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Consider an expensive-to-evaluate numerical simulator f , with inputs in
a set U = X× S:
▶ x ∈ X (deterministic design choices).

▶ s ∈ S (stochastic factors).

Deterministic inputs x

Stochastic inputs s

Simulator Outputs z

For simplicity we assume a deterministic simulator f : U = X× S 7→ Rq.
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Given:

▶ C ⊂ Rq a subset of the outputs space Rq.

▶ α ∈ (0, 1) a threshold.

▶ PS a known distribution on S.

We focus on the quantile set inversion (QSI) problem:

Estimate the set of all x ∈ X such that

P (f (x ,S) ∈ C ) ≤ α, S ∼ PS .
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An example: the ROTOR37 compressor model

Function f : X× S 7→ R3 with two kind of inputs:

▶ x ∈ X: design choice for the compressor
▶ s ∈ S: manufacturing uncertainties, with PS = U(S).
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Simulator return three outputs:

▶ f1: mass flow

▶ f2: pressure ratio

▶ f3: isentropic efficiency

We can set, for example, α = 5% and

C =

{
z ∈ R3 :

|z1 − b1|
|b1|

> 0.175 or
|z2 − b2|

|b2|
> 0.175

}
,

where b1 and b2 are baseline values for the mass flow and pressure ratio
of the compressor.
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For simplicity, we now assume f : U = X× S 7→ R, with C = (−∞,T ].

The problem becomes

Estimate the quantile set:

Γ(f ) = {x ∈ X : P (f (x ,S) ≤ T ) ≤ α} .

Remark: With C = (−∞,T ], the problem can be seen in term of
quantile of f (x ,S). Indeed

x ∈ Γ(f ) ⇐⇒ qα(f (x ,S)) > T ,

with qα(f (x ,S)) the quantile of order α of f (x ,S) (with S ∼ PS).
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Estimate the quantile set:

Γ(f ) = {x ∈ X : P (f (x ,S) ≤ T ) ≤ α} ,

Example of function and associated quantile set, with T = 7.5 and
α = 5%.

Figure: Representation of the function.
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Estimate the quantile set:

Γ(f ) = {x ∈ X : P (f (x ,S) ≤ T ) ≤ α} ,

Example of function and associated quantile set, with T = 7.5 and
α = 5%.

00.10.2

Dens. func.

Figure: Representation of the function (right), the density of PS (left)
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Given the expensive-to-evaluate nature of the underlying function, it is
necessary to evaluate the function at points chosen with attention.

Active learning (or sequential design of experiments) approach:

Consider

▶ In = {(u1, f (u1)), ..., (un, f (un))} the current information,

▶ an(u) a sampling criterion dependent on In.

Until satisfied:

▶ Choose u ∈ U as the minimizer (or maximizer) of an(u)

▶ Evaluate f at u

▶ Update information In 7→ In+1.

Question: How to construct such criterion for QSI?
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In the following, we focus on Gaussian processes-based strategies.

Bayesian framework & notations:
f ∼ GP prior ξ on U = X× S, with constant mean µ and covariance k.
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95%/99%/99.9% CIs

Figure: Illustration of a GP on an interval.

We denote:

▶ Pn and En: conditional distribution and expectation given In.
▶ µn, σn and kn: posterior mean, st. deviation and covariance of ξ.
▶ pn(u) = Pn(ξ(u) ≤ T ): posterior probability that {ξ(u) ≤ T}
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First approach: joint-space estimation

The QSI problem is related to the estimation of the excursion set

Λ(f ) = {u ∈ U : f (u) ≤ T}

Figure: Example function. The black line delimits the set Λ(f ).

x ∈ Γ(f ) ⇐⇒ P((x ,S) ∈ Λ(f )) ≤ α,

Good approximation of Λ(f ) =⇒ good approximation of Γ(f )
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Several Bayesian methods focus on estimating Λ(f ). For example:

▶ Maximal uncertainty sampling methods:

▶ Maximum misclassification probability [Bryan et al. (2005)]:

Un+1 ∈ argmax
u∈U

min(pn(u), 1 − pn(u))

▶ [Ranjan et al. (2008); Echard et al. (2011), ... ]

▶ Stepwise uncertainty reduction (SUR) methods:

▶ For instance [Chevalier et al. (2014)] (Joint-SUR):

Un+1 ∈ argmin
u∈U

En(Hn+1 |Un+1 = u)

with Hn =
∫
U
min(pn(u), 1 − pn(u))du.

▶ [Picheny et al. (2010); Marques et al. (2018), ... ]
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Figure: Examples of designs (red dots) obtained after n = 30 steps with the
maximum misclassification and the ’joint-SUR’ criteria.
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Figure: Representation of the function (middle), the density of PS (left) and
associated quantile set (right).
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Second approach: Focusing directly on Γ(f )

To estimate Γ(f ), one only needs to focus on ’interesting parts’ of Λ(f ).

We denote:

▶ Γ(ξ) the random quantile set associated to ξ.

▶ πn(x) = Pn(x ∈ Γ(ξ)), the posterior probability that x belongs to
the (random) quantile set generated by ξ.

▶ Qn =
∫
X
min(πn(x), 1 − πn(x)) dx .

QSI-SUR sampling criterion [Ait Abdelmalek-Lomenech et al. (2024)]:

(Xn+1,Sn+1) ∈ argmin
(x,s)∈X×S

En(Qn+1 | (Xn+1,Sn+1) = (x , s)),
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The implementation proposed in [Ait Abdelmalek-Lomenech et al. (2024)]

produces good results on moderately difficult examples.

Figure: Median of the proportion of misclassified points vs. number of steps on
several examples.
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The QSI-SUR criterion focus on part of Λ(f ) that gives relevant
information on Γ(f ).
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Figure: Example of design obtained with the QSI-SUR criterion and the
Joint-SUR criterion.
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The QSI-SUR criterion is based on

Qn =

∫
X

min(πn(x), 1 − πn(x))dx .

Two main issues in the implementation:

▶ First issue: Computational complexity.
▶ πn approximated using conditional sample paths of ξ(x , ·).
▶ Complexity is O(m3), where m is the number of points used for the

approximation. Due to the Cholesky factorization of the covariance
matrix.

▶ Criterion too expensive for continouous optimization and batch
design.

▶ Second issue: Not adapted to ”small” Γ(f ).
▶ Integral over X in Qn is discretized.
▶ Necessity of points (in X) close to the boundary of Γ(f )
▶ When Γ(f ) is small, importance sampling can prove insufficient.

17 / 37



17/37

Quantile Set Inversion SUR methods for Quantile Set Inversion Estimation of small Quantile Sets Numerical experiments Conclusion

The QSI-SUR criterion is based on

Qn =

∫
X

min(πn(x), 1 − πn(x))dx .

Two main issues in the implementation:

▶ First issue: Computational complexity.
▶ πn approximated using conditional sample paths of ξ(x , ·).
▶ Complexity is O(m3), where m is the number of points used for the

approximation. Due to the Cholesky factorization of the covariance
matrix.

▶ Criterion too expensive for continouous optimization and batch
design.

▶ Second issue: Not adapted to ”small” Γ(f ).
▶ Integral over X in Qn is discretized.
▶ Necessity of points (in X) close to the boundary of Γ(f )
▶ When Γ(f ) is small, importance sampling can prove insufficient.

17 / 37



Table of Contents

Quantile Set Inversion

SUR methods for Quantile Set Inversion

Estimation of small Quantile Sets

Numerical experiments



18/37

Quantile Set Inversion SUR methods for Quantile Set Inversion Estimation of small Quantile Sets Numerical experiments Conclusion

To resolve the issues listed previously, we use a two part solution:

▶ First issue: Computational complexity
▶ We introduce a new type of method called ”Maximum Expected

Estimator Modification” (MEEM).
▶ We derive a MEEM criterion with complexity O(m2).
▶ This criterion allows continuous optimization and batch design of

experiments.

▶ Second issue: Not adapted to ”small” Γ(f ).
▶ We introduce a sequential Monte Carlo (SMC) framework.
▶ We estimate a sequence of decreasing quantile sets, converging

towards the set of interest.
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Maximum Expected Estimator Modification (MEEM)

Let us consider a sequence of estimators (Γ̂n)n such that

Γ̂n : In 7→ P(X),

and a ”distance”

d : P(X)2 7→ R+.

MEEM principle: Choose the point that maximize the expected
change in the estimation, i.e.

Un+1 ∈ argmax
u∈U

En(d(Γ̂n+1, Γ̂n) |Un+1 = u)

NB: For convenience, we assume a batch size of 1.
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”Duality”SUR / MEEM

Several SUR strategies in the litterature are equivalent to MEEM
strategies.

For example:

▶ Optimization:

▶ Expected Improvement
▶ MEEM method with d(a, b) = |a − b| and estimator

f ∗
n = min{U1, ...,Un}

▶ Function approximation:

▶ SUR method : Un+1 ∈ argminEn

(∫
U

σ2
n(u) du |Un+1 = u

)
.

▶ MEEM method with d(h, g) =
∫
U
(h(u) − g(u))2 du and estimator

fn = µn

20 / 37
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MEEM method for QSI

We choose the divergence d(Γ̂n+1, Γ̂n) = λ(Γ̂n+1∆Γ̂n) we have

d(Γ̂n+1, Γ̂n) =

∫
X

|1
Γ̂n+1

(x) − 1
Γ̂n
(x)|dx ,

coupled with the sequence of plug-in estimators

Γ̂n = {x ∈ X : P(µn(x ,S) ≤ T ) ≤ α},

We obtain the QSI-MEEM strategy:

Un+1 ∈ argmax
u∈U

∫
X

En

(
|1

Γ̂n+1
(x) − 1

Γ̂n
(x)|

∣∣∣ Un+1 = u
)
dx .
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Criterion does not need to be approximated using conditional sample
paths of ξ.

As a consequence of the kriging update formula, we have:

Proposition

Given In and Un+1, Γ̂n+1 is a function of a standard Gaussian variable Z :

Γ̂n+1(z) = {x ∈ X : P (µn(x ,S) + κn(x ,S)z ≤ T ) ≤ α},

with κn(x , s) = kn(Un+1, (x , s))/σn(Un+1).

=⇒ Computational complexity of the criterion: O(m2), with m the
number of points (in X× S) used for the approximation.
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Sanity check

We observe that the QSI-MEEM method produces results similar (or
better) than the QSI-SUR strategy on case with relatively large quantile
sets.
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Figure: Median (left) and quantile of order 0.9 of the proportion of misclassified
points vs. number of steps, for 100 repetitions of the algorithms on the
introductory example.
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Second issue: Estimation of small quantile sets

Idea: Multilevel splitting/subset simulation [Kahn and Harris (1951); Au

and Beck (2001)] to efficiently sample points in X.

▶ Sequentially estimate a sequence of decreasing quantile sets

Γ0(f ) ⊃ Γ1(f ) ⊃ ... ⊃ ΓK (f ) = Γ(f ),

using the MEEM strategy described previously.

▶ Such sets can be defined by setting

Γk(f ) = {x ∈ X : P(f (x ,S) ≤ Tk) ≤ α},

with Tk ≤ Tk+1.
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We propose a SMC-based algorithm inspired by BSS [Li (2012); Bect

et al. (2017)]

It alternates two distinct phases:

▶ Estimation phase
▶ Define a new intermediary quantile set to estimate.
▶ Sample points Un, ...,Un+r using the MEEM criterion.

▶ Move phase
▶ Concentrate the particles towards the previously estimated set.

For simplicity, we still assume C = (−∞,T ] and a batch size of 1.
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Let qn,k a density targeting Γk(f ) = {x ∈ X : P(f (x ,S) ∈ Ck) ≤ α} at
step n.

Estimation phase:

▶ Set Tk+1 such that

ESS

(
1
Γ̂k+1
n

(x)

1
Γ̂k
n

(x)

)
≊ 30%.

▶ Sample point

Un+1 ∈ argmax Jn(u),

with Jn the MEEM criterion
targeting Γk+1(f ).

0 2 4 6 8 10

X
1

0

5

10

15

X
2

Figure: Temporary quantile set (blue
line), final quantile set (green line),
particles (blue dots). - n = 0.
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Let qn,k a density targeting Γk(f ) = {x ∈ X : P(f (x ,S) ≤ Tk) ≤ α} at
step n.

Move phase:

When stopping condition is met:

▶ Residual resampling.

▶ Move particles in Γk+1(f )
using MHRW with target
density qn,k+1.

▶ Adapt walk’s variance to
target acceptation rate 25%.
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Figure: Temporary quantile set (blue
line), final quantile set (green line),
particles (blue dots) and projection of
the sequential design (red dots). -
n = 5.
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To evaluate the performances of the proposed strategy, we focus on the
relative error

λX(Γ(f )∆Γ̂n)

λX(Γ(f ))

obtained at the end of the strategy, and the number of steps required to
obtain these results.

The functions considered are modeled by a GP with constant mean and
Matern covariance kernel (with ν ∈ {1/2, 3/2, 5/2,+∞}).

Covariance parameters are estimated at each step using ReML.

Each strategy is repeated 50 times, with different maximin LHS initial
designs.
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1st example: 5-Trid function [Adorio and U.P. (2005)]

▶ U = X× S with X = [−25, 25]3 and S = [−25, 25]2,

▶ PS = U(S)

▶ α = 5% and C = [1098.5,+∞)

▶ Relative size of Γ(f ): λX(Γ(f )) ∼ 10−6.

f (u) =
5∑

i=1

(ui − 1)2 −
5∑

i=2

uiui−1

Size of the initial design: 50.

29 / 37



30/37

Quantile Set Inversion SUR methods for Quantile Set Inversion Estimation of small Quantile Sets Numerical experiments Conclusion

Figure: Distribution of the relative error (top) and the number of steps
(bottom), for different batch size (left to right: 1, 2, 3). - (50 runs)
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2nd example: OTL circuit function [E. N. and D. M. (2007)]

▶ U = X× S
▶ X = [−50, 150] × [25, 70] × [0.5, 3] × [1.2, 2.5] × [0.25, 1.2]

▶ S = [−50, 300],

▶ PS = truncN (175, 50)

▶ α = 5% and C = [2.65,+∞)

▶ Relative size of Γ(f ): λX(Γ(f )) ∼ 10−7.

f (x , s) represents the midpoint voltage of a circuit given the choice of
resistances designs x and the current gain s.

Size of the initial design: 60.
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Figure: Distribution of the relative error (top) and the number of steps
(bottom), for different batch size (left to right: 1, 2, 3). - (50 runs).
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3rd example: ROTOR37 model [Reid and Moore (1978)]

Gaussian metamodel (provided by S. Da Veiga and SafranTech) of the
ROTOR37 compressor model.

The function f : X× S 7→ R3 takes two kind of inputs:
▶ x ∈ X = [0, 1]13: design choice for the compressor
▶ s ∈ S = [0, 1]5: manufacturing uncertainties (PS = U(S))
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Simulator returns three outputs:

▶ f1: the mass flow

▶ f2: the pressure ratio

▶ f3: the isentropic efficiency

Goal: finding the set of determinisitic design choice leading to values of
the mass flow and pressure ratio being close to baselines values (b1, b2)
with sufficiently high probability.

We consider:

▶ C =
{
z ∈ R3 : |z1−b1|

|b1| > 0.175 or |z2−b2|
|b2| > 0.175

}
▶ α = 5%

Relative size of Γ(f ): λX(Γ(f )) ∼ 10−8

We model the different outputs using independant GPs.
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We start the strategy from an initial design of size 90. A batch size of 5
is used.

Figure: Distribution of the relative error (left) and the number of steps (right),
for a batch size of 5. - (50 runs).
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Conclusion:

▶ Introducing the concept of MEEM allows to reproduce (or improve)
the results obtained by using the QSI-SUR criterion on moderately
difficult examples.

▶ The MEEM criterion permits a welcomed gain regarding the
computational complexity, due to the absence of conditional
Gaussian sample paths

▶ Coupled with a SMC framework, the criterion allows to accurately
estimate small quantile sets (size of order 10−6 − 10−8).

Future research might be dedicated to treating cases where α ∼ 0.
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Thank you for your attention!
First part (QSI-SUR criterion) is based on:

R. Ait Abdelmalek-Lomenech, J. Bect, V. Chabridon and E. Vazquez.
Bayesian Sequential Design of Experiments for Quantile Set Inversion.
2024. Technometrics (to appear).

The second part (QSI-MEEM criterion) is based on:

R. Ait Abdelmalek-Lomenech, J. Bect and E. Vazquez. Active Learning
of (small) Quantile Sets through Expected Estimator Modification. 2025.
ArXiv preprint (to appear).

This work has been funded by the French National Research Agency (ANR) in the context

of the project SAMOURAI (ANR-20-CE46-0013).

The authors are thankfull to S. Da Veiga and Safran Tech for providing the ROTOR37

metamodel used as application.
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Choice of the target densities:

Natural idea (in the spirit of [Dubourg et al. (2013); Bect et al. (2017)]):

qn,k(x) ∝ πk
n (x) = Pn(x ∈ Γk(ξ))

▶ Does not admit a closed-form expression.

▶ Expensive to estimate.

Idea: Replace πk
n (x) by 1(x ∈ Γ+n,k). How to define Γ+n,k?

Given x0 ∈ X, µn and σn the posterior mean and standard deviation of ξ
and β ∈ (1/2, 1), consider the quantile function:

ξ+n (x0, ·) = µn(x0, ·) + Φ−1(β)σn(x0, ·),
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C = (−∞,T ] and ξ(x0, ·) is a high quantile

▶ P(ξ+n (x0,S) ∈ Ck) is an optimistic estimation of the probability
of failure at point x0.
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Figure: Example of quantile function ξ+
n (x0, · ), with a fixed x0.

Setting Γ+n,k = Γkn(ξ
+
n ) eliminates x0 if {x0 ∈ Γk(ξ)} is very improbable.

We define the target densities as

qn,k(x) ∝ 1(x ∈ Γkn(ξ
+
n ))

NB: The MHRW step becomes a constrained random walk.
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