(-\frac{t^2}{8d} \right)$$

$$\mathscr{B}_d(\mathbf{0},\mathbf{1})$$
: volume $V_d=\pi^{d/2}/\Gamma(d/2+1)\to 0$ (quickly) as $d\to\infty$ $[-1/2,1/2]^d$: volume $=1$

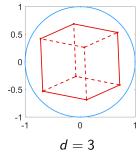


→ a 2d projection

$$\mathcal{B}_d(\mathbf{0},\mathbf{1})$$
: volume $V_d=\pi^{d/2}/\Gamma(d/2+1)\to 0$ (quickly) as $d\to\infty$ $[-1/2,1/2]^d$: volume $=1$

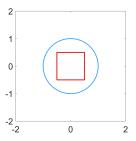


→ a 2d projection



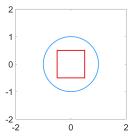
→ a random 2d projection

 $\mathscr{B}_d(\mathbf{0},1)$: volume $V_d=\pi^{d/2}/\Gamma(d/2+1)\to 0$ (quickly) as $d\to\infty$ $[-1/2,1/2]^d$: volume =1

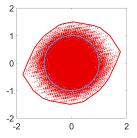


→ a particular 2d projection

 $\mathscr{B}_d(\mathbf{0},\mathbf{1})$: volume $V_d=\pi^{d/2}/\Gamma(d/2+1)\to 0$ (quickly) as $d\to\infty$ $[-1/2,1/2]^d$: volume =1



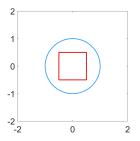
→ a particular 2d projection



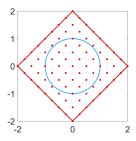
d = 16 (65536 vertices)

→ a random 2d projection

$$\mathscr{B}_d(\mathbf{0},\mathbf{1})$$
: volume $V_d=\pi^{d/2}/\Gamma(d/2+1)\to 0$ (quickly) as $d\to\infty$ $[-1/2,1/2]^d$: volume $=1$



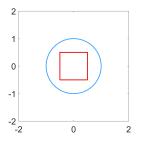
→ a particular 2d projection

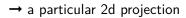


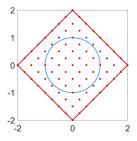
d = 16 (65536 vertices)

→ a particular 2d projection

$$\mathscr{B}_d(\mathbf{0},1)$$
: volume $V_d=\pi^{d/2}/\Gamma(d/2+1)\to 0$ (quickly) as $d\to\infty$ $[-1/2,1/2]^d$: volume $=1$





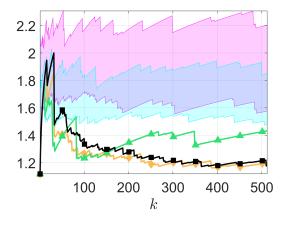


 $d = 16 \ (65 \ 536 \ \text{vertices})$

→ a particular 2d projection

large $d \implies$ many vertices, far away, difficult to cover

$$d=5$$
, $n_{\text{max}}=2^9=512$
Covering radius $k^{1/d} \operatorname{CR}(\mathbf{X}_k)$



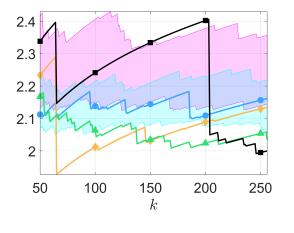
Random designs

(scrambled) Sobol'

$$\triangle - \beta = 2\sqrt{2d}$$

$$- \beta = +\infty$$
 (standard GP)

$$d=10$$
, $n_{\text{max}}=2^8=256$
Covering radius $k^{1/d} \operatorname{CR}(\mathbf{X}_k)$



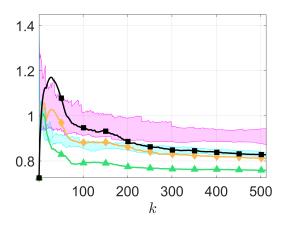
Random designs

(scrambled) Sobol'

$$\triangle - \beta = 2\sqrt{2d}$$

$$d=5$$
, $n_{\text{max}}=2^9=512$, μ uniform

Quantisation error: $k^{1/d}E_{10,\mu}(\mathbf{X}_k)$



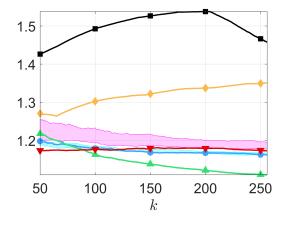
Random designs (scrambled) Sobol'

$$- \beta = +\infty$$
 (standard GP)

$$\triangle - \beta = 2\sqrt{2d}$$

$$d=10$$
 , $n_{\mathsf{max}}=2^8=256$, μ uniform

Quantisation error: $k^{1/d}E_{10,\mu}(\mathbf{X}_k)$



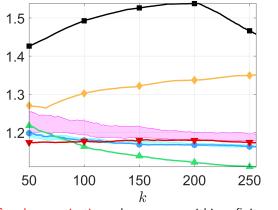
$$- \beta = +\infty$$
 (standard GP)

Random designs

▼ — greedy quantisation (scrambled) Sobol'

$$\triangle - \beta = 2\sqrt{2d}$$

$$d=10$$
, $n_{\text{max}}=2^8=256$, μ uniform Quantisation error: $k^{1/d}E_{10,\mu}(\mathbf{X}_k)$



$$- \beta = +\infty$$
 (standard GP)

Random designs

▼ — greedy quantisation (scrambled) Sobol'

Greedy quantisation: choose \mathbf{x}_{k+1} within a finite set of candidates $\mathscr{X}_{\mathrm{cand}}$ approximate $\int [d(\mathbf{x}, \mathbf{X}_n)]^s \mu(\mathrm{d}\mathbf{x})$ by a finite sum

ightarrow a second finite set $\mathscr{X}_{\mathrm{eval}}$ (Nogales Gómez, P and Rendas, 2021)

 $woheadrightarrow \mathscr{X}_{ ext{cand}}$ and $\mathscr{X}_{ ext{eval}}$ necessarily much smaller than $\mathscr{X}_{ ext{cand}}$ for greedy packing

6 Designs in a high dimensional cube

Based on (Karvonen, P and Zhigljavsky, 2026)

- Forget about $CR(\mathbf{X}_n)$, consider $E_{s,\mu}(\mathbf{X}_n)$, μ uniform
- Consider **random designs** \mathbf{R}_n with the \mathbf{x}_i i.i.d. $\stackrel{d}{\sim} \mathbb{P}$ for some \mathbb{P}
- Minimise $E_{R_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}$ with respect to \mathbb{P} (parameterised)

6 Designs in a high dimensional cube

Based on (Karvonen, P and Zhigljavsky, 2026)

- Forget about $CR(\mathbf{X}_n)$, consider $E_{s,\mu}(\mathbf{X}_n)$, μ uniform
- Consider **random designs** \mathbf{R}_n with the \mathbf{x}_i i.i.d. $\stackrel{d}{\sim} \mathbb{P}$ for some \mathbb{P}
- Minimise $E_{R_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}$ with respect to \mathbb{P} (parameterised)

We have
$$E^s_{s,\mu}(\mathbf{R}_n) = \mathrm{E}_U\{d^s(U,\mathbf{R}_n)\} = s\int_{r\geq 0} r^{s-1}[1-F_{\mathbf{R}_n}(r)]\,\mathrm{d}r$$
 (integration by part) with $F_{\mathbf{R}_n}(t) = \mathrm{Prob}_U\{d(U,\mathbf{R}_n)\leq t\},\ U\stackrel{d}{\sim} \mu$, the distance c.d.f.

6 Designs in a high dimensional cube

Based on (Karvonen, P and Zhigljavsky, 2026)

- Forget about $CR(\mathbf{X}_n)$, consider $E_{s,\mu}(\mathbf{X}_n)$, μ uniform
- Consider **random designs** \mathbf{R}_n with the \mathbf{x}_i i.i.d. $\overset{d}{\sim} \mathbb{P}$ for some \mathbb{P}
- Minimise $E_{R_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}$ with respect to \mathbb{P} (parameterised)

We have
$$E_{s,\mu}^s(\mathbf{R}_n) = \mathrm{E}_U\{d^s(U,\mathbf{R}_n)\} = s\int_{r\geq 0} r^{s-1}[1-F_{\mathbf{R}_n}(r)]\,\mathrm{d}r$$
 (integration by part) with $F_{\mathbf{R}_n}(t) = \mathrm{Prob}_U\{d(U,\mathbf{R}_n)\leq t\},\ U\stackrel{d}{\sim} \mu$, the distance c.d.f.

Therefore,
$$\mathsf{E}_{\mathsf{R}_n}\{E^s_{s,\mu}(\mathsf{R}_n)\} = s \int_{r \geq 0} r^{s-1} [1 - F_n(r;\mathbb{P})] \, \mathrm{d}r$$

with
$$F_n(t;\mathbb{P}) = \mathsf{E}_{\mathsf{R}_n}\{F_{\mathsf{R}_n}(t)\}$$
 the **mean distance c.d.f.** (Jensen inequality $\Rightarrow \mathsf{E}_{\mathsf{R}_n}\{E_{s,\mu}^s(\mathsf{R}_n)\} > [\mathsf{E}_{\mathsf{R}_n}\{E_{s,\mu}(\mathsf{R}_n)\}]^s$ for $s>1$)

 \rightarrow compute/approximate $F_n(t; \mathbb{P})$

We have
$$F_n(t; \mathbb{P}) = \mathsf{E}_U \left\{ \mathsf{Prob}_{\mathsf{R}_n} \left\{ d(U, \mathsf{R}_n) \leq t \right\} \right\}$$
 with $\mathsf{Prob}_{\mathsf{R}_n} \left\{ d(\mathsf{u}, \mathsf{R}_n) \leq t \right\} = 1 - (1 - \mathbb{P} \left\{ \|\mathsf{u} - X\| \leq t \right\})^n, \ X \overset{d}{\sim} \mathbb{P}$

We have
$$F_n(t; \mathbb{P}) = \mathbb{E}_U \left\{ \operatorname{Prob}_{\mathbb{R}_n} \left\{ d(U, \mathbb{R}_n) \leq t \right\} \right\}$$
 with $\operatorname{Prob}_{\mathbb{R}_n} \left\{ d(\mathbf{u}, \mathbb{R}_n) \leq t \right\} = 1 - (1 - \mathbb{P} \left\{ \|\mathbf{u} - X\| \leq t \right\})^n, \ X \stackrel{d}{\sim} \mathbb{P}$ \rightarrow approximate $\mathbb{P} \left\{ \|\mathbf{u} - X\| \leq t \right\}$ (Noonan and Zhigljavsky, 2024)

When \mathbb{P} is spherically symmetric with center $\mathbf{0}$, $\mathbb{P}\{\|\mathbf{u} - X\| \leq t\} = \mathcal{I}(\|\mathbf{u}\|, t)$, a one dimensional integral involving the regularised incomplete beta-function

We have
$$F_n(t; \mathbb{P}) = \mathbb{E}_U \{ \operatorname{Prob}_{\mathbb{R}_n} \{ d(U, \mathbb{R}_n) \leq t \} \}$$
 with $\operatorname{Prob}_{\mathbb{R}_n} \{ d(\mathbf{u}, \mathbb{R}_n) \leq t \} = 1 - (1 - \mathbb{P} \{ \|\mathbf{u} - X\| \leq t \})^n, \ X \stackrel{d}{\sim} \mathbb{P}$ \rightarrow approximate $\mathbb{P} \{ \|\mathbf{u} - X\| \leq t \}$ (Noonan and Zhigljavsky, 2024)

When \mathbb{P} is spherically symmetric with center $\mathbf{0}$, $\mathbb{P}\{\|\mathbf{u} - X\| \leq t\} = \mathcal{I}(\|\mathbf{u}\|, t)$, a one dimensional integral involving the regularised incomplete beta-function Calculation of $F_n(t; \mathbb{P})$ \Longrightarrow integration with respect to the distribution of $\|U\|$

We have
$$F_n(t; \mathbb{P}) = \mathbb{E}_U \{ \operatorname{Prob}_{\mathbb{R}_n} \{ d(U, \mathbb{R}_n) \leq t \} \}$$
 with $\operatorname{Prob}_{\mathbb{R}_n} \{ d(\mathbf{u}, \mathbb{R}_n) \leq t \} = 1 - (1 - \mathbb{P} \{ \|\mathbf{u} - X\| \leq t \})^n, X \stackrel{d}{\sim} \mathbb{P}$ \rightarrow approximate $\mathbb{P} \{ \|\mathbf{u} - X\| \leq t \}$ (Noonan and Zhigljavsky, 2024)

When \mathbb{P} is spherically symmetric with center $\mathbf{0}$, $\mathbb{P}\{\|\mathbf{u}-X\|\leq t\}=\mathcal{I}(\|\mathbf{u}\|,t)$, a one dimensional integral involving the regularised incomplete beta-function Calculation of $F_n(t;\mathbb{P})$ \Longrightarrow integration with respect to the distribution of $\|U\|$

If ${\mathscr X}$ is a ball we are done: three nested one-dimensional integrals

- one for $\mathcal{I}(\|\mathbf{u}\|,t)$
 - one for $F_n(t; \mathbb{P})$ (with respect to distribution of ||U|| with $U \stackrel{d}{\sim} \mu$)
 - one for $E_{R_n}\{E_{s,\mu}^s(\mathbf{R}_n)\} = s \int_{r>0} r^{s-1} [1 F_n(r; \mathbb{P})] dr$
 - \rightarrow minimise $\mathsf{E}_{\mathsf{R}_n}\{E_{s,\mu}^s(\mathsf{R}_n)\}$ with respect to \mathbb{P} (parameterised)

Things are more complicated for $\mathscr{X} = [-1, 1]^d$...

Things are more complicated for $\mathscr{X} = [-1, 1]^d$...

1. Use a parametric distribution for the x_i in \mathscr{X}

$$\begin{array}{l} \mathbb{P}_{\alpha,\delta}(d\mathbf{x}) = \prod_{i=1}^d p_{\alpha,\delta}(x_i) \mathrm{d}x_i \\ = \text{product of symmetric Beta}_{\delta}(\alpha,\alpha) \text{ distributions on } [-\delta,\delta], \ \alpha,\delta \geq 0 \end{array}$$

$$p_{\alpha,\delta}(t) = \frac{(2\delta)^{1-2\alpha}}{\mathrm{B}(\alpha,\alpha)} [\delta^2 - t^2]^{\alpha-1}, \quad -\delta < t < \delta$$

 $\delta \leq 1$ for designs in $\mathscr{X} = [-1,1]^d$; for $\alpha = 0$ each $\mathbf{x}_i = \pm \delta$ with prob. 1/2; $\alpha = \delta = 1 \rightarrow \mathbb{P}_{1,1} = \mu$, uniform on \mathscr{X}

Things are more complicated for $\mathcal{X} = [-1, 1]^d \dots$

1. Use a parametric distribution for the x_i in \mathscr{X}

$$\begin{array}{l} \mathbb{P}_{\alpha,\delta}(d\mathbf{x}) = \prod_{i=1}^d p_{\alpha,\delta}(x_i) \mathrm{d}x_i \\ = \text{product of symmetric Beta}_{\delta}(\alpha,\alpha) \text{ distributions on } [-\delta,\delta], \ \alpha,\delta \geq 0 \end{array}$$

$$p_{\alpha,\delta}(t) = \frac{(2\delta)^{1-2\alpha}}{\mathrm{B}(\alpha,\alpha)} [\delta^2 - t^2]^{\alpha-1}, \quad -\delta < t < \delta$$

 $\delta \leq 1$ for designs in $\mathscr{X} = [-1,1]^d$; for $\alpha = 0$ each $\mathbf{x}_i = \pm \delta$ with prob. 1/2; $\alpha = \delta = 1 \rightarrow \mathbb{P}_{1,1} = \mu$, uniform on \mathscr{X}

2. Approximate $\mathbb{P}_{\alpha,\delta}$ by a spherically symmetric distribution

Replace $X \stackrel{d}{\sim} \mathbb{P}_{\alpha,\delta}$ by $X' \stackrel{d}{\sim} \mathbb{Q}_{\alpha,\delta}$ spherically symmetric, with

$$||X'||^2 \stackrel{d}{\sim} \mathrm{B}(t;a,b|M) = \frac{t^{a-1}(M-t)^{b-1}}{M^{a+b-1}\mathrm{B}(a,b)}, \ t \in (0,M), \ a,b > 0,$$

and a, b, M such that the first three moments of $||X||^2$ and $||X'||^2$ coincide

 \rightarrow explicit expressions for a, b, M as functions of α and δ (and d) (Noonan and Zhigliavsky, 2024)

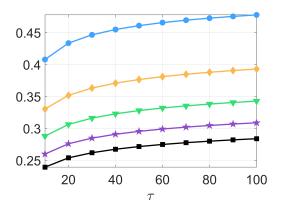
- 3. Approximation of $E_{R_n}\{E_{s,\mu}^s(R_n)\}$
 - **3.1**: approximate $F_n(t; \mathbb{P}_{\alpha, \delta})$ by $F_n(t; \mathbb{Q}_{\alpha, \delta})$:
 - ightharpoonup requires two 1-d integrations, one of them with respect to the distribution of $\|U\|$ with $U \stackrel{d}{\sim} \mu$

- 3. Approximation of $E_{R_n}\{E_{s,\mu}^s(R_n)\}$
 - **3.1**: approximate $F_n(t; \mathbb{P}_{\alpha, \delta})$ by $F_n(t; \mathbb{Q}_{\alpha, \delta})$:
 - ightharpoonup requires two 1-d integrations, one of them with respect to the distribution of $\|U\|$ with $U \stackrel{d}{\sim} \mu$
 - **3.2**: approximate μ by $\mathbb{Q}_{1,1}$ (spherically symmetric) $\rightarrow \widehat{F}_n(r;\mathbb{Q}_{\alpha,\delta})$

- 3. Approximation of $E_{R_n}\{E_{s,\mu}^s(R_n)\}$
 - **3.1**: approximate $F_n(t; \mathbb{P}_{\alpha, \delta})$ by $F_n(t; \mathbb{Q}_{\alpha, \delta})$:
 - ightharpoonup requires two 1-d integrations, one of them with respect to the distribution of $\|U\|$ with $U \stackrel{d}{\sim} \mu$
 - **3.2**: approximate μ by $\mathbb{Q}_{1,1}$ (spherically symmetric) $\rightarrow \widehat{F}_n(r;\mathbb{Q}_{\alpha,\delta})$
 - **3.3** approximate $\mathsf{E}_{\mathsf{R}_n}\{E^s_{s,\mu}(\mathsf{R}_n)\} = s\int_{r\geq 0} r^{s-1}[1 F_n(r;\mathbb{P}_{\alpha,\delta})]\,\mathrm{d}r$ by $\widehat{\mathsf{E}}_{\mathsf{R}_n}\{E^s_{s,\mu}(\mathsf{R}_n)\} = s\int_{r\geq 0} r^{s-1}[1 \widehat{F}_n(r;\mathbb{Q}_{\alpha,\delta})]\,\mathrm{d}r$
 - Minimise $\widehat{E}_{\mathbf{R}_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}$ with respect to α and δ

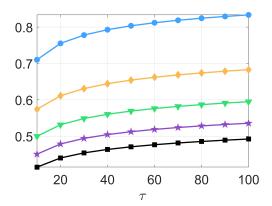
For all $d \gtrsim 10$, unless n is astronomically large, the optimal α equals zero! (i.e., the \mathbf{x}_i are at vertices of a cube $[-\delta_0, \delta_0]^d$)

$$\delta_0(\tau)$$
 for $n = \tau d$, with $d = 10$ (•), $d = 20$ (•), $d = 30$ (\mathbf{v}), $d = 40$ ($\mathbf{\star}$), and $d = 50$ ($\mathbf{\bullet}$)



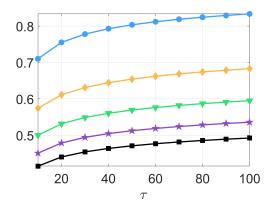
 $\underline{\alpha=1}$ (points uniformly distributed in $[-\delta_1,\delta_1]^d$) is only slightly worse than $\alpha=0$ (with $\delta_1>\delta_0$)

$$\delta_1(\tau)$$
 for $n = \tau d$, with $d = 10$ (\bullet), $d = 20$ (\blacklozenge), $d = 30$ (\blacktriangledown), $d = 40$ (\bigstar), and $d = 50$ (\blacksquare)



 $\underline{\alpha=1}$ (points uniformly distributed in $[-\delta_1,\delta_1]^d$) is only slightly worse than $\alpha=0$ (with $\delta_1>\delta_0$)

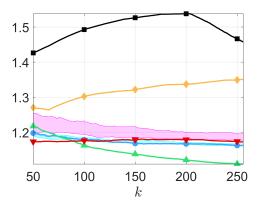
$$\delta_1({\color{red} au})$$
 for $n={\color{red} au}d$, with $d=10$ (${\color{red} ullet}$), $d=20$ (${\color{red} ullet}$), $d=30$ (${\color{red} ullet}$), $d=40$ (${\color{red} \star}$), and $d=50$ (${\color{red} ullet}$)



Small influence of n and s on δ_0 and δ_1 (small increase when $n \nearrow$ and/or $s \nearrow$)

$$d = 10$$
, $n_{\text{max}} = 2^8 = 256$, μ uniform

Quantisation error:
$$k^{1/d}E_{10,\mu}(\mathbf{X}_k)$$



$$- \beta = +\infty$$
 (standard GP)

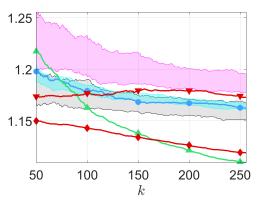
Random designs

ightharpoonup — greedy quantisation (scrambled) Sobol' in $[0,1]^d$

$$\triangle - \beta = 2\sqrt{2d}$$

$$d = 10$$
, $n_{\text{max}} = 2^8 = 256$, μ uniform

Minimisation of
$$\widehat{E}_{R_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}\$$
 for $s=2$: $\alpha=0 \rightarrow \delta_0 \simeq 0.446$



Random designs

▼ — greedy quantisation (s = 10) (scrambled) Sobol' in $[0,1]^d$

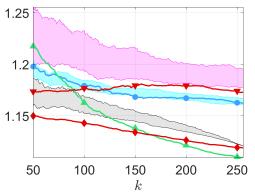
random sampling of vertices $\pm \delta_0$ without replacement

- lack greedy quantisation (s=2)
- $\triangle \beta = 2\sqrt{2d}$

$$d = 10$$
, $n_{\text{max}} = 2^8 = 256$, μ uniform

Minimisation of
$$\widehat{E}_{\mathbf{R}_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}\$$
 for $s=2$: $\alpha=0 \rightarrow \delta_0 \simeq 0.446$

Quantisation error: $k^{1/d}E_{10,\mu}(\mathbf{X}_k)$



Random designs

lacktriangledown — greedy quantisation (s=10) (scrambled) Sobol' in $[0,1]^d$

random sampling of vertices $\pm \delta_0$ in a 2^{d-2} fractional-factorial design

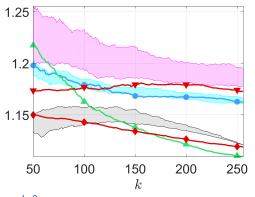
- lacktriangle greedy quantisation (s = 2)

 2^{d-2} fractional-factorial design = subset of the 2^d vertices with max. PR (Box and Hunter, 1961a,b)

$$d = 10$$
, $n_{\text{max}} = 2^8 = 256$, μ uniform

Minimisation of
$$\widehat{E}_{\mathbf{R}_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}\$$
 for $s=2$: $\alpha=0 \rightarrow \delta_0 \simeq 0.446$

Quantisation error: $k^{1/d}E_{10,\mu}(\mathbf{X}_k)$



Random designs

▼ — greedy quantisation (s = 10) (scrambled) Sobol' in $[0,1]^d$

greedy packing on vertices $\pm \delta_0$ in a 2^{d-2} fractional-factorial design

lack — greedy quantisation (s=2)

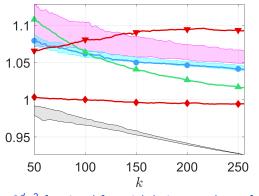
 $\triangle - \beta = 2\sqrt{2d}$

 2^{d-2} fractional-factorial design = subset of the 2^d vertices with max. PR (Box and Hunter, 1961a,b)

$$d = 10$$
, $n_{\text{max}} = 2^8 = 256$, μ uniform

Minimisation of
$$\widehat{E}_{\mathbf{R}_n}\{E^s_{s,\mu}(\mathbf{R}_n)\}\$$
 for $s=2$: $\alpha=0 \rightarrow \delta_0 \simeq 0.446$

Quantisation error: $k^{1/d}E_{2,\mu}(\mathbf{X}_k)$



lacktriangle — greedy quantisation (s=10)

Random designs (scrambled) Sobol' in $[0,1]^d$

$$\triangle - \beta = 2\sqrt{2d}$$

lack — greedy quantisation (s = 2)

greedy packing on vertices $\pm \delta_0$

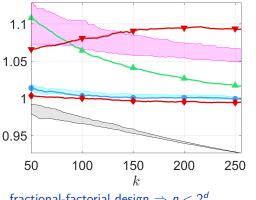
in a 2^{d-2} fractional-factorial design

 2^{d-2} fractional-factorial design = subset of the 2^d vertices with max. PR (Box and Hunter, 1961a,b)

$$d = 10$$
, $n_{\text{max}} = 2^8 = 256$, μ uniform

Minimisation of
$$\widehat{\mathsf{E}}_{\mathsf{R}_n}\{E_{s,\mu}^s(\mathsf{R}_n)\}$$
 for $s=2$: $\alpha=0 \to \delta_0 \simeq 0.446$ $\alpha=1 \to \delta_1 \simeq 0.769$

Quantisation error: $k^{1/d}E_{2,\mu}(\mathbf{X}_k)$



▼ — greedy quantisation (s = 10)

Random designs

 $[(1-\delta_1)/2,(1+\delta_1)/2]^d$

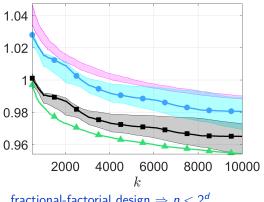
lack — greedy quantisation (s=2)

greedy packing on vertices $\pm \delta_0$ in a 2^{d-2} fractional-factorial design

fractional-factorial design $\Rightarrow n < 2^d$ (scrambled) Sobol' points in $[(1 - \delta_1)/2, (1 + \delta_1)/2]^d$: any n is allowed

$$d=10$$
 , $n_{\mathsf{max}}=10\,000$, μ uniform

Minimisation of
$$\widehat{E}_{\mathbf{R}_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}$$
 for $s=2$: $\alpha=1 \rightarrow \delta_1 \simeq 0.905$
Quantisation error: $k^{1/d}E_{2,\mu}(\mathbf{X}_k)$



Random designs

(scrambled) Sobol' in $[0,1]^d$

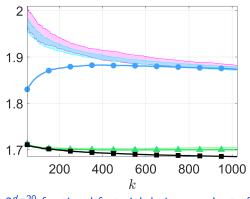
fractional-factorial design $\Rightarrow n < 2^d$ (scrambled) Sobol' points in $[(1 - \delta_1)/2, (1 + \delta_1)/2]^d$: any n is allowed

$$d = 30$$
, $n_{\text{max}} = 2^{10} = 1024$, μ uniform

"very high dimension": \mathscr{X} has more than 10^9 vertices ($\gg n$)

Minimisation of
$$\widehat{E}_{\mathbf{R}_n}\{E_{s,\mu}^s(\mathbf{R}_n)\}\$$
 for $s=2$: $\alpha=0 \rightarrow \delta_0 \simeq 0.319$ $\alpha=1 \rightarrow \delta_1 \simeq 0.554$

Quantisation error: $k^{1/d}E_{10,\mu}(\mathbf{X}_k)$



Random designs (scrambled) Sobol' in $[0,1]^d$

(scrambled) Sobol' in $[(1-\delta_1)/2,(1+\delta_1)/2]^d$ greedy packing on vertices $\pm \delta_0$ in a 2^{d-20} fractional-factorial design

 2^{d-20} fractional-factorial design = subset of the 2^{30} vertices with max. PR

7 Conclusions

- Greedy packing algorithm: an extremely useful too for the incremental construction of nested designs
- ullet space-filling designs in small dimension (with boundary avoidance when $\mathscr X$ is a cube)
- ullet For large d (already starts at $d\gtrsim 10$), consider the quantisation error rather than the covering radius

- When $\mathscr{X} = [-1,1]^d$, design points should be in a smaller cube $\mathcal{C}_{\delta} = [-\delta,\delta]^d$ (with $\delta \searrow$ as $d \nearrow$)
- Use either random (or Sobol') points in \mathcal{C}_{δ} , or a subset of vertices of \mathcal{C}_{δ} Using a subset given by a 2^{d-m} fractional-factorial design with maximum packing radius is advisable (\neq minimum-aberration design)
- The greedy-packing algorithm can be used to sample vertices from this 2^{d-m} design
- As the design belongs to $C_{\delta} = [-\delta, \delta]^d$, its projections in small dimensions have poor filling properties (but this can be corrected...)

- When $\mathscr{X} = [-1,1]^d$, design points should be in a smaller cube $\mathcal{C}_{\delta} = [-\delta,\delta]^d$ (with $\delta \searrow$ as $d \nearrow$)
- Use either random (or Sobol') points in \mathcal{C}_{δ} , or a subset of vertices of \mathcal{C}_{δ} Using a subset given by a 2^{d-m} fractional-factorial design with maximum packing radius is advisable (\neq minimum-aberration design)
- The greedy-packing algorithm can be used to sample vertices from this 2^{d-m} design
- As the design belongs to $C_{\delta} = [-\delta, \delta]^d$, its projections in small dimensions have poor filling properties (but this can be corrected...)

Thank you for your attention!

References

- Audze, P., Eglais, V., 1977. New approach for planning out of experiments. Problems of Dynamics and Strengths 35, 104–107.
- Box, G., Hunter, J., 1961a. The 2^{k-p} fractional factorial designs. part I. Technometrics 3 (3), 311–351.
- Box, G., Hunter, J., 1961b. The 2^{k-p} fractional factorial designs. part II. Technometrics 3 (4), 449–458.
- Gonzalez, T., 1985. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38, 293–306.
- Karvonen, T., Pronzato, L., Zhigljavsky, A., 2026. Space-Filling Design for Kernel-based Learning. Springer, (scheduled for release in 2026).
- Müller, W., 2007. Collecting Spatial Data. Springer, Berlin, [3rd ed.].
- Nogales Gómez, A., Pronzato, L., Rendas, M.-J., 2021. Incremental space-filling design based on coverings and spacings: improving upon low discrepancy sequences. Journal of Statistical Theory and Practice 15 (4), 77, (HAL preprint hal-02987983).
- Noonan, J., Zhigljavsky, A., 2024. High-Dimensional Optimization: Set Exploration in the Non-Asymptotic Regime. Springer.
- Pronzato, L., Zhigljavsky, A., 2023. Quasi-uniform designs with asymptotically optimal and near-optimal uniformity constant. Journal of Approximation Theory 294 (105931), hal-03494864, arXiv:2112.10401.
- Shang, B., Apley, D., 2021. Full-sequential space-filling design algorithms for computer experiments. Journal of Quality Technology 53 (2), 173–196.