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Objectives
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Objectives

Gaussian

Process

regression

Inputs

Prediction

Uncertainty

quantification



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

4

 Graph inputs

 Mesh → Graph structure

 2D/3D coordinates for all 
nodes

Inputs and outputs

 Scalar inputs

 Pressure

 Speed of rotation

 Outputs

 Physical quantities
of interest (scalars)

 Fields
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 Gaussian process regression for graph 
inputs

Outline

 Prediction of output fields

Gaussian process regression with Sliced
Wasserstein Weisfeiler Lehman graph 
kernels

Learning signals defined on graphs with optimal 
transport and Gaussian process regression, 2024

[CP, Da Veiga, Garnier, Staber, 2024+][CP, Da Veiga, Garnier, Staber, 2024]



Gaussian
process
regression for 
graph inputs

1- Problem statement

2- Classical approaches

3- SWWL kernel

4- Experiments
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Gaussian process regression

𝒢𝒢

ℝ ℝ
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Gaussian process regression

 𝒳 = 𝒢 is a set of  graphs.



 How to choose k ?

Test locations: 

𝑮∗ = (𝐺𝑖
∗)𝑖=1
𝑁∗

Predictions? 𝒇∗ = (𝑓(𝐺𝑖
∗))𝑖=1

𝑁∗
?

𝑲,𝑲∗∗, 𝑲∗ : train, test, train/test Gram 

matrices

𝒚
𝒇∗

∼ 𝒩 0,
𝑲 + 𝜎2𝐼 𝑲∗

𝑇

𝑲∗ 𝑲∗∗

Noisy observations:     

y = 𝑦𝑖 𝑖=1
𝑁 with yi = 𝑓 𝐺𝑖 + 𝜖𝑖 where 

𝜖𝑖~𝒩 0,𝜎2 ,  𝑓:𝒳 → ℝ

Gaussian prior over functions:

𝑓 ~ 𝒢𝒫 0, 𝑘 where 𝑘: 𝒢 × 𝒢 → ℝ is a 

symmetric positive definite kernel

Posterior distribution: 

𝒇∗ | 𝑮, 𝒚, 𝑮
∗ ~𝒩( ഥ𝒎, ഥ𝚺)

predictive mean

uncertainties

ഥ𝒎 = 𝑲∗ 𝑲+ 𝜎2𝐼 −1𝒚

ഥ𝚺 = 𝑲∗∗ − 𝑲∗ 𝑲+ 𝜎2𝐼 −1𝑲∗
𝑇𝑘 = ?,
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What is a graph ?

Case 1 : 

Vertices + Edges

A C
A

B
B

B

Case 2 : 

Vertices + Edges

+ Node labels

Case 3 : 

Vertices + Edges

+ Node attributes

Case 3A: Fixed structure -> signal

Case 3B: Fixed number of nodes

Case 3C: Varying number of 

nodes + structure + attributes

Case 3C+: Varying number of 

nodes + structure + attributes

+ large-scale + sparse

∈ ℝ𝑠
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Invariants / Topological descriptors

 Vectorial representation using quantities invariant to graph isomorphism
(diameter, average clustering coefficient, …)

 Complete invariants require exponential time

𝑉 = 6

𝐸 = 7
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Graph edit distance

+1 +2 +2

 𝑑 𝐺1, 𝐺2 : minimal number of operations to  transfrom 𝐺1 in 𝐺2
(adding/removing an edge/vertex, node relabeling)

 NP-complete  Not suited for node-attributed graphs…
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Taxonomy of graph kernels

Figure from [Nikolentzos et al., 2021]
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ℛ-convolution kernels

 𝑆(𝐺): set of parts/substructures of 𝐺

 𝑘𝑝𝑎𝑟𝑡: kernel between individual parts

𝑘 𝐺, 𝐺′ ≔ 

𝑠∈𝒮 𝐺



𝑠′∈𝒮 𝐺′

𝑘𝑝𝑎𝑟𝑡(𝑠, 𝑠
′)

Nodes

Edges

Trees
CyclesShortest

paths

…
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All node-pairs kernel / node histogram kernel

𝑘 𝐺, 𝐺′ ≔ 

v∈𝑉



v′∈𝑉′

knode(v, v
′)

 𝑘𝑛𝑜𝑑𝑒 : Dirac kernel    ⇒ 𝜙𝑁 : unnormalized histogram

 Continuous variant with binning

A C

B
B

B

BA C

2

A

3 1

0.5

1.2

1.7

0.3

3.5

0.1 0.0

3

2

1

4.0



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

16

Graphlet kernel

2 21= 0 0 0 0 0 0 0 0

 Set of 𝑘-graphlets of size 𝑁𝑘 , 𝑘 ≥ 3

 𝜙𝐺𝐿(𝐺) : vector of the frequencies of all graphlets in 𝐺 (𝑘-spectrum)

 𝑘 𝐺, 𝐺′ ≔ 𝜙𝐺𝐿 𝐺 𝜙𝐺𝐿 𝐺′ 𝑇

 Does not take into account labels or attributes



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

17

Graph Hopper

[Feragen et al., 2013]

𝜋
𝜋′

 𝒫: set of all shortest paths in G,         |𝜋|: discrete length of the path 𝜋 = (𝜋1, ⋯ , 𝜋 𝜋 )

𝑘 𝐺, 𝐺′ ≔ 

𝜋∈𝒫,𝜋′∈𝒫′

𝑘𝑝(𝜋, 𝜋
′) 𝑤𝑖𝑡ℎ 𝑘𝑝 𝜋, 𝜋′ ≔



𝑗=1

|𝜋|

𝑅𝐵𝐹(𝜋𝑗 , 𝜋𝑗
′) 𝑖𝑓 𝜋 = |𝜋′|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Graph Hopper

[Feragen et al., 2013]

𝜋
𝜋′

 𝒫: set of all shortest paths in G,         |𝜋|: discrete length of the path 𝜋 = (𝜋1, ⋯ , 𝜋 𝜋 )

𝑘 𝐺, 𝐺′ ≔ 

𝜋∈𝒫,𝜋′∈𝒫′

𝑘𝑝(𝜋, 𝜋
′) 𝑤𝑖𝑡ℎ 𝑘𝑝 𝜋, 𝜋′ ≔



𝑗=1

|𝜋|

𝑅𝐵𝐹(𝜋𝑗 , 𝜋𝑗
′) 𝑖𝑓 𝜋 = |𝜋′|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Graph Hopper

[Feragen et al., 2013]

𝜋

𝜋′

 𝒫: set of all shortest paths in G,         |𝜋|: discrete length of the path 𝜋 = (𝜋1, ⋯ , 𝜋 𝜋 )

𝑘 𝐺, 𝐺′ ≔ 

𝜋∈𝒫,𝜋′∈𝒫′

𝑘𝑝(𝜋, 𝜋
′) 𝑤𝑖𝑡ℎ 𝑘𝑝 𝜋, 𝜋′ ≔



𝑗=1

|𝜋|

𝑅𝐵𝐹(𝜋𝑗 , 𝜋𝑗
′) 𝑖𝑓 𝜋 = |𝜋′|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Propagation kernel

 𝑘 𝐺, 𝐺′ = σ𝑡
𝑇 𝑘𝑡(𝐺, 𝐺

′) 𝑇 iterations

 Binning + counting:  𝑘𝑡 𝐺, 𝐺
′ = σ𝑢∈𝐺σ𝑢′∈𝐺′ 𝛿( ℎ 𝐹𝑡 , ℎ 𝐹𝑡

′ )

𝛿: Kronecker,  ℎ: Locally Sensitive Hashing function

 Propagation: 𝐹𝑡 = 𝑃 𝐹𝑡 where 𝑃 is a transition matrix (e.g. 𝑃 = 𝐷𝑖𝑎𝑔 σ𝑗 𝐴1𝑗 , ⋯ , σ𝑗 𝐴𝑛𝑗
−1
𝐴)

BinningPropagation

1 step 1 step
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Graph kernels

[Nikolentzos et al., 2021]

Checklist:

 continuous node attributes
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Graph kernels

[Nikolentzos et al., 2021]

Checklist:

 continuous node attributes

 no relying heavily on the graph 

structure
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Graph kernels

[Nikolentzos et al., 2021]

Checklist:

 continuous node attributes

 no relying heavily on the graph 

structure

 tractable
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Graph kernels

Checklist:

 continuous node attributes

 no relying heavily on the graph 

structure

 tractable

 positive definite

[Nikolentzos et al., 2021]
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Node embeddings + Optimal transport approaches

𝐺

𝐺′

𝐸𝐺

𝐸𝐺′

1 2
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Step 1: continuous WL embeddings

𝐺

𝐸𝐺

1

[Togninalli et al., 2019]

𝜙

Node embedding
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Weisfeiler-Lehman embeddings

Figure From [Kriege et al., 2020]

𝐵

𝐴

𝐵

𝐴
𝐴

Σ = {𝐴, 𝐵}

𝐷

𝐶

𝐸

𝐶
𝐶

Σ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}

𝐵, 𝐴𝐵
↦ 𝐷

𝐵, 𝐴𝐴𝐵
↦ 𝐸

𝐴, 𝐵
↦ 𝐶

𝐴, 𝐵
↦ 𝐶

𝐴, 𝐵
↦ 𝐶

𝐻

𝐹

𝐼

𝐺
𝐺

𝐷, 𝐶𝐸
↦ 𝐻

𝐸, 𝐶𝐶𝐷
↦ 𝐼

𝐶, 𝐸
↦ 𝐺

𝐶, 𝐸
↦ 𝐺

𝐶,𝐷
↦ 𝐹

Σ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼}

𝑖 = 1 𝑖 = 2𝑖 = 0

𝑙 𝑖+1 𝑣 = 𝐻𝑎𝑠ℎ 𝑙𝑖 𝑣 , 𝑙𝑖 𝑢 , 𝑢 ∈ 𝒩 𝑣

𝑋𝐺
(𝑖)

= 𝑙 𝑖 𝑣 , 𝑣 ∈ 𝑉𝐺 𝑋𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐺
(0)
, ⋯ , 𝑋𝐺

(𝐻)
)

 WL relabeling (discrete case)
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Continuous Weisfeiler-Lehman embeddings

.1, {.1, . 3}
↦ .15

𝑖 = 1 𝑖 = 2𝑖 = 0

𝑎 𝑖+1 𝑣 =
1

2
(𝑎 𝑖 𝑣 +

1

deg 𝑣


𝑢∈𝒩 𝑣

𝑤 𝑣, 𝑢 𝑎 𝑖 𝑢 )

𝑋𝐺
(𝑖)
= 𝑎 𝑖 𝑣 , 𝑣 ∈ 𝑉𝐺 𝑋𝐺 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋𝐺

0
, ⋯ , 𝑋𝐺

𝐻
)

[Togninalli et al., 2019]

 WL relabeling (continuous case)

0.30.1

0.1 0.4

0.2

0.15

.3, {.1, . 2, . 4}
↦ .27

0.27

.1, {.1}
↦ .1

.4, {.3}
↦ .35

.2, {.3}
↦ .25

0.25

0.350.1

.15, {.1, . 27}
↦ .17

.27, {.15, . 25, . 35}
↦ .26

.25, {.27}
↦ .26

.35, {.27}
↦ .31

.1 {.15}
↦ .13

0.17

0.13

0.26

0.31

0.26
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Step 2: optimal transport

𝐸𝐺

𝐸𝐺′

2
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Wasserstein distance

Where: 

- 𝑟 ∈ 1,+∞ , 𝑠 ∈ 1,+∞ ,

- 𝒫𝑟 ℝ
𝑠 : probability measures on ℝ𝑠 with finite moments of order 𝑟,

- . : Euclidean norm,

- Π 𝜇, 𝜈 = 𝜋 ∈ 𝒫𝑟 ℝ
𝑠 ×ℝ𝑠 : 𝑃𝑟𝑜𝑗1 #𝜋 = 𝜇, 𝑃𝑟𝑜𝑗2 #𝜋 = 𝜈

𝒲𝑟
𝑟 𝜇, 𝜈 = inf

𝛾∈Π 𝜇,𝜈
න

ℝ𝑠×ℝ𝑠

𝑥 − 𝑦 𝑟𝑑𝛾 𝑥, 𝑦 ,

Wasserstein distance (continuous case)

𝜇

𝜈
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Wasserstein distance

𝒲𝑟
𝑟 𝜇, 𝜈 = 𝑚𝑖𝑛

𝑃∈𝑈(𝑛,𝑛′)
𝐶𝜇,𝜈 , 𝑃

𝜇

Wasserstein distance (discrete case)

𝜈

Where: 

-

- 𝑈 𝑛, 𝑛′ = 𝑃 ∈ ℝ+
𝑛×𝑛′: 𝑃𝑛′ =

1

𝑛
𝑛, 𝑃𝑛 =

1

𝑛′
𝑛′

- 𝐶𝜇,𝜈 = 𝑥𝑖 − 𝑦𝑗
𝑟

𝑖=1…𝑛, 𝑗=1…𝑛′

𝜇 =
1

𝑛


𝑖=1

𝑛

𝛿𝑥𝑖 𝜈 =
1

𝑛′


𝑖=1

𝑛′

𝛿𝑦𝑖
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Wasserstein distance: issues

[Peyré, Cuturi, 2019]

𝑘 𝑥, 𝑦 ∶= 𝑘𝐼( 𝑥 − 𝑦 ) be an isotropic kernel

→ replace . by 𝒲2 or 𝒲1

k1 𝜇, 𝜈 = 𝑘𝐼 𝒲1 𝜇, 𝜈 )

k2 𝜇, 𝜈 = 𝑘𝐼 𝒲2 𝜇, 𝜈

𝑘1and 𝑘2 are not positive definite kernels in 

dimension ≥ 2.

Substitution ‘kernels’

Complexity

1 pair: O 𝑛3 log 𝑛 ,             Gram matrix:  O 𝑁2𝑛3 log 𝑛



N = 1000 

n ≃30000 

500 000 Wasserstein

distances to compute

→ 400 days to build the 

‘Gram’ matrix…

Computation time for 

the Rotor37 dataset



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

34

Sliced Wasserstein distance

𝒲𝑟
𝑟 𝜇, 𝜈 = න

0

1

F−1 𝜇 − 𝐹−1 𝜈 r d𝑡

Quantile function

Wasserstein (dimension 1)

Empirical case:

𝜇 =
1

𝑛


𝑖=1

𝑛

𝛿𝑥𝑖 𝜈 =
1

𝑛


𝑖=1

𝑛

𝛿𝑦𝑖

𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑛


𝑖=1

𝑛

|𝑥 𝑖 − 𝑦 𝑖 ቚ
𝑟

Order statistics
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Sliced Wasserstein distance

𝒲𝑟
𝑟 𝜇, 𝜈 = න

0

1

F−1 𝜇 − 𝐹−1 𝜈 r d𝑡

Quantile function

Wasserstein (dimension 1)

Empirical case:

𝜇 =
1

𝑛


𝑖=1

𝑛

𝛿𝑥𝑖 𝜈 =
1

𝑛′


𝑖=1

𝑛′

𝛿𝑦𝑖

𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑄


𝑖=1

𝑄

𝑥 𝑖 − 𝑦 𝑖
𝑟 Approximation with

𝑄 ≪ max( 𝑛, 𝑛′)

quantiles
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Sliced Wasserstein distance

Sliced Wasserstein

𝒮𝒲𝑟
𝑟 𝜇, 𝜈 = න

𝕊s−1

𝒲𝑟
𝑟 𝜃#

∗𝜇, 𝜃𝜈
∗ d𝜎(𝜃)

Where: 

- 𝕊𝑑 :  𝑑-dimensional unit sphere, 

- 𝜎 : uniform distribution on 𝕊𝑑

- 𝜃#
∗𝜇 : push-forward measure of 𝜇 ∈ 𝒫𝑟(ℝ

𝑠)

by 𝜃∗
ℝ𝑠 → ℝ
𝑥 ↦ 𝜃, 𝑥

- 𝒲𝑟
𝑟 : 1-dimensional Wasserstein
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Sliced Wasserstein distance

Estimated Sliced Wasserstein

Where: 

- 𝑄: number of quantiles

- 𝑃: number of projections

𝒮𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑃


𝑝=1

𝑃

𝒲𝑟
𝑟( 𝜃𝑝

∗
#
𝜇, 𝜃𝑝

∗
#
𝜈)

𝒲𝑟
𝑟 𝜇, 𝜈 =

1

𝑄


𝑖=1

𝑄

𝑥 𝑖 − 𝑦 𝑖
𝑟
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SW distance: properties

𝒮𝒲2 and 𝒮𝒲1 are Hilbertian ⇒ positive definite substitution kernels

Hilbertian pseudo distance

Let 𝒳 be a space equipped with a pseudo-distance 𝑑. d is Hilbertian if there exists a Hilbert 
space ℱ and a feature map 𝜙:𝒳 → ℱ such that 𝑑 𝑥, 𝑦 = 𝜙 𝑥 − 𝜙 𝑦

ℱ
for all 𝑥, 𝑦 ∈ 𝒳

Useful characterizations

Denoting 〈𝑥, 𝑦〉𝑑
𝑥0 =

1

2
(𝑑 𝑥, 𝑥0

2 + 𝑑 𝑦, 𝑥0
2 − 𝑑 𝑥, 𝑦 2) , the three following

properties are equivalent:

• d is a Hilbertian pseudo-distance

• 𝑘𝑝𝑜𝑙𝑦 𝑥, 𝑦 = (𝑐 + 𝑥, 𝑦〉𝑑
𝑥0 l

for all 𝑐 ≥ 0, 𝑙 ∈ ℕ,  𝑥, 𝑦 ∈ 𝒳 is positive definite

• 𝑘𝑒𝑥𝑝 𝑥, 𝑦 = exp(−𝛾𝑑2𝛽 𝑥, 𝑦 ) for all 𝛾 ≥ 0, 𝛽 ∈ [0,1], 𝑥, 𝑦 ∈ 𝒳 is positive definite

[Meunier et al., 2022]

[Hein, Bousquet, 2005]

SW substitution kernels
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Sliced Wasserstein Weisfeiler Lehman (SWWL)

𝑂 𝑁𝐻𝛿𝑛 + 𝑁𝑃 𝑛 (log 𝑛 + 𝐻) + 𝑁2𝑃𝑄

𝒮𝒲2
2 𝜇, 𝜈 =

1

PQ


p=1

P



𝑞=1

𝑄

𝑢𝑞
𝜃𝑝
− 𝑢′𝑞

𝜃
2

= 𝐸𝜙𝑊𝐿 𝐺 − 𝐸𝜙𝑊𝐿 𝐺′
2

2

Projected Quantile 

Embeddings
WL iterations RBF kernel

N: number of graphs

n: average number of nodes

𝛿 average degree

P: number of projections

Q: number of quantiles

H: number of WL iterations

[CP, Da Veiga, Garnier, Staber, 2024]

𝜙WL: 𝐺 ↦ 𝑋𝐺 ∈ ℝ
𝑉𝐺 ×d(𝐻+1) : continuous WL embeddings after H iterations

(𝜇𝐺 associated empirical measure)

𝑘𝑆𝑊𝑊𝐿 𝐺, 𝐺′ = 𝑒
−𝜆𝒮𝒲2

2 𝜇𝜙𝑊𝐿 𝐺 ,𝜇
𝜙𝑊𝐿(𝐺

′)

SWWL kernel

Precomputed embeddings: 𝐸𝜙𝑊𝐿 𝐺 , 𝐸𝜙𝑊𝐿(𝐺
′) ∈ ℝ𝑃𝑄 where 𝑢𝑞

𝜃𝑝 = 𝜃𝑝, 𝜙𝑊𝐿 𝐺
𝑞

𝐸𝜙𝑊𝐿 𝐺 = [𝑢1
𝜃1 , ⋯ , 𝑢𝑄

𝜃1 , ⋯ , 𝑢1
𝜃𝑃 , ⋯ , 𝑢𝑄

𝜃𝑃]

Complexity for the Gram matrix
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Sliced Wasserstein Weisfeiler Lehman (SWWL)

𝐺

𝐺′

𝐸𝐺

𝐸𝐺′

2 31

WL iterations1 2 Projected Quantile Embeddings 3 RBF kernel

* Steps 1 and 2 can be done separately for each input graph

*



Gaussian
process
regression for 
graph inputs

1- Problem statement

2- Classical approaches

3- SWWL kernel

4- Experiments
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SWWL: experiments on small graphs
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SWWL: experiments on small graphs

Time to build the 
Gram matrices

RMSE (5 exp)

[Kriege et al., 2019]
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SWWL: experiments on meshes

Time to build the 
Gram matrix

(*) in parallel, using 100 jobs

RMSE (5 exp)
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Engineering curves

Predicted compression rate/isentropic efficiency with respect to the massflow for a test 

mesh, 4 input rotations and 20 input pressure (going beyond the range of train/test 

datasets) with 95% confidence intervals

Rotor37, P=50, Q=100, H=6



Prediction of 
output fields

1- Problem statement

2- Related approaches

3- TOS-GP

4- Experiments



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

47

Learning output fields/signals

𝑛1 vertices

1- Inputs can have different sizes, so do the outputs

2- No natural ordering of the output dimensions

3- The output dimension can be very large

Input

Output

𝑛2 vertices 𝑛𝑁 vertices

…

𝒴 = ራ

𝑋= 𝑉,𝐸,𝑤,𝐹 ∈𝒳

{𝑌: 𝑉 → ℝ}

Train data:    𝑥 𝑖 , 𝑦 𝑖
𝑖=1,⋯,𝑁

𝑥(𝑖) = 𝑉 𝑖 , 𝐸 𝑖 , 𝑤 𝑖 , 𝐹 𝑖 ∈ 𝒳

𝑦(𝑖) ∈ 𝒴

By abuse of notations:

𝑦(𝑖) = (𝑦1
𝑖
, ⋯ , 𝑦

𝑉 𝑖
𝑖

)



Prediction of 
output fields

1- Problem statement
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Related approaches: Multi-Output GP

MOGP

𝑓:𝒳 → ℝ𝐷 𝑓 𝑥 = 𝑓1 𝑥 ,⋯ , 𝑓𝐷 𝑥

Vector-Valued Kernel: 𝑘 ∶ 𝒳 × 𝒳 → ℝ𝐷×𝐷

𝑐𝑜𝑣 𝑓𝑗 𝑥 , 𝑓𝑙(𝑥′) = 𝑘𝑗,𝑙(𝑥, 𝑥
′)

Intrinsic Coregionalization Model (ICM):

𝑘𝑙,𝑗 𝑥, 𝑥
′ = 𝐵𝑗,𝑙 𝑘𝑠𝑐𝑎𝑙 𝑥, 𝑥

′

𝐾 = 𝐵⊗𝐾𝑠𝑐𝑎𝑙

Where 𝐵 ∈ ℝ𝐷×𝐷, 𝐾𝑠𝑐𝑎𝑙 ∈ ℝ𝑁×𝑁, 𝐾 ∈ ℝ 𝑁𝐷 ×(𝑁𝐷)

Issues for us

- Outputs are not vectors

- 𝐷𝑖 = 𝑛𝑖 : very large outputs (even

if they can be put in vectorial form)



[Goovaerts, 1997]
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Related approaches: operator-valued GP

Operator/Function valued Gaussian Processes

𝑓:𝒳 → 𝒴 = 𝐿2 Ω𝑌 where Ω𝑌 is a compact set

Operator valued kernel: 𝑘:𝒳 × 𝒳 → ℒ 𝒴

Block operator kernel matrix: 𝐾 ∈ ℒ(𝒴𝑁)

𝐾 =

𝐾1,1 ⋯ 𝐾1𝑁
⋮ ⋱ ⋮

𝐾𝑁1 ⋯ 𝐾𝑁𝑁

Issues for us

- Function domain Ω𝑌 would not be fixed

- In practice, OVGP rely on a discretization to grid

points common to all samples



[Kadri, 2016]
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Related approaches: structured output prediction

Output Kernel Regression

Issues for us

- Need to define a kernel in the output space

- Solving a pre-image problem



[Weston, 2003]

Kernel Dependency Estimation Input-Output kernel regression

[Brouard, 2016]

Figures from
[Brouard, 2016]
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Related approaches: Graph Signal Processing

Graph Fourier Transform [Schuman et al., 2013]

𝐿 ∈ ℝ𝑛×𝑛:  Laplacian matrix of 𝐺 = (𝑉, 𝐸). 
Eigenvalues:  0 = 𝜆1 ≤ ⋯ ≤ 𝜆𝑛 . Eigenvectors: 𝑈1, ⋯ , 𝑈𝑛
Signal: 𝑦: 𝑉 → ℝ (by abuse of notation, 𝑦 = (𝑦1, ⋯ , 𝑦𝑛)

𝑙-th GFT coefficient: 𝑦𝑙 = 𝑦, 𝑈𝑙 ,  1 ≤ 𝑙 ≤ 𝑄 ≤ 𝑛

Inverse (truncated) GFT: 𝑦𝑖 =

𝑙=1

Q

𝑦𝑙 × 𝑈𝑙 𝑖

Figure from [Ortega, 2018]

Issues for us

- Signs/choice of basis of eigenvectors?

- Numerical unstabilities for small

eigenvalues



𝐺1 𝐺2
→ reversed eigenvector
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Related approaches: Mesh Morphing Gaussian Process

- Specific to mesh data

- Morphing → same topology

- Transformation of both inputs and outputs

Issues for us 
- Uncertainty quantification

- Very good results for output field

prediction

Benefits

[Casenave, 2024]

Figure from
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Express signals/fields in the same space?

Inputs Outputs

Same size + order

Transformed Outputs

1

Transform

=

=

=
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Regularized Wasserstein distance

𝑃𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃∈𝑈(𝑛,𝑛′)

𝐿𝜆 𝜇, 𝜈, 𝑃

Regularized Wasserstein distance (discrete case)

Where: 

-

- 𝑈 𝑛, 𝑛′ = 𝑃 ∈ ℝ+
𝑛×𝑛′: 𝑃𝑛′ =

1

𝑛
𝑛, 𝑃𝑛 =

1

𝑛′
𝑛′

- 𝐶𝜇,𝜈 = 𝑥𝑖 − 𝑦𝑗
𝑟

𝑖=1…𝑛, 𝑗=1…𝑛′

𝜇 =
1

𝑛


𝑖=1

𝑛

𝛿𝑥𝑖 𝜈 =
1

𝑛′


𝑖=1

𝑛′

𝛿𝑦𝑖

𝒲𝜆 𝜇, 𝜈 = 𝐿𝜆(𝜇, 𝜈, 𝑃𝜆)

𝐿𝜆 𝜇, 𝜈, 𝑃 = 𝐶𝜇,𝜈 , 𝑃 − 𝜆𝐻(𝑃) , 𝜆 > 0

Why regularizing?

1- Computation

Sinkhorn: 𝑂 𝑛2 log 𝑛

2- Smoothing of 

transport plans

𝜆 = 0 𝜆 > 0

𝑃𝜆 𝑃𝜆

Entropic regularization
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Transferring fields with transport plans

𝑃𝜆
(𝑖)
= 𝑎𝑟𝑔𝑚𝑖𝑛

𝑃∈ 𝑈(𝑛𝑖,𝑛𝑟𝑒𝑓)
𝐿𝜆 𝜇𝑖 , 𝜇𝑟𝑒𝑓 , 𝑃 ∈ ℝ𝑛𝑖×𝑛𝑟𝑒𝑓

Part 1: getting transport plans (input space)

𝑇(𝑖) = 𝑛𝑟𝑒𝑓𝑃𝜆
𝑖

𝑇
𝑦(𝑖) ∈ ℝ𝑛𝑟𝑒𝑓 Transferred field

𝑦(𝑖) = 𝑛𝑖𝑃𝜆
𝑖

𝑇(𝑖) ∈ ℝ𝑛𝑖 Reconstructed field

𝜇𝑟𝑒𝑓: reference measure of size 𝑛𝑟𝑒𝑓

𝜇𝑖 =
1

𝑛𝑖


𝑗=1

𝑛𝑖

𝛿 𝜙𝑊𝐿 𝐺 𝑖
𝑗

: WL embeddings of input graph 𝑖

Part 2: transferring output signals
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Express signals/fields in the same space?

Inputs Outputs Transformed Outputs

1

Transform

=

=

=

2

Reduce 

dimension

→ PCA

Size Q
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Dimension reduction (in practice)

Principal component analysis [Kontolati 2022]

𝑻 = (𝑇(1), ⋯ , 𝑇 𝑁 ) ∈ ℝ𝑁×𝑛𝑟𝑒𝑓 ഥ𝑻 = 𝑻 centered

1

𝑁
ഥ𝑻𝑻ഥ𝑻 = 𝐸𝐷𝑖𝑎𝑔(𝜆1, ⋯ , 𝜆𝑄)E

T

𝜆1 ≤ ⋯ ,≤ 𝜆𝑄 : eigenvalues

E ∈ ℝ𝑛𝑟𝑒𝑓×𝑄: eigenvectors

𝑄 first PCA coefficients:  𝐶 = 𝑻𝐸 ∈ ℝ𝑁×𝑄

PCA

Why PCA?

Linear model ⇒ analytical formulas for UQ
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TOS-GP: Transported Output Signal Gaussian Processes

a b c

d e

[CP, Da Veiga, Garnier, Staber, 2024+]
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TOS-GP: Transported Output Signal Gaussian Processes

Train

1- Compute all regularized transport plans to the 

reference +transfer fields

2- PCA

3- Independent SWWL GPs

Test

Uncertainty

propagation

1- Predict PCA coefficients for new test outputs

2- Inverse PCA → predicted transferred fields

3- Compute all regularized transport plans to 

the reference +transfer back fields

Hyperparameters

- Reference measure

- Regularization parameter

- Number of WL iterations

Remarks

- Agnostic to the choice of the 

regressor

- No assumption on the data 

(mesh, topology, …)

- Analytical UQ formulas
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TOS-GP: predictions and uncertainties

Ground truth Prediction Absolute error Posterior std
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TOS-GP: uncertainty propagation (field 𝜎12)

Ground truth Prediction

(transferred

space) 

Posterior std

(transferred

space)

Posterior std
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TOS-GP: regression scores

𝑅𝑅𝑀𝑆𝐸𝑖
2 𝑦 𝑖 , ො𝑦 𝑖 =

𝑦(𝑖) − ො𝑦 𝑖
2

2

𝑛∗𝑖 𝑦
𝑖

∞

2

𝑅𝑅𝑀𝑆𝐸2 𝑦 𝑖
𝑖=1,⋯,𝑁∗

, ො𝑦 𝑖
𝑖=1,⋯,𝑁∗

=
1

𝑁∗


𝑖=1

𝑁∗

𝑅𝑅𝑀𝑆𝐸𝑖
2 𝑦 𝑖 , ො𝑦 𝑖

RRMSE (10 exp)
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TOS-GP: regression scores

Small Medium Large

MMD to obtain subsampled empirical

distributions
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Use case: varying topologies



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

68

TOS-GP: limitations

Large signal variations 

-> more sensitive to the regularization of transport plans

1 transport plan:        Tensile2d: ~10 seconds* Rotor37: ~50 seconds*

→ Embarrassingly parallel. But preprocessing required for new test inputs

Approximation vs prediction error

Discontinuous signals

Computation times * Depends on the size of the input, 

the reference, and the regularization
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Conclusion

 Lots of approaches, but many

 Are not tractable

 Do not handle continuous attributes

 Do not guarantee positive definiteness

 Are too dependent on the graph structure

 SWWL graph kernel

 Positive definite

 Can consider very large graphs

 Competitive results for mesh-based Gaussian process regression

Inputs = Graphs, Outputs = Scalars

Inputs = Graphs, Outputs = Signals

 Classical techniques impossible to use directly

 MOGP, OVGP, GSP, dimension reduction, …

 TOS-GP

 Extension of GPs to predict signal outputs

 Optimal transport + Dimension reduction
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MMD subsampling
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TOS-GP: more experimental details



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

75


