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Context of the thesis

Research project
• The thesis is part of the project ANR SAMOURAI (Simulation Analytics and

Meta-model-based solutions for Optimization, Uncertainty and Reliability Analysis ).
• I Design MM adapted to large scale problems with limited simulations budget.
• II Large scale sequential enrichment strategies for reliability-based design-optimization /

inversion
• III Design efficient black-box optimization methods with mixed input variables
• IV Learn hidden constraints within adaptive design procedures.

Axis III: optimization and metamodeling
• It is an academic thesis between Mines Saint-Etienne and EDF R&D (PRISME)
• This project explores both theoretical aspects and industrial applications related to the
optimization over clouds of points. The latter also includes the metamodeling of costly
simulators.
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Context of the work

Industrial optimization problems
• This work is inspired by industrial optimization problems such as well placement Guyaguler

and Horne [11], positioning of turbines Emami and Noghreh [7] or sensors Krause et al.
[13].

Illustration of wind turbines positioned in a landscape.

Statistical optimization problems
• Similar challenges can be encountered when optimizing the underlying criterion in design

of experiments, see [17].
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Problem formulation

An optimization problem over sets of vectors

D is a compact domain of Rd , nmin and nmax ∈ N:

max
X={x1,...,xn}

F (X ) ,

n ∈ {nmin, . . . , nmax} ,
∀i , x i ∈ D ⊂ Rd .

• The function F is assumed to be black box (see Nakayama, Arakawa, and Washino [14],
Xiao et al. [21]) meaning that no information related to its convexity, continuity,
derivatives and smoothness is known.
• The inputs are in the form of sets (bags, clouds) of vectors (points): {x1, ..., xn}, with

xi ∈ Rd and n ∈ {nmin, . . . , nmax} (n, nmin, nmax ∈ N).
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Mixed aspect: no order and varying size

Clouds of points
The functions of interest are permutation invariant with respect to their inputs.
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Operations research approaches

A general approach to mixed continuous optimization with varying dimensions can be found in
the work of Hallé-Hannan, Audet, Le Digabel, Diouane, et al. ([2, 12]): meta-variables ≡ n.
But we would like to account more closely for the specificities of the set of vectors problem.

A typical operations research formulation (for minimization) would be (thanks Renaud
Chicoisne):
Assume 0 ≤ F (x1, . . . , xn) ≤ un and nmin = 1

min
η,zi ,x i ,i=1,...,nmax

η such that

zn ∈ {0, 1} , ∀n ∈ {1, . . . , nmax} and
nmax∑
n=1

zn = 1

η ≥ F (x1, . . . , xn)− un(1− zn) , ∀n ∈ {1, . . . , nmax}

but additional assumptions must be made on F to make it MILP approximable.
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Two parts in this presentation depending on the computational cost of F
• Inexpensive: stochastic (evolutionary) algorithms [6]
• Expensive: replacing the true function F by a Gaussian process [20, 9, 10]
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Evolutionary optimization over sets of vectors: inexpensive case
Principle: perturb and update an initial set (population) of sets (clouds) of vectors through
evolutionary operators.
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Question 1: which metric for the input space?

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

0 2 4 6 8 10

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Two sets of points with different sizes: which distance between the two sets?

11 / 55



Question 2: which evolutionary operators for sets of points?
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State of the art for wind farm layout
• [4], [16], and [15] describe algorithms for optimizing sets of vectors based on, respectively,

simulated annealing, genetic algorithm and particle swarm.
• Generally authors suppose predefined fixed points and use binary encoding. Our work

differs by letting points vary continuously.
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Contributions to questions 1 and 2

• A set of continuous vectors can be modeled as a uniform discrete measure with finite
support.
• This model helps defining a topology in the space of sets of points using the Wasserstein

distance between measures.
• We propose evolutionary crossover and mutation operators relying on the concept of the

Wasserstein barycenter.
(for more details, see Sow et al. [19])
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Input model and Wasserstein metric

Sets of vectors model: discrete uniform measures

• To two cloud of points X (j) = {x (j )
1 , ..., x (j )

n }, j = 1, 2 we associate PX (j) = 1
n

∑n
i=1 δx (j )

i

• We can compute a new cloud of points by finding an intermediary uniform measure.

Wasserstein distance
• To two measures µ and ν defined over Rd , the Wasserstein distance of order p is defined

as follows : W p
p (µ, ν) = infπ∈Π(µ,ν)

∫
Rd×Rd ρ(x , x ′)pdπ(x , x ′)

• ρ(x , x ′) corresponds to the Euclidean distance between x and x ′

• Π(µ, ν) is the set of all probability measures defined over Rd × Rd with marginals µ and ν.
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Wasserstein barycenters

• The barycenter of N measures ν1, ..., νN is the measure ν∗ that minimizes
f (ν) =

∑N
i=1 εiW

p
p (ν, νi ), with εi ≥ 0,

∑N
i=1 εi = 1 see Agueh and Carlier [1].

• Relatively fast calculation with the method of Cuturi and Doucet [5] implemented in [8].

Illustration
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Contracting effect

Theorem
Consider P ′ to be the set of discrete measures over Rd with finite support and ε ∈ [0, 1]. Let
PX1 , PX2 and PX∗ be defined respectively as
• PX1 =

∑n
i=1 αiδx1

i
,
∑n

i=1 αi = 1, αi > 0,

• PX2 =
∑m

j=1 βjδx2
j
,
∑m

j=1 βj = 1, βj > 0 ,

• PX∗ =
∑k

l=1 λlδx∗l ,
∑k

l=1 λl = 1, λl > 0 ,

with PX∗ the unique minimizer of arg
PX∈P ′

min εW 2
2 (PX ,PX1) + (1− ε)W 2

2 (PX ,PX2).

We have:
∀l ∈ {1, ..., k}, x∗l ∈ Conv(x1

1, ..., x1
n, x2

1, ..., x2
m)

where Conv(x1
1, ..., x1

n, x2
1, ..., x2

m) is the closed convex hull of the set {x1
1, ..., x

1
n, x2

1, ..., x
2
m}
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Wasserstein barycenters of some sets of points
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Evolutionary operators: crossovers

• Given ε ∼ U [0, 1]

• Equal weights crossover: For two measures (PX1 and PX2), Xc is defined as

PXc = arg min
PX

W 2
2 (PX ,PX1) + W 2

2 (PX ,PX2)

• Random weights crossover: For two measures (PX1 and PX2), Xc is defined as

PXc = arg min
PX

εW 2
2 (PX ,PX1) + (1− ε)W 2

2 (PX ,PX2)

• Number of vectors: card(Xc) equal both card(X1) and card(X2)

• Which crossover ?
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Evolutionary operators: mutations

• Given ε ∼ U [0, 1]

• Full Domain mutation: given Xc and Xrand a cloud of points randomly sampled in the
domain, Xm is defined as

PXm =arg min
PX

εW 2
2 (PX ,PXc ) + (1− ε)W 2

2 (PX ,PXrand
)

card(X ) = card(Xrand) = card(Xc)± (−1, 0, 1) uniform, if feasible

• Escape from contraction: To define operators allowing to counteract the contracting
property, we introduce the following mutation over clouds of points:

• Boundary mutation: given Xc and Xbound a cloud of points randomly sampled at the
domain boundary (a point on each side), Xm is defined as

PXm = arg min
PX , card(X )=card(Xc )

εW 2
2 (PX ,PXc ) + (1− ε)W 2

2 (PX ,PXc∪Xbound
).

• How to arrange the two mutations ?
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Escaping the contraction
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Alternating mutation

Do a Boundary Mutation with probability prob, Full Domain Mutation otherwise.

Algorithm 1 Alternating Wasserstein mutation
Input: X cloud to mutate, prob the probability to perform a Boundary mutation
Output: The mutated cloud(s)

1: Draw ε and r uniformly in [0, 1]
2: if r ≥ prob then
3: Do Full Domain mutation with weight ε
4: else
5: Do Boundary mutation with weight ε
6: end if

(the two mutations have also been tested in a deterministic successive way)
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default evolutionary implementation for comparison
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Classic crossover
Uniform crossover, component per component of a vector encoding

X 1 = {x1
1, ..., x

1
n1
, ∅n1+1, ..., ∅nmax}

X 2 = {x2
1, ... , x2

n2
, ... , ∅nmax}

X c = {U(X 1
i ,X

2
i ) , i = 1, . . . , nmax}

X 1 and X 2 in black
and red and X c

(circled)
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Classic mutation

X = {x1, ..., xn, ∅n+1, ..., ∅nmax}

Xm = {x1+N (0, σ2Id ), ..., xn+N (0, σ2Id ), ∅n+1, ..., ∅nmax}

The Gaussian distributions are truncated in order to yield
points inside the domain.

Add or remove a point or leave unchanged, uniformly, if
feasible.
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X (red crosses) and Xm
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Test functions

Mimicking wind-farms productions

• Fθ({x1, ..., xn}) =
∑n

i=1

(∏
j ,j 6=i fxj ,θ(xi )

)
f0(xi )

• Fθ_pen({x1, ..., xn}) = Fθ({x1, ..., xn})− n
√
n + 1.5n

Mindist and Inertia
• FminDist({x1, ..., xn}) = mini 6=j ||x i − x j ||.
• Finert({x1, ..., xn}) =

∑n
i=1 ||x i − x̄ ||2 with x̄ = 1

n

∑n
i=1 xi .

Numerical tests parameters
• The number of points varies between 10 and 20, in a fixed square domain. The number of

iterations and populations sizes are respectively 500 and 300.
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Example of fx ,θ(.) (I)
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Example of fx ,θ(.) (II)
The position of 9 points is displayed. The map shows the total contribution as a function of
the position of a new point.
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Population diversity metric

Wasserstein-based diversity
The diversity can be calculated at each iteration in the following way:

Div(pop) =
1
λ

∑
X i∈pop

W 2
2 (PX̄ ,PX i ) ,

where pop = {X i , i = 1, ..., λ} is a population of sets, PX i the associated discrete measures,
and PX̄ is the Wasserstein barycenter of the clouds of pop.

Algorithms names
• WBGEA_1t denotes the algorithm based on Wasserstein operators with equal weights

crossover, WBGEA_1t_rc (random weight crossover) and WBGEA_1t_nc (no crossover)
• Ref_gen denotes the baseline comparison algorithm and Ref_gen_nc its version without

crossover.
29 / 55



Wasserstein vs classic operators: performances
The algorithm based on Wasserstein operators denoted as WBGEA yields better results except
on FminDist .
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Wasserstein vs classic operators: diversities
The diversities of the populations in the algorithms based on Wasserstein operators vanish to
zero more quickly.
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Best designs
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Non-convex domains: best designs with projection

The introduced operators can be effec-
tively applied to non-convex domains,
by repairing the generated sets by pro-
jection.

The PhD manuscript contains a proof
that projecting an infeasible set onto
the feasible domain yields the closest
feasible set in terms of Wasserstein dis-
tance.

40 20 0 20 40
x for  F0

40

20

0

20

40

y 
fo

r  
F 0

40 20 0 20 40
x for  F0_pen

40

20

0

20

40

y 
fo

r  
F 0

_p
en

40 20 0 20 40
x for  Finert

40

20

0

20

40

y 
fo

r  
F i

ne
rt

40 20 0 20 40
x for  FminDist

40

20

0

20

40

y 
fo

r  
F m

in
D

is
t

Feasible designs generated by the WBGEA evolutionary optimizer
with projection as a repair method.
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Partial conclusions

• Numerical tests suggest a mutation independence principle = risk mitigation as certain
operators are more adapted to certain functions: the boundary and the full domain
mutations should be alternated randomly.
• For WBGEA, crossover with random weights yields better results but the absence of

crossover is more competitive on the test functions.
• The Wasserstein operators seem to be adapted to optimize functions where the optimal

design present a global geometrical pattern (such as alignments, cf. kernels later).
• (The Wasserstein crossover reduces diversity and the classic crossover keeps diversity.)
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Metamodeling functions defined over clouds
of points
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Computationally intensive case

Metamodeling
• When the objectife function is expensive, one may need to approximate it with a surrogate

model to perform Bayesian optimization
• Some examples of such functions are simulations such as computational fluid dynamics

(CFD), finite element structural analysis, ...

Requirements
The surrogate models are required to be
• extendable to inputs such as sets of vectors,
• predictive for unexplored input values (not in the training data set)
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Gaussian processes (see Williams and Rasmussen [20])

A Gaussian process prior
Gaussian processes are defined by a mean function m and a covariance kernel k over the input
spaces X . The kernel must be semi-definite positive.

Inspired from the work of Raphaël Carpintero Perez 37 / 55



Bayesian optimization

Generic concept
Iterative enrichment of the training set in order to maximize the information regarding the
global optimum location

Training

data set

Metamodel

training

Optimization of

the aquisition

criterion

maxx EI (x)

Simulator

evaluation x∗ = argmaxxEI (x)
Update of the

training data
Stop

Generic concept
The Expected Improvement can be optimized with WBGEA
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Research questions and contributions

Research questions
• Research question 4: Which semi-definite positive kernel between sets of vectors
to use for the construction of Gaussian processes?
• Research question 5: Can some kernels perform better than others depending on
the geometry of the clouds in the training set?

Contributions: for more details, see Sow et al. [18]
• We discuss the modeling of sets of vectors as distributions or feature vectors and present

the associated relevant methods for defining kernels.
• We test alternative kernels in a set of numerical experiments. In particular, the

extrapolation properties of the kernels are investigated by considering geometrical
transformations of possible training data sets.
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Comparing the outputs based on the inputs!

Similarity
Define a function of similarity between Xblue and Xred : k(Xblue ,Xred)
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Two clouds of points in d = 2 dimensions with n = 15 points for the blue cloud and n = 10 points for the red
one.
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Substitution kernels

Substitution with Exponential

• Firstly, we consider correlation kernels of the form: k(X ,Y ) = exp(−Ψ(X ,Y )
2θ2 ).

• We know that k defined above is a valid kernel (symmetric and positive semi-definite) if
and only if Ψ is Hermitian (symmetric in the real case) and conditionally negative
semi-definite Berg, Christensen, and Ressel [3].
• In other words, for any M distinct points and c ∈ RM with

∑M
i=1 ci = 0, the following

inequality must hold:
∑M

i=1
∑M

j=1 cicjΨ(Xi ,Xj) ≤ 0

Metric Cases
• If Ψ(X ,Y ) = d(φ(X ), φ(Y ))2, with d the distance between, φ(X ) and φ(Y ) the

respective images of X and Y in an metric space, the above conditions are equivalent to
the fact that the metric be Hilbertian.
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Kernels over sets of vectors

Substitution kernels
We focus here on two possible definition of Ψ(·, ·)
• The MMD

• µX (.) =
∫
PX (x)kH(x , .)dx .

• MMD(PX ,PX ′) = ||µX − µ′
X ||

• The Sliced-Wasserstein distance
• SW2(PX ,PX ′) =

∫
S W 2

2 (α ∗ PX , α ∗ PX ′)dα

Kernel through measures and features
• In Sow et al. [18], we discussed kernels based on the features of the set (denoted RFK),

sliced-Wasserstein distance (denoted Slice-Wass) and embedding models for regression
problems.
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Predictive performances for various kernels (see Sow et al. [18]

Function Kernels MMD RFK Slice-Wass
F0 0.906 0.897 0.828
F45 0.868 0.893 0.821
F90 0.899 0.871 0.843
F40d 0.906 0.799 0.824

Table: Q2 of 3 kernels on all the wind farm proxy functions, the testing clouds come from a random design.

Function
Kernels MMD RFK Slice-Wass

Finert 0.734 0.988 0.905
FminDist -0.051 0.997 0.587

Table: Q2 of 3 kernels on Finert and FminDist , the testing clouds come from a random design.

43 / 55



Fitting the kernels to the test functions
θ1 and θ2 are 2 hyper-parameters in kH that scale the distance between two points x and x ′

through |x1 − x ′1|/θ1 and |x2 − x ′2|/θ2. MMD-based kernels adapt to the geometrical properties
of wind-farms functions through the θ1 and θ2.
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bottom). Right: (θ1, θ2)> vectors of length scales of the embedding kernel.
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Exploiting a metamodel for Bayesian optimization

Performances of Bayesian optimization (BO) with respect to Evolutionary Algorithm
(EA)
• We fix the budget to T = 100. A random initial set of 50 clouds is chosen. The

hyper-parameters of the kernel are updated every 5 iterations.
• We present below the percentage of the maximum value attained by Bayesian optimization

(BO) with respect to that attained by WBGEA (denoted by Percentage_BO_WBGEA):
Functions F0 F0_pen Finert FminDist

Percentage_BO_WBGEA 95.95% 90.07% 71.81% 65.28%

Main result
• With fewer number of evaluations ( inferior to 10−1%), BO can attain more than 95% of

the estimated optimum by EA on wind-farm function.
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Conclusions

Modeling a set of vectors as a discrete measure
• Modeling a set of vectors as a discrete measure helps having more possibilities of defining

kernels and can yield interpretable results.
Kernels comparison
• The various kernel performances are highly dependent on the relation between the set

geometry and the output value
• MMD based kernels seem to be more adapted to functions with different directions of

variations (anisotropy) than other kernels.
Bayesian optimization
• The combination of the MMD kernel with the evolutionary algorithm produces promising

results. However, the performance of Bayesian optimization appears to be closely
influenced by the kernel choice.
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Limitations and perspectives
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Contributions

• Defining a general optimization problem over sets of vectors.

• Evolutionary algorithms over sets of vectors in convex domains. We have proposed
evolutionary operators based on the Wasserstein barycenter.

• Extension to non-convex domains. We have extended the operators to non-convex
domains relying on optimal projections onto the feasible domain

• Gaussian processes over sets of points. We have introduced and/or studied several
semi-definite positive kernels over sets of points and benchmarked them over functions.
They are combined with evolutionary operators in the context of Bayesian optimization.
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Perspectives

• Sampling set of points: what is a good design of experiments over sets of points ? And
more generally, how to efficiently sample sets of points ?
• Surrogate model initial training sets, evolutionary algorithms starting populations, etc...

• Analyzing the algorithms scaling capabilities for sets of vectors of dimension higher than 2.

• Compare the Bayesian algorithm based on kernels on probability measures with extensions
of MADS that have meta-variables.

• Complexity of the algorithms: reduce the complexity of the algorithms with an
emphasis on those of the Wasserstein operators.

• Other types of constraints: Geometrical constraints such as a minimal distance between
the points or alignments can be included in the problem.

• Considering other approaches based on a definition of a gradient in the set of vectors space
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