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1 Space-filling design

1 Space-filling design
Objective: approximate f (·) over X (a compact subset of Rd)

using pairs (xi , f (xi )), i = 1, 2, . . . , n Þ observe “everywhere"
Design Xn = {x1, . . . , xn}

Covering radius CR(Xn) = CRX (Xn) , maxx∈X minxi ‖x− xi‖

CR(Xn) = fill distance = dispersion = miniMax distance criterion

Þ we are never far from a design point
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1 Space-filling design

Packing radius PR(Xn) , 1
2 mini 6=j ‖xi − xj‖

PR(Xn) = separation radius = 1
2 Maximin distance criterion

Þ easier to compute, but pushes points to the boundary of X
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1 Space-filling design

Examples:

À Covering, miniMax
d = 2, n = 7 (radius=CR(Xn))

Á Packing, Maximin
d = 2, n = 7 (radius=PR(Xn))

Þ Minimise CR and maximise PR; both are difficult

We can also minimise the mesh-Ratio MR(Xn) , CR(Xn)
PR(Xn)
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1 Space-filling design

Why is the minimisation of CR(Xn) important?
X bounded, with a Lipschitz boundary and satisfying an interior cone condition
K a Sobolev kernel of order α (α > d/2 + 1 for d even, α > (d + 1)/2 for d odd)
η∗n = RBF interpolator (kriging predictor) for K

Th. (Narcowich et al., 2005): For f ∈W α
2 (X ), 1 ≤ q ≤ ∞, ∃Cq s.t.

‖f − η∗n‖Lq =
(∫

X

|f (x)− η∗n (x)|q dx
)1/q

≤ Cq ‖f ‖Wα
2 (X ) CR(Xn)α−d(1/2−1/q)+

∀ Xn such that CR(Xn) is small enough (Cq depends on α, d and X )

What if f has lower smoothness than α? à Escape theorem
Th. (Schaback and Wendland, 2006): For f ∈W β

2 (X ), β ≤ α (β > d/2 + 1 for
d even and β > (d + 1)/2 for d odd), ∃C > 0 s.t.

‖f − η∗n‖L2(X ) ≤ C ‖f ‖Wβ
2 (X ) CR(Xn)βMR(Xn)(α−β)
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1 Space-filling design

Objective: construct incremental designs with good-space-filling properties:
Xk ⊂ Xk+1 ⊂ Xk+3 ⊂ . . . with small CR(Xn) for n ∈ [nmin, nmax]

Two types of approaches:

A/ greedy maximisation of a set function f (Xn)
If f is non-decreasing and submodular

à efficiency bound of (Nemhauser et al., 1978)
(or greedy minimisation of f non-increasing and supermodular)

B/ apply a gradient-type descent algorithm to a suitable functional φ(ξn)
with ξn the empirical measure ξn = (1/n)

∑n
i=1 δxi for Xn

à sometimes simple enough to obtain a convergence rate
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1 Space-filling design

A/ Greedy Maximisation XC ⊂X = a finite candidate set (C elements)
f : 2XC → R non-decreasing: f (A ∪ {x}) ≥ f (A), ∀A ⊂XC , x ∈XC

submodular: ∀A ⊂ B ∈ 2XC , x ∈XC \B,

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B) (diminishing returns property)

Greedy Algorithm:

set X = ∅

while |X| < n, find x ∈ Arg maxx∈XC f (X ∪ {x}) , X← X ∪ {x} end while

return X Þ XGM
n

Þ Complexity = O(nC)
= O(γnnC), γn � 1, for the lazy-greedy alg. of (Minoux, 1977)

Th. (Nemhauser et al., 1978): f non-decreasing and submodular

⇒ ∀k ∈ {1, . . . ,C}, f (Xk)− f (∅)
f ?k − f (∅) ≥ 1− 1

e > 63.2%

where f ?k = maxX⊂XC :|X|≤k f (X) and e = exp(1)
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1 Space-filling design

B/ gradient-type descent = Vertex Direction algorithm
φ a convex functional on the set M +

1 (X ) of probability measures on X
Fφ(ξ; ν) the directional derivative of φ(·) at ξ in the direction ν:

FK (ξ; ν) , lim
α→0+

φ[(1− α)ξ + αν]− φ(ξ)
α

Conditional gradient algorithm of (Frank and Wolfe, 1956):

iteration k: ξk ∈M +
1 (X )→ ξk+1 = (1− αk)ξk + αkδxk+1 , αk ∈ [0, 1]

with xk+1 ∈ Arg minx∈X Fφ(ξk ; δx) (so that ξk+1 ∈M +
1 (X ))

Take ξ1 = δx1 and αk = 1/(k + 1) for all k
= Wynn’s Vertex-Direction algorithm (1972) for DOE

Þ ξn = (1/n)
∑n

i=1 δxi = empirical measure on Xn

Þ XVD
n

In practice: replace X by XC ⊂X (with C elements) to choose xk+1
Complexity = O(nC)
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1 Space-filling design

Four approaches considered, based on:
1 minimisation of a relaxed version of CR(Xn) Þ A and B
2 minimisation of a Maximum-Mean-Discrepancy (MMD) = distance

between ξn and µ uniform on X Þ A and B
3 maximisation of an integrated covering measure Þ A
4 geometrical considerations: greedy packing (coffee-house design) Þ A
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2 Minimisation of a relaxed version of CR(Xn)

2 Minimisation of a relaxed version of CR(Xn)

CR(Xn) , maxx∈X minxi ‖x− xi‖ à `q and Lq relaxations

A/ for Xn ⊂X , µ uniform on X and q > 0, denote

Φq(Xn) = Φq(Xn;µ) ,

∫
X

(
1
n

n∑
i=1
‖x− xi‖−q

)−1
dµ(x)

1/q

Þ ∀Xn ⊂X , Φq(Xn)→ CR(Xn) as q →∞

Xn ⊂X → (1/n) Φq
q(Xn, µ) is non-increasing and supermodular

à Greedy Minimisation, with a candidate set XC ⊂X Þ XGM
n

Replace µ by a Q-point discrete approximation µQ (→ Φq(Xn;µQ))
Þ 2 discrete sets XC and XQ (compute C ×Q pairwise distances)

Complexity = O(nCQ) (O(γnnCQ) for lazy-greedy version)
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2 Minimisation of a relaxed version of CR(Xn)

B/ for ξ ∈M +
1 (X ), µ uniform on X and q > 0, denote

φq(ξ) = φq(ξ;µ) ,
[∫

X

(∫
X
‖z− x‖−q dξ(z)

)−1
dµ(x)

]1/q

, q 6= 0 ,

à φq(ξn) = Φq(Xn) for ξn = (1/n)
∑n

i=1 δxi

(P & Zhigljavsky, 2019): φq
q(·) is convex for q > 0 (strictly if q ∈ (0, d)),

Fφ(ξk ; δx) known explicitly

Minimise by conditional gradient, with a candidate set XC ⊂X

à Vertex-Direction algorithm Þ XVD
n

Replace µ by a Q-point discrete approximation µQ (→ φq(ξn;µQ))
Þ 2 discrete sets XC and XQ (compute C ×Q pairwise distances)

Complexity = O(nCQ)

2 remarks:
Minimisation of φq

q(ξ;µQ) ⇔ A-optimal design
(trace[M−1(ξ)] min! for a particular information matrix M(ξ))
The optimal measure ξ∗ is not uniform on X
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2 Minimisation of a relaxed version of CR(Xn)

Example: d = 2, X = [0, 1]2, n = 50, q = 10
XC = 33× 33 regular grid, XQ = 32× 32 interlaced grid

greedy min. of Φq(Xn;µQ)

XGM
n

cond. grad. with φq
q(ξn;µQ)

XVD
n

(radius = CR(Xn))
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

3 Minimisation of a Maximum-Mean-Discrepancy (MMD)
Very much based on:
Sriperumbudur, B., Gretton, A., Fukumizu, K., Schölkopf, B., Lanckriet, G., 2010. Hilbert

space embeddings and metrics on probability measures. Journal of Machine Learning
Research 11 (Apr), 1517–1561.

Sejdinovic, S., Sriperumbudur, B., Gretton, A., Fukumizu, K., 2013. Equivalence of
distance-based and RKHS-based statistics in hypothesis testing. The Annals of Statistics
41 (5), 2263–2291.

Pronzato, L., Zhigljavsky, A., 2020. Bayesian quadrature, energy minimization and space-filling
design. SIAM/ASA J. Uncertainty Quantification 8 (3), 959–1011.

Let K be a PD kernel on X ×X , HK the associated RKHS
For ν a signed measure on X , define

EK (ν) ,
∫

X 2
K (x, x′) dν(x)dν(x′) = energy of ν

PK ,ν(x) ,
∫

X
K (x, x′) dν(x′) = potential of ν at x

[PK ,ν(·) = kernel imbedding of ν into HK ]
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

For f ∈ HK , µ, ν ∈M +
1 (X ) with finite energy

RKHS property [Kx(·) = K (x, ·)] ⇒

|Iµ(f )− Iν(f )| =
∣∣∣∣∫

X

〈f ,Kx〉K d(µ− ν)(x)
∣∣∣∣ = |〈f ,PK ,µ − PK ,ν〉K |

CS inequality Þ a Koksma-Hlawka type inequality:∣∣∣∣∫
X

f (x) dν(x)−
∫

X

f (x) dµ(x)
∣∣∣∣ ≤ ‖f ‖HKMMDK (µ, ν)

where MMDK (µ, ν) , ‖PK ,µ − PK ,ν‖HK = E
1/2
K (ν − µ)

MMDK (µ, ν) = Maximum Mean Discrepancy between µ and ν
(Sriperumbudur et al., 2010; Sejdinovic et al., 2013)

Space-filling design: take µ uniform on X
Þ find ξn (with n support points) minimising MMD2

K (ξn, µ) = EK (ξn − µ)
Þ “classical” L2-discrepancies (extreme, centered, symmetric, wrap-around. . . )

are obtained for particular kernels (Hickernell, 1998)
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

MMDK (·, ·) defines a pseudo-metric on M +
1

Does it define a metric? ⇔ K is characteristic
Definition

K is Integrally Strictly Positive Definite (ISPD) on M (set of finite signed
Borel measures on X ) when EK (ν) > 0 for any nonzero ν ∈M

Definition

K is Conditionally Integrally Strictly Positive Definite (CISPD) on M
when it is ISPD on M0; that is, when EK (ν) > 0 for all nonzero ν ∈M
with ν(X ) = 0

Sriperumbudur et al. (2010):

K bounded & ISPD ⇒ K is strictly positive definite
(Þ defines a RKHS HK )
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with ν(X ) = 0

Sriperumbudur et al. (2010):
K bounded & ISPD ⇒ K is strictly positive definite

(Þ defines a RKHS HK )
if K uniformly bounded︸ ︷︷ ︸
assumed in the following

: characteristic ⇔ CISPD
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

For many kernels K (Gaussian, Matérn, distance-induced kernels of
Székely and Rizzo (2013). . . ):

MMDK (·, ·) defines a metric for probability measures
EK (·) is strictly convex
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

A/ Greedy MMD Minimisation: ξn = (1/n)
∑n

i=1 δxi

MMD2
K (µ, ξn) = EK (ξn − µ) = 1>n Kn1n − 2 1>n pn(µ) + EK (µ)
where 1n = (1, . . . , 1)>, {Kn}i ,j = K (xi , xj),
and pn(µ) = [PK ,µ(x1), . . . ,PK ,µ(xn)]>

Þ xk+1 minimises MMD2
K (µ, ξn+1)

à xk+1 ∈ Arg minx∈X
∑k

i=1 K (xi , x) + 1
2 K (x, x)− (k + 1)PK ,µ(x)

Þ XGM
n

Remark: Sequential Bayesian Quadrature = greedy MMD minimisation
for ξ∗n =

∑n
i=1 wi δxi with optimal weights (w1, . . . ,wn) = p>n (µ)K−1n

Þ MMD2
K (µ, ξ∗n ) = EK (ξ∗n − µ) = EK (µ)− p>n (µ)K−1n pn(µ)
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

B/ Conditional gradient descent (Vertex-Direction algorithm):
Directional derivative of EK (·) at ξ in the direction ν:

FK (ξ; ν) = lim
α→0+

EK [(1− α)ξ + αν]− EK (xi)
α

= 2
[∫

X 2
K (x, x′) dν(x)dξ(x′)− EK (ξ)

]

⇒ FK (ξ; δx) = 2[PK ,ξ(x)− EK (ξ)]

We do not want to minimise EK (ξ) but EK (ξ − µ) = MMD2
K (ξ, µ) for a given µ

Þ FMMD2
K

(ξ, δx) = 2 [ PK ,ξ(x)− PK ,µ(x) +
∫
X PK ,µ(x′) dξ(x′)− EK (ξ)]

à xk+1 ∈ Arg minx∈X

[
1
k
∑k

i=1 K (x, xi )− Pµ(x)
]

This is called Kernel Herding in machine learning: Þ XKH
n
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

3 remarks:

Greedy MMD minimisation and kernel herding behave similarly, with
MMD(ξn, µ) decreasing like log(n)/n,

In practice, use a finite candidate set XC
(Þ complexity = O(nC) for n iterations)

xk+1 is easy to determine when PK ,µ(x) is available

replace µ by a discrete measure µQ
Þ the support points of (Mak and Joseph, 2018) minimise
MMDK (ξn, µ) for K the energy-distance kernel Székely and Rizzo
(2013)
compute PK ,µ(x) explicitly when:

• K is separable on X = ×d
i=1Xi : K (x, x′) = K⊗(x, x′) =

∏d
i=1 Ki (xi , x ′i )

• µ = ⊗d
i=1µi is a product measure on X = ×d

i=1Xi
Þ PK ,µ(x) =

∏d
i=1 PKi ,µi (xi )

(= product of one dimensional integrals)
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

Example: X = [0, 1]2, n = 25, XC = 217 = 131 072 Sobol’ points
K = tensor product of Matérn 3/2

K3/2,θ(x , x ′) = (1 +
√
3θ|x − x ′|) exp(−

√
3θ|x − x ′|), θ = 10

(radius = CR(XKH
n ))
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

Minimum-Norm-point algorithm of (Bach et al., 2012):
replace ξn (uniform on its support) by ξ̂n having
the same support but optimal weights, positive with sum = 1

à Simpler version: use optimal weights with sum = 1 (explicit form)
(extra comput. cost Þ O(n2C) for n iterations (P., 2021)) Þ XMN

n

à Comparison with Sobol’ sequence Þ XS
n
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

Example: d = 10, XC = 212 points of scrambled Sobol’ in X = [0, 1]10
n = 100, x1 = (1/2, . . . , 1/2)>, ξ1 = δx1

XS
n , XKH

n , XKH−log
n , XMN

n XS
n , XKH

n , XKH−log
n , XMN

n

XKH
n : K = tensor product of Matérn 3/2

K3/2,θ(x , x ′) = (1 +
√
3θ|x − x ′|) exp(−

√
3θ|x − x ′|), θ = n1/d

XKH−log
n : K (x, x′) =

∏d
i=1 log(1/|xi − x ′i |)
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3 Minimisation of a Maximum-Mean-Discrepancy (MMD)

MMD minimisation is not restricted to µ being uniform:
Example: Gaussian mixture µ =

∑3
j=1 βj µN (aj , σj), C = 214 = 16 384

(for Kθ(x, x′) = exp−(θ ‖x− x′‖2), we know Pµ(·) and EK (µ))

• Comparison between kernel herding, greedy MMD minimisation and Sequential
Bayesian Quadrature (P., 2021)
• Extension to Stein discrepancy (Teymur et al., 2021) (K ′µ such that Pµ(·) ≡ 0
and EK ′µ(µ) = 0 without knowing the normalising constant in µ)
• Singular kernels (via completely monotone functions) (P. & Zhigljavsky, 2021)
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4 Maximisation of an integrated covering measure

4 Maximisation of an integrated covering measure

µ uniform on X

FXn (r) , µ{x ∈X : d(x,Xn) ≤ r}
= distance c.d.f.

Φr (Xn) , FXn (r)
= covering measure of Xn

Qα(Xn) , inf{t : FXn (t) ≥ α}
= α-quantile of FXn (·)
(with Q1(Xn) = CR(Xn))

Xn, n = 10
r = 0.25× CR(Xn)
Þ FXn (r) ' 0.22

Φr (·) is non-decreasing
it satisfies Φr (∅) = 0
∀x ∈X , Φr (Xn ∪ {x})− Φr (Xn) is non-increasing with respect to Xn

⇒ Φr is submodular
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4 Maximisation of an integrated covering measure

For B > 0, q > −1 and Xn 6= ∅, define
IB,q(Xn) ,

∫ B
0 rq FXn (r) dr = 1

q+1

{
Bq+1FXn (B)−

∫ B
0 rq+1 fXn (r) dr

}
= integrated covering measure

and set IB,q(∅) = 0

The set function IB,q : Xn → IB,q(Xn) is non-decreasing and submodular
Þ suitable for greedy maximisation

B ≥ CR(Xn)⇒ FXn (B) = 1

B ≥ diam(X ) ⇒
maximising IB,q(Xn) ⇔ minimising

∫ B
0 rq+1 fXn (r) dr = En{Rq+1}, R ∼ fXn

(En{Rq+1})1/(q+1) = Eq+1(Xn) = Lq+1-mean quantization error for Xn
(Graf and Luschgy, 2000), with Eq+1(Xn)↗ CR(Xn) as q →∞

Þ XICM
n details in (Nogales Gómez et al., 2021)
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5 Greedy packing

5 Greedy packing

Take any x1 ∈X (e.g., at the center)
For k = 1, . . . , n − 1, take xk+1 as far as possible from Xk

(= coffee-house design of (Müller, 2001, 2007))

Th. (Gonzalez, 1985):

CR(Xk) ≤ 2 CR∗k , ∀k ≥ 1 ,

PR(Xk) ≥ 1
2 PR∗k , ∀k ≥ 2 ,

MR(Xk) ≤ 2 , ∀k ≥ 2 .

Greedy packing is asymptotically optimal for MR:
lim supn→∞MR(Xn) ≥ 2 for any sequence of nested designs Xn in X
bounded (P. & Zhigljavsky, 2022)
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5 Greedy packing

Easy to implement: use a finite candidate set XC ⊂X
Þ complexity = O(nC)

How does it perform?
Exact behaviour known in some cases (X = [0, 1]d , d = 2, 4, maybe 8?)

n = 12 n = 14

PR(Xn)
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5 Greedy packing

. . . but there is no competitor in terms of MR(Xn)!

X = [0, 1]2, MR(Xn), n = 2, . . . , 85
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5 Greedy packing

To reduce CR(Xn): force points to stay away from the boundary ∂X :
Þ take xk+1 ∈ Arg maxx∈X Dβ(x,Xk ,X ) with
where Dβ(x,Xk ,X ) = min {minxi∈Xk ‖x− xi‖, β d(x, ∂X )}, β > 0

easy to implement when X = [0, 1]d (Þ complexity = O(nC))

β =∞ à greedy packing

β = 2 à traditional packing: n non-intersecting balls fully in X

(Shang and Apley, 2021) Þ β = 2
√
2d

(Nogales Gómez et al., 2021) Þ β = β(n, d) = d
2 (nmaxVd )−1/d −

√
d ,

with Vd = vol (B(0, 1))
Performance of boundary-phobic greedy packing:

CR(Xk) ≤ 2
a CR∗k , ∀k ≥ 1 ,

PR(Xk) ≥ a
2 PR∗k , ∀k ≥ 2 ,

MR(Xk) ≤ 2
a , ∀k ≥ 2 ,

with a = 1/(1 +
√
d/β) (P. & Zhigljavsky, 2022)
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5 Greedy packing

X = [0, 1]2, CR(Xn)
β =∞ Þ greedy packing

n = 12 n = 14
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5 Greedy packing

X = [0, 1]2, CR(Xn)
β = 4 Þ boundary-phobic greedy packing

n = 12 n = 14
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5 Greedy packing

Example: d = 10, n = 200
XC = 213 Sobol’ points in X = [0, 1]10
XQ′ = 214 Sobol’ points, XQ = XQ′ ∪ 210 vertices

Comparison of XICM
n (F for XQ , + for XQ′ , q = 10) with

Halton (O) and Sobol’ (×)

R?(n, d) = (nVd )−1/d ≤ CR∗n, α = 0.99 in Qα(Xn)
evaluation of CR(Xn) and Qα(Xn) on 218 Sobol’ points + 210 vertices
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Comparison of XICM
n (F, q = 10) with greedy packing (≈ 20 times faster):

β =∞ and XC (×), β =∞ and XC ∪ 210 vertices (+),
β = 2

√
2d (◦), β = β(n, d) (O)
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6 Conclusions

6 Conclusions

Several space-filling criteria:
CR(Xn) is important, but Qα(Xn) may be more relevant:
Þ it may provide a smaller error ‖f − η∗n‖Lq , q <∞

Many methods (some based on heuristics):
those using two finite sets XC and XQ cannot have C ,Q very large
Þ the choices of the two sets are important
those using XC only (MMD, greedy packing) are linear in C and n
Þ fast and usable for design with large size n and dimension d
Þ valuable alternatives to low-discrepancy sequences (Sobol’)
Minimising the integrated covering measure gives the smallest CR(Xn)

No clear winner between greedy minimisation and gradient-type descent
when both are possible
Batch design: optimize one of the criteria considered for a fixed n, as
Mak and Joseph (2017, 2018) do with MMD for the energy-distance kernel

Thank you for your attention !
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