Learning signals defined on graphs with optimal transport and Gaussian process regression

Raphaël Carpintero Perez

Sébastien Da Veiga Josselin Garnier Brian Staber

10/12/2024 SAFRAN

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Inputs and outputs

Graph inputs

- Mesh → Graph structure
- 2D/3D coordinates for all nodes

Scalar inputs

- Pressure
- Speed of rotation

Outputs

 Physical quantities of interest (scalars)

Fields

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

5

Gaussian process regression for graph inputs

Prediction of output fields

Gaussian process regression with Sliced Wasserstein Weisfeiler Lehman graph kernels

[CP, Da Veiga, Garnier, Staber, 2024]

Learning signals defined on graphs with optimal transport and Gaussian process regression, 2024

[CP, Da Veiga, Garnier, Staber, 2024+]

Gaussian process regression for graph inputs

1- Problem statement

- 2- Classical approaches
- 3- SWWL kernel
- 4- Experiments

Gaussian process regression

Gaussian process regression

Noisy observations: $\mathbf{y} = (y_i)_{i=1}^N$ with $y_i = f(G_i) + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2), f: \mathcal{X} \to \mathbb{R}$

Gaussian prior over functions:

 $f \sim \mathcal{GP}(0, k)$ where $k: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ is a symmetric **positive definite kernel**

- $\mathcal{X} = \mathcal{G}$ is a set of graphs.

8

How to choose k?

Test locations: $G^* = (G_i^*)_{i=1}^{N^*}$ Predictions? $f_* = (f(G_i^*))_{i=1}^{N^*}$?

K, *K*_{**}, *K*_{*} : train, test, train/test Gram matrices

$$\begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{f}_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \boldsymbol{K} + \sigma^2 \boldsymbol{I} & \boldsymbol{K}_*^T \\ \boldsymbol{K}_* & \boldsymbol{K}_{**} \end{bmatrix} \right)$$

Posterior distribution:

 $f_* \mid G, y, G^* \sim \mathcal{N}(\overline{m}, \overline{\Sigma})$ predictive mean $\overline{m} = K_* (K + \sigma^2 I)^{-1} y$ uncertainties $\overline{\Sigma} = K_{**} - K_* (K + \sigma^2 I)^{-1} K_*^T$

What is a graph?

Case 1 : Vertices + Edges

9

Case 2 : Vertices + Edges + Node labels Case 3 : Vertices + Edges + Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

nodes + structure + attributes

Gaussian process regression for graph inputs

- 1- Problem statement
- 2- Classical approaches
- 3- SWWL kernel
- 4- Experiments

Invariants / Topological descriptors

 Vectorial representation using quantities invariant to graph isomorphism (diameter, average clustering coefficient, ...)

Complete invariants require exponential time

Graph edit distance

- d(G₁, G₂): minimal number of operations to transfrom G₁ in G₂ (adding/removing an edge/vertex, node relabeling)
- NP-complete
 Not suited for node-attributed graphs...

Figure from [Nikolentzos et al., 2021]

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

$\mathcal R\text{-}\textbf{convolution}$ kernels

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

14 Thic

All node-pairs kernel / node histogram kernel

$$k (G, G') \coloneqq \sum_{\mathbf{v} \in V} \sum_{\mathbf{v}' \in V'} \mathbf{k}_{node}(\mathbf{v}, \mathbf{v}')$$

- k_{node} : Dirac kernel $\Rightarrow \phi_N$: unnormalized histogram
- Continuous variant with binning

15

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Graphlet kernel

- Set of k-graphlets of size N_k , $k \ge 3$
- $\phi_{GL}(G)$: vector of the frequencies of all graphlets in G (k-spectrum)
- $k(G,G') \coloneqq \phi_{GL}(G)\phi_{GL}(G')^T$

16

Does not take into account labels or attributes

[Feragen et al., 2013]

$$k(G,G') \coloneqq \sum_{\pi \in \mathcal{P}, \pi' \in \mathcal{P}'} k_p(\pi,\pi') \text{ with } k_p(\pi,\pi') \coloneqq \begin{cases} \sum_{j=1}^{|\pi|} RBF(\pi_j,\pi_j') \text{ if } |\pi| = |\pi'| \\ 0 & otherwise \end{cases}$$

• \mathcal{P} : set of all shortest paths in G, $|\pi|$: discrete length of the path $\pi = (\pi_1, \cdots, \pi_{|\pi|})$

[Feragen et al., 2013]

$$k(G,G') \coloneqq \sum_{\pi \in \mathcal{P}, \pi' \in \mathcal{P}'} k_p(\pi,\pi') \text{ with } k_p(\pi,\pi') \coloneqq \begin{cases} \sum_{j=1}^{|\pi|} RBF(\pi_j,\pi_j') \text{ if } |\pi| = |\pi'| \\ 0 & otherwise \end{cases}$$

• \mathcal{P} : set of all shortest paths in G, $|\pi|$: discrete length of the path $\pi = (\pi_1, \cdots, \pi_{|\pi|})$

[Feragen et al., 2013]

$$k(G,G') \coloneqq \sum_{\pi \in \mathcal{P}, \pi' \in \mathcal{P}'} k_p(\pi, \pi') \text{ with } k_p(\pi, \pi') \coloneqq \begin{cases} \sum_{j=1}^{|\pi|} RBF(\pi_j, \pi'_j) \text{ if } |\pi| = |\pi'| \\ 0 & otherwise \end{cases}$$

• \mathcal{P} : set of all shortest paths in G, $|\pi|$: discrete length of the path $\pi = (\pi_1, \cdots, \pi_{|\pi|})$

Propagation kernel

- $k(G,G') = \sum_{t}^{T} k_t(G,G')$ T iterations
- <u>Binning + counting</u>: $k_t(G, G') = \sum_{u \in G} \sum_{u' \in G'} \delta(h(F_t), h(F'_t))$ δ : Kronecker, h: Locally Sensitive Hashing function
- <u>Propagation</u>: $F_t = P F_t$ where P is a transition matrix (e.g. $P = Diag(\sum_j A_{1j}, \dots, \sum_j A_{nj})^{-1}A)$

Checklist:

✓ continuous node attributes

Graph Kernel	Exp. ϕ	Node Labels	Node Attributes	Туре	Complexity
Vertex Histogram	1	1	×	R-convolution	$\mathcal{O}(n)$
Edge Histogram	1	1	×	R-convolution	$\mathcal{O}(m)$
Random Walk	X †	1	1	R-convolution	$\mathcal{O}(n^3)$
Subtree	×	1	1	R-convolution	$\mathcal{O}(n^2 4^{deg^*}h)$
Cyclic Pattern	1	1	×	intersection	$\mathcal{O}((c+2)n+2m)$
Shortest Path	X †	1	\checkmark	R-convolution	$\mathcal{O}(n^4)$
Graphlet	1	×	×	R-convolution	$\mathcal{O}(n^k)$
Weisfeiler-Lehman Subtree	1	1	×	R-convolution	$\mathcal{O}(hm)$
Neighborhood Hash	1	1	×	intersection	$\mathcal{O}(hm)$
Neighborhood Subgraph Pairwise Distance	1	1	×	R-convolution	$\mathcal{O}(n^2m\log(m))$
Lovász ϑ	1	×	×	R-convolution	$\mathcal{O}(n(s+\frac{nm}{\epsilon})+s^2)$
$SVM-\vartheta$	1	×	×	R-convolution	$\mathcal{O}(n(s+n^2)+s^2)$
Ordered Decomposition DAGs	1	1	×	R-convolution	$\mathcal{O}(n\log n)$
Pyramid Match	×	1	×	assignment	$\mathcal{O}(ndL)$
Weisfeiler-Lehman Optimal Assignment	×	1	×	assignment	$\mathcal{O}(hm)$
Subgraph Matching	×	1	1	R-convolution	$\mathcal{O}(kn^{k+1})$
GraphHopper	×	1	1	R-convolution	$\mathcal{O}(n^4)$
Graph Invariant Kernels	×	1	1	R-convolution	$\mathcal{O}(n^6)$
Propagation	1	1	1	R-convolution	$\mathcal{O}(hm)$
Multiscale Laplacian	×	1	✓	R-convolution	$\mathcal{O}(n^5h)$

Checklist:

- ✓ continuous node attributes
- ✓ no relying heavily on the graph structure

Graph Kernel	Exp. ϕ	Node	Node	Type	Complexity
		Labels	Attributes		
Vertex Histogram	1	1	×	R-convolution	$\mathcal{O}(n)$
Edge Histogram	1	1	×	R-convolution	$\mathcal{O}(m)$
Random Walk	X †	1	1	R-convolution	$\mathcal{O}(n^3)$
Subtree	×	1	1	R-convolution	$\mathcal{O}(n^2 4^{deg^*}h)$
Cyclic Pattern	1	1	×	intersection	$\mathcal{O}((c+2)n+2m)$
Shortest Path	X †	1	1	R-convolution	$\mathcal{O}(n^4)$
Graphlet	1	×	×	R-convolution	$\mathcal{O}(n^k)$
Weisfeiler-Lehman Subtree	1	1	×	R-convolution	$\mathcal{O}(hm)$
Neighborhood Hash	1	1	×	intersection	$\mathcal{O}(hm)$
Neighborhood Subgraph Pairwise Distance	1	1	×	R-convolution	$\mathcal{O}(n^2m\log(m))$
Lovász ϑ	1	×	×	R-convolution	$\mathcal{O}(n(s + \frac{nm}{\epsilon}) + s^2)$
$SVM-\vartheta$	1	×	×	R-convolution	$\mathcal{O}(n(s+n^2)+s^2)$
Ordered Decomposition DAGs	1	1	×	R-convolution	$\mathcal{O}(n\log n)$
Pyramid Match	×	1	×	assignment	$\mathcal{O}(ndL)$
Weisfeiler-Lehman Optimal Assignment	×	1	×	assignment	$\mathcal{O}(hm)$
Subgraph Matching	×	1	1	R-convolution	$\mathcal{O}(kn^{k+1})$
GraphHopper	×	1	1	R-convolution	$\mathcal{O}(n^4)$
Graph Invariant Kernels	×	1	1	R-convolution	$\mathcal{O}(n^6)$
Propagation	1	1	✓	R-convolution	$\mathcal{O}(hm)$
Multiscale Laplacian	×	1	✓	R-convolution	$\mathcal{O}(n^5h)$

Checklist:

- ✓ continuous node attributes
- ✓ no relying heavily on the graph structure
- ✓ tractable

Graph Kernel	Exp. ϕ	Node	Node	Type	Complexity
		Labels	Attributes		
Vertex Histogram	1	1	×	R-convolution	$\mathcal{O}(n)$
Edge Histogram	1	1	×	R-convolution	$\mathcal{O}(m)$
Random Walk	X †	1	1	R-convolution	$\mathcal{O}(n^3)$
Subtree	×	1	1	R-convolution	$\mathcal{O}(n^2 4^{deg^*}h)$
Cyclic Pattern	1	1	×	intersection	$\mathcal{O}((c+2)n+2m)$
Shortest Path	X †	1	1	R-convolution	$\mathcal{O}(n^4)$
Graphlet	1	×	×	R-convolution	$\mathcal{O}(n^k)$
Weisfeiler-Lehman Subtree	1	1	×	R-convolution	$\mathcal{O}(hm)$
Neighborhood Hash	1	1	×	intersection	$\mathcal{O}(hm)$
Neighborhood Subgraph Pairwise Distance	1	1	×	R-convolution	$\mathcal{O}(n^2m\log(m))$
Lovász ϑ	1	×	×	R-convolution	$\mathcal{O}(n(s+\frac{nm}{\epsilon})+s^2)$
$SVM-\vartheta$	1	×	×	R-convolution	$\mathcal{O}(n(s+n^2)+s^2)$
Ordered Decomposition DAGs	1	1	×	R-convolution	$\mathcal{O}(n\log n)$
Pyramid Match	×	1	×	assignment	$\mathcal{O}(ndL)$
Weisfeiler-Lehman Optimal Assignment	×	1	×	assignment	$\mathcal{O}(hm)$
Subgraph Matching	×	1	1	R-convolution	$\mathcal{O}(kn^{k+1})$
GraphHopper	×	1	1	R-convolution	$\mathcal{O}(n^4)$
Graph Invariant Kernels	×	1	1	R-convolution	$\mathcal{O}(n^6)$
Propagation	1	1	1	R-convolution	$\mathcal{O}(hm)$
Multiscale Laplacian	×	1	✓	R-convolution	$\mathcal{O}(n^5h)$

Checklist:

- ✓ continuous node attributes
- no relying heavily on the graph structure
- ✓ tractable
- ✓ positive definite

Graph Kernel	Exp. ϕ	Node Labels	Node Attributes	Type	Complexity
Vertex Histogram	1	1	×	R-convolution	$\mathcal{O}(n)$
Edge Histogram	1	1	×	R-convolution	$\mathcal{O}(m)$
Random Walk	X †	1	1	R-convolution	$\mathcal{O}(n^3)$
Subtree	×	1	1	R-convolution	$\mathcal{O}(n^2 4^{deg^*}h)$
Cyclic Pattern	1	1	×	intersection	$\mathcal{O}((c+2)n+2m)$
Shortest Path	X †	1	1	R-convolution	$\mathcal{O}(n^4)$
Graphlet	1	×	×	R-convolution	$\mathcal{O}(n^k)$
Weisfeiler-Lehman Subtree	1	1	×	R-convolution	$\mathcal{O}(hm)$
Neighborhood Hash	1	1	×	intersection	$\mathcal{O}(hm)$
Neighborhood Subgraph Pairwise Distance	1	1	×	R-convolution	$\mathcal{O}(n^2m\log(m))$
Lovász ϑ	1	×	×	R-convolution	$\mathcal{O}(n(s + \frac{nm}{\epsilon}) + s^2)$
$SVM-\vartheta$	1	×	×	R-convolution	$\mathcal{O}(n(s+n^2)+s^2)$
Ordered Decomposition DAGs	1	1	×	R-convolution	$\mathcal{O}(n\log n)$
Pyramid Match	×	1	×	assignment	$\mathcal{O}(ndL)$
Weisfeiler-Lehman Optimal Assignment	×	1	×	assignment	$\mathcal{O}(hm)$
Subgraph Matching	×	1	1	R-convolution	$\mathcal{O}(kn^{k+1})$
GraphHopper	×	1	1	R-convolution	$\mathcal{O}(n^4)$
Graph Invariant Kernels	×	1	1	R-convolution	$\mathcal{O}(n^6)$
Propagation	1	1	1	R-convolution	$\mathcal{O}(hm)$
Multiscale Laplacian	×	1	 ✓ 	<i>R</i> -convolution	$\mathcal{O}(n^5h)$

Gaussian process regression for graph inputs

- 1- Problem statement
- 2- Classical approaches
- 3- SWWL kernel
- 4- Experiments

Node embeddings + Optimal transport approaches

Step 1: continuous WL embeddings

[Togninalli et al., 2019]

Weisfeiler-Lehman embeddings

Figure From [Kriege et al., 2020]

28

WL relabeling (discrete case)

$$l^{(i+1)}(v) = Hash(l^{i}(v), \{l^{i}(u), u \in \mathcal{N}(v)\})$$
$$X_{G}^{(i)} = \begin{bmatrix} l^{(i)}(v), v \in V_{G} \end{bmatrix} \qquad X_{G} = Concatenate(X_{G}^{(0)}, \cdots, X_{G}^{(H)})$$

Continuous Weisfeiler-Lehman embeddings

[Togninalli et al., 2019]

WL relabeling (continuous case)

$$\begin{aligned} a^{(i+1)}(v) &= \frac{1}{2} (a^{(i)}(v) + \frac{1}{\deg(v)} \sum_{u \in \mathcal{N}(v)} w(v, u) \, a^{(i)}(u)) \\ X_G^{(i)} &= \begin{bmatrix} a^{(i)}(v), v \in V_G \end{bmatrix} \qquad X_G = Concatenate(X_G^{(0)}, \cdots, X_G^{(H)}) \end{aligned}$$

Wasserstein distance

Wasserstein distance (continuous case)

$$\mathcal{W}_r^r(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int_{\mathbb{R}^s \times \mathbb{R}^s} ||x-y||^r d\gamma(x,y),$$

Where:

31

- *r* ∈
$$[1, +∞)$$
, *s* ∈ $[1, +∞)$,

- $\mathcal{P}_r(\mathbb{R}^s)$: probability measures on \mathbb{R}^s with finite moments of order r,

- ||. || : Euclidean norm,
- $-\Pi(\mu,\nu) = \{\pi \in \mathcal{P}_r(\mathbb{R}^s \times \mathbb{R}^s): (Proj_1)_{\#\pi} = \mu, (Proj_2)_{\#\pi} = \nu\}$

Wasserstein distance

Wasserstein distance (discrete case)

$$\mathcal{W}_{r}^{r}(\mu,\nu) = \min_{P \in U(n,n')} \langle C^{\mu,\nu}, P \rangle$$
Where:

$$- \mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \qquad \nu = \frac{1}{n'} \sum_{i=1}^{n'} \delta_{y_{i}}$$

$$- U(n,n') = \left\{ P \in \mathbb{R}_{+}^{n \times n'} : P1_{n'} = \frac{1}{n} 1_{n}, P1_{n} = \frac{1}{n'} 1_{n'} \right\}$$

$$- C^{\mu,\nu} = \left[\left\| x_{i} - y_{j} \right\|^{r} \right]_{i=1...n, j=1...n'}$$

Wasserstein distance: issues

Substitution 'kernels' 🗶 [Peyré, Cuturi, 2019]

$$\begin{split} k(x,y) &:= k_I(\|x-y\|) \text{ be an isotropic kernel} \\ \to \text{replace } \|. \| \text{ by } \mathcal{W}_2 \text{ or } \mathcal{W}_1 \end{split}$$

$$k_{1}(\mu,\nu) = k_{I}\left(\sqrt{\mathcal{W}_{1}(\mu,\nu)}\right)$$
$$k_{2}(\mu,\nu) = k_{I}\left(\mathcal{W}_{2}(\mu,\nu)\right)$$

33

 k_1 and k_2 are not **positive definite** kernels in dimension ≥ 2 .

Complexity \bigstar 1 pair: $0(n^3 \log(n))$,Gram matrix: $0(N^2n^3 \log(n))$

Computation time for the Rotor37 dataset

N = 1000 n \simeq 30000 500 000 Wasserstein distances to compute

 \rightarrow **400 days** to build the 'Gram' matrix...

Sliced Wasserstein distance

Wasserstein (dimension 1)

$$\mathcal{W}_r^r(\mu,\nu) = \int_0^1 |\mathbf{F}^{-1}(\mu) - \mathbf{F}^{-1}(\nu)|^r \, \mathrm{d}t$$
Quantile function

Empirical case:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \qquad \nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$$
$$\mathcal{W}_r^r(\mu, \nu) = \frac{1}{n} \sum_{i=1}^{n} |x_{(i)} - y_{(i)}|^r$$
Order statistics

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Sliced Wasserstein distance

Wasserstein (dimension 1)

$$\mathcal{W}_{r}^{r}(\mu,\nu) = \int_{0}^{1} |\mathbf{F}^{-1}(\mu) - \mathbf{F}^{-1}(\nu)|^{r} dt$$
Quantile function

Empirical case:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \quad \nu = \frac{1}{n'} \sum_{i=1}^{n'} \delta_{y_i}$$
$$\widehat{\mathcal{W}}_r^r(\mu, \nu) = \frac{1}{Q} \sum_{i=1}^{Q} |x_{(i)} - y_{(i)}|^r \quad \begin{array}{c} \text{Approximation with} \\ Q \ll \max(n, n') \\ \text{quantiles} \end{array}$$

Sliced Wasserstein distance

Sliced Wasserstein

$$\mathcal{SW}_r^r(\mu,\nu) = \int_{\mathbb{S}^{s-1}} \mathcal{W}_r^r(\theta_{\#}^*\mu,\theta_{\nu}^*) \mathrm{d}\sigma(\theta)$$

Where:

- \mathbb{S}^d : *d*-dimensional unit sphere,
- σ : uniform distribution on \mathbb{S}^d
- $\theta_{\#}^*\mu$: push-forward measure of $\mu \in \mathcal{P}_r(\mathbb{R}^s)$ by $\theta^*\binom{\mathbb{R}^s \to \mathbb{R}}{x \mapsto \langle \theta, x \rangle}$
- \mathcal{W}_r^r : 1-dimensional Wasserstein

Sliced Wasserstein distance

Estimated Sliced Wasserstein

$$\widehat{\mathcal{SW}_r^r}(\mu,\nu) = \frac{1}{P} \sum_{p=1}^{P} \widehat{\mathcal{W}_r^r}(\left(\theta_p^*\right)_{\#} \mu, \left(\theta_p^*\right)_{\#} \nu)$$

$$\widehat{\mathcal{W}_r^r}(\mu,\nu) = \frac{1}{Q} \sum_{i=1}^{r} \left| x_{(i)} - y_{(i)} \right|^r$$

Where:

- *Q*: number of quantiles
- *P*: number of projections

SW distance: properties

Hilbertian pseudo distance

Let \mathcal{X} be a space equipped with a pseudo-distance d. d is Hilbertian if there exists a Hilbert space \mathcal{F} and a feature map $\phi: \mathcal{X} \to \mathcal{F}$ such that $d(x, y) = ||\phi(x) - \phi(y)||_{\mathcal{F}}$ for all $x, y \in \mathcal{X}$

[Hein, Bousquet, 2005]

Useful characterizations

38

Denoting $\langle x, y \rangle_d^{x_0} = \frac{1}{2} (d(x, x_0)^2 + d(y, x_0)^2 - d(x, y)^2)$, the three following properties are equivalent:

- d is a Hilbertian pseudo-distance
- $k_{poly}(x, y) = (c + \langle x, y \rangle_d^{x_0})^l$ for all $c \ge 0, l \in \mathbb{N}, x, y \in \mathcal{X}$ is positive definite
- $k_{exp}(x, y) = \exp(-\gamma d^{2\beta}(x, y))$ for all $\gamma \ge 0, \beta \in [0, 1], x, y \in \mathcal{X}$ is positive definite

[Meunier et al., 2022] SW substitution kernels SW_2 and $\sqrt{SW_1}$ are Hilbertian \Rightarrow positive definite substitution kernels \checkmark

Sliced Wasserstein Weisfeiler Lehman (SWWL)

SWWL kernel

39

[CP, Da Veiga, Garnier, Staber, 2024]

 $\phi_{WL}: G \mapsto X_G \in \mathbb{R}^{|V_G| \times d(H+1)}$: continuous WL embeddings after H iterations (μ_G associated empirical measure)

E

$$\widehat{SW_{2}^{2}}(\mu,\nu) = \frac{1}{PQ} \sum_{p=1}^{I} \sum_{q=1}^{Q} \left| u_{q}^{\theta_{p}} - u'_{q}^{\theta} \right|^{2} = \left\| E_{\phi_{WL}(G)} - E_{\phi_{WL}(G')} \right\|_{2}^{2}$$

Precomputed embeddings:

$$\phi_{WL(G)}, E_{\phi_{WL}(G')} \in \mathbb{R}^{PQ}$$
 where $u_q^{\theta_p} = \langle \theta_p, \phi_{WL}(G) \rangle_{(q)}$
 $E_{\phi_{WL}(G)} = [u_1^{\theta_1}, \cdots, u_Q^{\theta_1}, \cdots, u_1^{\theta_P}, \cdots, u_Q^{\theta_P}]$

$$k_{SWWL}(G,G') = e^{-\lambda \widehat{SW_2^2} \left(\mu_{\phi_{WL}(G)}, \mu_{\phi_{WL}(G')} \right)}$$

Complexity for the Gram matrix
$$O(NH\delta n + NP n (log n + H) + N^2 PQ)$$
WL iterationsProjected Quantile
Embeddings

N: number of graphs n: average number of nodes δ average degree P: number of projections Q: number of quantiles H: number of WL iterations

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Sliced Wasserstein Weisfeiler Lehman (SWWL)

* Steps 1 and 2 can be done separately for each input graph

Gaussian process regression for graph inputs

- 1- Problem statement
- 2- Classical approaches
- 3- SWWL kernel
- 4- Experiments

SWWL: experiments on small graphs

Dataset	Num graphs	Mean nodes	Mean edges	Attributes	Scalars	Task (classes)
BZR	405	35.7	38.4	3	0	Classif(2)
COX2	467	41.2	43.5	3	0	Classif(2)
PROTEINS	1113	39.1	72.8	1	0	Classif(2)
ENZYMES	600	32.6	62.1	18	0	Classif(6)
Cuneiform	267	21.27	44.8	3(+2)	0	Classif(30)
Rotor37*	1000 + 200	29773	77984	3	2	Regression
Rotor37-CM	1000 + 200	1053.8	3097.4	3	2	Regression
Tensile2d	500 + 200	9425.6	27813.8	2	6	Regression
Tensile2d-CM	500 + 200	1177.4	3159.8	2	6	Regression
AirfRANS	800 + 200	179779.0	536826.6	2	2	Regression
AirfRANS-CM	800 + 200	6852.8	19567.2	2	2	Regression

(a) Cuneiform tablet

[Kriege et al., 2019]

		$\operatorname{Kernel}/\operatorname{Dataset}$	BZR	COX2	PROTEINS	ENZYMES	Cuneiform
	OT-based	SWWL (ours)	$\textbf{85.43} \pm \textbf{4.05}$	78.61 ± 5.87	$\textbf{75.12} \pm \textbf{5.99}$	66.67 ± 5.0	83.36 ± 4.32
		WWL	84.43 ± 2.82	75.62 ± 6.43	74.85 ± 4.97	$\textbf{70.33} \pm \textbf{2.87}$	84.62 ± 6.78
RMSE (5 eyn)		FGW	$\textbf{85.41} \pm \textbf{3.14}$	76.05 ± 7.98	71.79 ± 3.61	67.83 ± 2.36	80.85 ± 8.06
		RPW	$\textbf{85.42} \pm \textbf{2.41}$	77.98 ± 5.54	71.42 ± 5.10	52.0 ± 6.94	$\textbf{91.00} \pm \textbf{8.36}$
	Non-OT-based	\mathbf{PK}	80.96 ± 4.79	78.21 ± 7.41	69.54 ± 4.90	68.5 ± 5.13	-
		GH	82.44 ± 4.98	$\textbf{79.49} \pm \textbf{6.04}$	71.97 ± 2.44	43.5 ± 3.91	-
		Kernel/Data	set BZR	COX2	PROTEINS	ENZYMES	Cuneiform
Time to build the	OT-based	SWWL (our	rs) $0.7 + 0.$	1 0.6 + 0.1	1.5 + 0.6	1.1 + 0.2	1.3 + 0.1
Gram matrices		WWL	0.3 + 97	0.3 + 131.2	0.7 + 803	0.5 + 220	0.9 + 34
		\mathbf{FGW}	0.6 + 71	4 0.7 + 842	1.6 + 7882	0.9 + 1381	0.4 + 145
		RPW	35 + 5	40 + 7	240 + 40	220 + 40	-
	Non-OT-base	d PK	10	13	52	53	-
		$_{ m GH}$	77	108	3998	230	-

• right vertex • left vertex • tail vertex • tail vertex

(b) Graph representation

• depth vertex

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

SWWL: experim	ents on	meshe	25	0.0040		- Q = 1	0
			נטאנת	0.0040 0.0035 0.0030 0.0025 0.0020 0.0015 0	10 20 Number of pr	Q = 1 Q = 5 Q = 1 Q = 5 Q = 1 Q	
	Kernel/Dataset	Rotor37 $x10^{-3}$	Rotor37-CM $x10^{-3}$	Tensile2d x1	Tensile2d-CM x1	$\begin{array}{c} \texttt{AirfRANS} \\ \text{x}10^{\text{-}4} \end{array}$	AirfRANS-CM x10 ⁻⁴
RMSE (5 exp)	SWWL WWL PK	1.44 ± 0.07 - -	$\begin{array}{c} {\bf 3.49} \pm {\bf 0.15} \\ {\bf 3.51} \pm {\bf 0.00} \\ {\bf 4.18} \pm {\bf 0.39} \end{array}$	0.89 ± 0.01 - -	$\begin{array}{c} {\bf 1.51} \pm {\bf 0.01} \\ {\bf 6.46} \pm {\bf 0.00} \\ {\bf 6.03} \pm {\bf 4.58} \end{array}$	7.56 ± 0.36 - -	$\begin{array}{c} 9.63 \pm 0.54 \\ 14.4 \pm 0.80 \\ 8.94 \pm 2.31 \end{array}$
Time to build the	Kernel/Dataset	Rotor37	Rotor37-CM	1 Tensile2d	Tensile2d-CM	AirfRANS	AirfRANS-CM
Gram matrix	SWWL WWL	$1\min + 11$ -	4s + 11s 13min (*)	11s + 4s-	2s + 4s 6min (*)	5min + 7s	$rac{15 \mathrm{s} + 7 \mathrm{s}}{8 \mathrm{h} \ (*)}$
(*) in parallel, using 100 jobs	PK	-	1min	-	2min	-	15min

44 | This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Engineering curves

45

Predicted compression rate/isentropic efficiency with respect to the massflow for a test mesh, 4 input rotations and 20 input pressure (going beyond the range of train/test datasets) with 95% confidence intervals Rotor37, P=50, Q=100, H=6

Prediction of output fields

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Learning output fields/signals

Input

$$\mathcal{Y} = \bigcup_{X = (V, E, w, F) \in \mathcal{X}} \{Y \colon V \to \mathbb{R}\}$$

Train data: $\{(x^{(i)}, y^{(i)})\}_{i=1,...,N}$

 $x^{(i)} = (V^{(i)}, E^{(i)}, w^{(i)}, F^{(i)}) \in \mathcal{X}$ $v^{(i)} \in \mathcal{U}$

1- Inputs can have **different sizes**, so do the outputs 2- No natural ordering of the output dimensions 3- The output dimension can be very large

By abuse of notations:

$$y^{(i)} = (y_1^{(i)}, \cdots, y_{|V^{(i)}|}^{(i)})$$

Prediction of output fields

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Related approaches: Multi-Output GP

MOGP

49

[Goovaerts, 1997]

 $f: \mathcal{X} \to \mathbb{R}^D$ $f(x) = (f_1(x), \cdots, f_D(x))$

Vector-Valued Kernel: $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{D \times D}$

$$cov(f_j(x), f_l(x')) = k_{j,l}(x, x')$$

Intrinsic Coregionalization Model (ICM):

$$k_{l,j}(x,x') = B_{j,l} k_{scal}(x,x')$$

$$K = B \bigotimes K_{scal}$$

Where $B \in \mathbb{R}^{D \times D}$, $K_{scal} \in \mathbb{R}^{N \times N}$, $K \in \mathbb{R}^{(ND) \times (ND)}$

Issues for us 🗶

- Outputs are not vectors - $D_i = n_i$: very large outputs (even if they can be put in vectorial form)

Related approaches: operator-valued GP

Operator/Function valued Gaussian Processes [Kadri, 2016]

 $f: \mathcal{X} \to \mathcal{Y} = L^2(\Omega_Y)$ where Ω_Y is a compact set

Operator valued kernel: $k: \mathcal{X} \times \mathcal{X} \to \mathcal{L}(\mathcal{Y})$

Block operator kernel matrix: $K \in \mathcal{L}(\mathcal{Y}^N)$

 $K = \begin{bmatrix} K_{1,1} & \cdots & K_{1N} \\ \vdots & \ddots & \vdots \\ K_{N1} & \cdots & K_{NN} \end{bmatrix}$

Issues for us 🗶

50

- Function domain Ω_Y would not be fixed - In practice, OVGP rely on a discretization to grid points common to all samples

Output Kernel Regression

Kernel Dependency Estimation [Weston, 2003]

Input-Output kernel regression [Brouard, 2016]

Issues for us 🗴

- Need to define a kernel in the output space
- Solving a pre-image problem

Related approaches: Graph Signal Processing

Graph Fourier Transform [Schuman et al., 2013]

 $L \in \mathbb{R}^{n \times n}$: Laplacian matrix of G = (V, E). Eigenvalues: $0 = \lambda_1 \le \dots \le \lambda_n$. Eigenvectors: U_1, \dots, U_n Signal: $y: V \to \mathbb{R}$ (by abuse of notation, $y = (y_1, \dots, y_n)$)

l-th GFT coefficient:
$$\tilde{y}_l = \langle y, U_l \rangle_{l}$$
 $1 \le l \le Q \le n$
Inverse (truncated) GFT: $y_i = \sum_{l=1}^{Q} \tilde{y}_l \times (U_l)_i$

Issues for us 🗶

- Signs/choice of basis of eigenvectors?Numerical unstabilities for small
- eigenvalues

52

 G_2

 \rightarrow reversed eigenvector

Related approaches: Mesh Morphing Gaussian Process

Issues for us 🗶

- Specific to mesh data
- Morphing \rightarrow same topology
- Transformation of both inputs and outputs

Benefits 🗸

- Uncertainty quantification
- Very good results for output field prediction

Prediction of output fields

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

Express signals/fields in the same space?

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Regularized Wasserstein distance

Regularized Wasserstein distance (discrete case)

$$\mathcal{W}_{\lambda}(\mu,\nu) = L_{\lambda}(\mu,\nu,P_{\lambda}) \qquad P_{\lambda} = \underset{P \in U(n,n')}{\operatorname{argmin}} L_{\lambda}(\mu,\nu,P)$$

Where: - $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ $\nu = \frac{1}{n'} \sum_{i=1}^{n'} \delta_{y_i}$ - $U(n, n') = \left\{ P \in \mathbb{R}^{n \times n'}_+ : P1_{n'} = \frac{1}{n} 1_n, P1_n = \frac{1}{n'} 1_{n'} \right\}$ - $C^{\mu, \nu} = \left[\left\| x_i - y_j \right\|^r \right]_{i=1...n, j=1...n'}$

Transferring fields with transport plans

Part 1: getting transport plans (input space)

$$\mu_{ref}: \text{ reference measure of size } n_{ref}$$

$$\mu_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \delta_{[\phi_{WL}(G^{(i)})]_j} : \text{WL embeddings of input graph } i$$

$$P_{\lambda}^{(i)} = \underset{P \in U(n_i, n_{ref})}{\operatorname{argmin}} L_{\lambda}(\mu_i, \mu_{ref}, P) \in \mathbb{R}^{n_i \times n_{ref}}$$

 μ_1 p(1)D(N) μ_{ref} $P^{(2)}$

SAFRAN

Part 2: transferring **output** signals

$$T^{(i)} = \left(n_{ref} P_{\lambda}^{(i)}\right)^{T} y^{(i)} \in \mathbb{R}^{n_{ref}}$$
 Transferred field

$$\tilde{y}^{(i)} = \left(n_{i} P_{\lambda}^{(i)}\right) T^{(i)} \in \mathbb{R}^{n_{i}}$$
 Reconstructed field

Express signals/fields in the same space?

Dimension reduction (in practice)

TOS-GP: Transported Output Signal Gaussian Processes

[CP, Da Veiga, Garnier, Staber, 2024+]

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

TOS-GP: Transported Output Signal Gaussian Processes

Train

- 1- Compute all regularized transport plans to the reference +transfer fields
- 2- PCA
- 3- Independent SWWL GPs

Test

1- Predict PCA coefficients for new test outputs 2- Inverse PCA \rightarrow predicted transferred fields Uncertainty 3- Compute all regularized transport plans to propagation the reference +transfer back fields

Hyperparameters

- Reference measure
- Regularization parameter
- Number of WL iterations

Remarks

- Agnostic to the choice of the regressor
- No assumption on the data (mesh, topology, ...)
- Analytical UQ formulas

Prediction of output fields

- 1- Problem statement
- 2- Related approaches
- 3- TOS-GP
- 4- Experiments

TOS-GP: predictions and uncertainties

2.5e-03

0

-3.3e-03

1.6e+02

-1.6e+02

0

Ground truth

2.5e-03

0

-3.3e-03

Posterior std

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Prediction

TOS-GP: uncertainty propagation (field σ_{12})

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

SAFRAN

TOS-GP: regression scores

RRMSE (10 exp)				
Method/Dataset	Rotor37(P)	Rotor37(T)	${\tt Tensile2d}({\tt U})$	$\texttt{Tensile2d}(\sigma_{12})$
TOS-GP	3.4e-2 (6e-4)	9.6e-3 (2e-5)	2.2e-3 (8e-6)	5.6e-3 (3e-6)
GCNN	1.7e-2 (8e-4)	3.9e-3 (1e-4)	4.5e-2 (1e-2)	4.5e-2 (4e-3)
MGN	1.7e-2 (2e-3)	1.4e-2 (2e-3)	1.5e-2 (1e-3)	7.5e-3 (4e-4)
MMGP	7.2e-3 (5e-4)	8.2e-4 (1e-5)	3.4e-3 (4e-5)	2.4e-3 (2e-5)

$$RRMSE^{2}\left(\left\{y^{(i)}\right\}_{i=1,\cdots,N_{*}},\left\{\hat{y}^{(i)}\right\}_{i=1,\cdots,N_{*}}\right) = \frac{1}{N_{*}}\sum_{i=1}^{N_{*}}RRMSE_{i}^{2}\left(y^{(i)},\hat{y}^{(i)}\right)$$

$$RRMSE_{i}^{2}(y^{(i)}, \hat{y}^{(i)}) = \frac{\left\|y^{(i)} - \hat{y}^{(i)}\right\|_{2}^{2}}{n_{*i} \left\|y^{(i)}\right\|_{\infty}^{2}}$$

65

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

TOS-GP: regression scores

 $\mathrm{Tensile2d}(U)\,,\lambda=1e^{-3}$

Tensile2d(U), reference = Large

MMD to obtain subsampled empirical distributions

Use case: varying topologies

TOS-GP: limitations

Approximation vs prediction error								
	Stage \Dataset	Rotor37(P)	Rotor37(T)	${\tt Tensile2d}({\tt U})$	$\texttt{Tensile2d}(\sigma_{12})$			
	Approximation Transferred Prediction	3.29e-2 2.59e-2	9.51e-3 2.08e-3	1.90e-3 1.35e-3	4.55e-3 3.37e-3			
	Complete	3.36e-2	9.63e-3	2.23e-3	5.57e-3			

Discontinuous signals

Large signal variations -> more sensitive to the regularization of transport plans

Computation times

* Depends on the size of the input, the reference, and the regularization

1 transport plan: Tensile2d: ~10 seconds*

Rotor37: ~50 seconds*

 \rightarrow Embarrassingly parallel. But preprocessing required for new test inputs

Conclusion

Inputs = Graphs, Outputs = Scalars

- Lots of approaches, but many
 - Are not tractable
 - Do not handle continuous attributes
 - Do not guarantee positive definiteness
 - Are too dependent on the graph structure
- SWWL graph kernel
 - Positive definite
 - Can consider very large graphs
 - Competitive results for mesh-based Gaussian process regression

Inputs = Graphs, Outputs = Signals

- Classical techniques impossible to use directly
 - MOGP, OVGP, GSP, dimension reduction, ...
- TOS-GP
 - Extension of GPs to predict signal outputs
 - Optimal transport + Dimension reduction

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

This work was supported by the French National Research Agency (ANR) through the SAMOURAI project under grant ANR20-CE46-0013.

References

Graph kernels, Gaussian processes

- Nikolentzos, G., Siglidis, G., & Vazirgiannis, M. (2021). Graph kernels: A survey.
- Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels.
- Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., & Borgwardt, K. (2013). Scalable kernels for graphs with continuous attributes.
- Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning.
- Hein, M., & Bousquet, O. (2005). Hilbertian metrics and positive definite kernels on probability measures.
- Kriege, N. M., Fey, M., Fisseler, D., Mutzel, P., & Weichert, F. (2018, August). Recognizing cuneiform signs using graph based methods.

Optimal transport

- Peyré, G., & Cuturi, M. (2019). Computational optimal transport: With applications to data science.
- Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., & Borgwardt, K. (2019). Wasserstein weisfeilerlehman graph kernels.
- Meunier, D., Pontil, M., & Ciliberto, C. (2022, June). Distribution Regression with Sliced Wasserstein Kernels.

References

72

Multi-output approaches

- Goovaerts, P. (1997). *Geostatistics for natural resources evaluation*.
- Kadri, H., Duflos, E., Preux, P., Canu, S., Rakotomamonjy, A., & Audiffren, J. (2016). Operator-valued kernels for learning from functional response data.
- Kadri, H., Ghavamzadeh, M., & Preux, P. (2013, February). A generalized kernel approach to structured output learning.
- Weston, J., Chapelle, O., Vapnik, V., Elisseeff, A., & Schölkopf, B. (2003). Kernel dependency estimation.
- Brouard, C., Szafranski, M., & d'Alché-Buc, F. (2016). Input output kernel regression: Supervised and semi-supervised structured output prediction with operator-valued kernels.
- Kontolati, K., Loukrezis, D., Giovanis, D. G., Vandanapu, L., & Shields, M. D. (2022). A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems.
- Casenave, F., Staber, B., & Roynard, X. (2024). Mmgp: a mesh morphing gaussian process-based machine learning method for regression of physical problems under nonparametrized geometrical variability
- Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.

MMD subsampling

Definition 2 (Maximum Mean Discrepancy). Let x and y be random variables defined on a topological space \mathcal{Z} , with respective Borel probability measures p and q. Let $k : \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ be a kernel function and let $\mathcal{H}(k)$ be the associated reproducing kernel Hilbert space. The maximum mean discrepancy between p and q is defined as

$$\mathrm{MMD}_k(p,q) = \sup_{\|f\|_{\mathcal{H}(k)} \leq 1} \left| \mathbb{E}_{x \sim p}[f(x)] - \mathbb{E}_{y \sim q}[f(y)] \right|.$$

The MMD admits the following closed-form expression:

$$MMD_{k}(p,q)^{2} = \mathbb{E}_{x \sim p, x' \sim p}[k(x,x')] + \mathbb{E}_{y \sim q, y' \sim q}[k(y,y')] - 2\mathbb{E}_{x \sim p, y \sim q}[k(x,y)],$$
(12)

$$\mu_{i+1}(j) = \frac{1}{i+1} \sum_{\ell \in \mathcal{P}_i} \delta_{\mathbf{F}_{\ell}} + \frac{1}{i+1} \delta_{\mathbf{F}_j}, \quad j = 1, \dots, n$$

Algorithm 3 MMD subsampling

Input: Empirical measure μ , kernel k, subsample size m **Output:** Subsampled measure μ'

1:
$$\pi_1 \leftarrow \operatorname{argmin}_{j=1\cdots n_0} \operatorname{MMD}_k^2(\mu, \delta_{\mathbf{F}_j})$$

2: $\mathcal{P}_1 = \{\pi_1\}$
3: for $i = 1, \cdots, m-1$ do
4: $\pi_{i+1} \leftarrow \operatorname{argmin}_{j=1\cdots n_0} \operatorname{MMD}_k^2(\mu, \mu_{i+1}(j))$
5: $\mathcal{P}_{i+1} \leftarrow \mathcal{P}_i \cup \{\pi_{i+1}\}$
6: end for
7: $\mu' \leftarrow \frac{1}{m} \sum_{j \in \mathcal{P}_m} \delta_{\mathbf{F}_j}$

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

TOS-GP: more experimental details

74

Table 3: Detail of the RRMSE for the successive stages of TOS-GP: errors between test and approximated signals (approximation), errors between test and predicted transferred signals (Transferred prediction), and errors between test and predicted signals (complete).

Stage \Dataset	${\tt Rotor37(P)}$	Rotor37(T)	${\tt Tensile2d}({\tt U})$	$\texttt{Tensile2d}(\sigma_{12})$
Approximation	3.29e-2	9.51e-3	1.90e-3	4.55e-3
Transferred	2.59e-2	2.08e-3	1.35e-3	3.37e-3
Complete	3.36e-2	9.63e-3	2.23e-3	5.57e-3

Table 4: RRMSE scores depending on the number of continuous WL iterations.

WL iterations \Dataset	${\tt Rotor37(P)}$	Rotor37(T)	${\tt Tensile2d}({\tt U})$	$\texttt{Tensile2d}(\sigma_{12})$
0	4.38e-2	9.63e-3	2.91e-3	9.60e-3
1	3.36e-2	9.82e-3	2.23e-3	6.41e-3
2	3.52e-2	1.01e-2	2.35e-3	5.57e-3
3	3.71e-2	1.04e-2	2.34e-3	5.59e-3

POWERED BY TRUST

