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e \ery expensive evaluations.

e The evaluation can be noisy.

Bayesian optimization methods can be used to solve these
problems!
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The model guides the search
focusing on the most-promising
regions of the input space!
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Bayesian Optimization vs. Uniform Exploration
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Several Objectives and Constraints

Optimal design of hardware accelerator for neural network predictions.

input layer

hidden layer 1 hidden layer 2

Goals: Constrained to:
® Minimize prediction error. ® Chip area below a value.

® Minimize prediction time. ® Power consumption below a level.

. vin y Challenges:
M F e Complicated constraints.
ﬂ e Conflictive objectives.
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Conditional Predictive Distribution |1l

The factor that guarantees optimality is:

i) = T ( [ Oteonselx))] {[luer2x.x) )

x*eX*

® Takes value 0 if x* is infeasible and zero othersiel

e Takes value 0 if x* is dominated by feasible x’ and zero otherwise.

The factors are all step functions! The set X is approximated
using the evaluations!

11/27



Expectation Propagation

Approximates

p(z) x fo(z) [T £i(2)

with

q(2) o< fo(2) TT/Z, fi(2)
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Expectation Propagation

Approximates | p(z) x fo(z) HJN:1 fi(z) | with | g(z) o< fo(2) [[;Z4 fi(z)

p(z) < fo(z) fi(z) fa(z) f3(2) q(z) < fo(z) fl(z) fa(z) f3(z)
[ —Trr S e g IR [ I Il Il ]

The f; are tuned by minimizing the KL-divergence

KL[Bjllq] forj=1,...,N, where

The latent variables z are in our case the objectives and the
constraints values at each x* and each x'!
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Example of PEMOC’s acquisition

Sample of X*

ViR (x|

a1(x)

fl(X)

¢

vz~ (x)

Sample of X*

[EA T T 10

viPP (x| )

a2(x)
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Example of PESMOC’s acquisition

viP(x) Sample of X* vEPP (x| )

v5P(x) Sample of X'
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Parallel Bayesian Optimization

Traditional Bayesian optimization is sequential!

Black-box

: e = Objective - Ve

Sy U\ \Q“"ﬂ

Computing clusters let us do many things at once!

Xt

v,
Black-box v:

v

it} Objective
AT TT

Parallel experiments should be highly informative but different!

14 /27
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Y]Dt, IE Y|Dt,X He ‘Dt, } Mi(x+Y)  (Parallel
/ \ PESMOC)
Gaussian Approxmated by Factorized Gaussian approximation
distribution | |sampling from p(x*D;)||with expectation prg one acquisition
X* dominates any oth( per black-box |,
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Parallel Predictive Entropy Search

Consdierations:
® The cost is linear in the number of objectives K and constraints C.
® The cost is cubic in the batch size due to the determinants.
® |t easily allows for batch decoupled evaluations.

e QOptimizing the acquisition requires gradient computations.

Automatic gradient computation by keeping fixed the approximate
factors and using automatic differentiation tools (Autograd)!
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Comparison of Exact and Approximate Acquisition

1 dimensional problem, Batch size = 2:
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Comparison of Exact and Approximate Acquisition

1 dimensional problem, Batch size = 2:

Approximate acquisition function

0.8

06 o
T2

0.4

0.2

Ty

The acquisition is symmetric and the approximation is large where
the exact acquisition is large, as expected!
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Related Methods

® Parallel Sequential: Transforms any sequential BO method into a
batch method.
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Related Methods

® Parallel Sequential: Transforms any sequential BO method into a
batch method.
® Repeats the optimization of the acquisition B times.

® Models are updated. Pending points assigned the predictive mean.

Expected to be very expensive for large batch sizes B!

® Expected Hyper-volume Improvement Strategies:

® Two versions: gEHVI (noiseless evals.) and qNEHVI (niosy evals.).
® Constraints incorporated by multiplying by the feasibility prob.

® Expectations approximated by Monte Carlo.

MC approximation is zero after a few evaluations and they have
high cost w.r.t. B (even exponential)!
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Synthetic Experimnets
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PPESMOC performs better than or similar to the other strategies!
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Time to Choose the next Batch

Table 1

Mean of the time in seconds to choose the next batch of points by PPESMOC and the parallel sequential approaches. For B = 50, underlined

results are significantly different with respect to PPESMOC results according to the Wilcoxon test at « = 0.05.
Method B=4 B=8 B=10 B =20 B =50
PPESMOC 696.0 +26.9 912.74+26.3 957.3+25.7 1045.7 +30.53 1269.35 26.62
PS_PESMOC 191.5+7.0 347.2+6.0 405.49+5.8 801.05+27.8 1957.72 34.1
PS_BMOO 379.4+13.1 551.1+21.7 593.86 +18.0 897.4+29.6 1870.42 42.77
qEHVI 65.2+1.8 417.9+21.9 1174.9+54.3
qNEHVI 89.5+2.3 401.4+23.9 1169.4 +56.1
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Table 1

Mean of the time in seconds to choose the next batch of points by PPESMOC and the parallel sequential approaches. For B = 50, underlined

results are significantly different with respect to PPESMOC results according to the Wilcoxon test at « = 0.05.
Method B=4 B=8 B=10 B =20 B =50
PPESMOC 696.0 +26.9 912.74+26.3 957.3+25.7 1045.7 +30.53 1269.35 26.62
PS_PESMOC 191.5+7.0 347.2+6.0 405.49+5.8 801.05+27.8 1957.72 34.1
PS_BMOO 379.4+13.1 551.1+21.7 593.86 +18.0 897.4+29.6 1870.42 42.77
qEHVI 65.2+1.8 417.9+21.9 1174.9+54.3
qNEHVI 89.5+2.3 401.4+23.9 1169.4 +56.1

PPESMOC scales significantly better w.r.t. the batch size B for
large values of B!
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PPESMOC performs better or similar to the other strategies!

21/27



Optimal Ensemble of Decision Trees

® Dataset: German Credit

22/27



Optimal Ensemble of Decision Trees

® Dataset: German Credit

® Number of instances: 1000

22/27



Optimal Ensemble of Decision Trees

® Dataset: German Credit

® Number of instances: 1000

® Number of features: 20

22/27



Optimal Ensemble of Decision Trees

® Dataset: German Credit

® Number of instances: 1000

® Number of features: 20

® Ensemble Parameters:

22/27



Optimal Ensemble of Decision Trees

® Dataset: German Credit
® Number of instances: 1000
® Number of features: 20

® Ensemble Parameters:

® Ensemble size, random chosen attributes considered at each split,
minimum number of samples required to split a node, sub-sampling
probability, fraction of labels changed.

22/27



Optimal Ensemble of Decision Trees

® Dataset: German Credit
® Number of instances: 1000
® Number of features: 20

® Ensemble Parameters:

® Ensemble size, random chosen attributes considered at each split,
minimum number of samples required to split a node, sub-sampling
probability, fraction of labels changed.

® QObjectives: Ensemble size in log-number of nodes and prediction
error (10-fold-cv).

22/27



Optimal Ensemble of Decision Trees

Dataset: German Credit

® Number of instances: 1000

® Number of features: 20

Ensemble Parameters:

® Ensemble size, random chosen attributes considered at each split,
minimum number of samples required to split a node, sub-sampling
probability, fraction of labels changed.

Objectives: Ensemble size in log-number of nodes and prediction
error (10-fold-cv).

Constraints: time for predictions sped-up at least 25% when using a
dynamic pruning technique.
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Optimal Ensemble

Avg. Pareto Front. 100 i 25 of size 4.
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Table 2

Nodes

ing

Number of Splitt

1e+03

e+05

1e+04

on the German Dataset

Avg. Pareto Front. 200 i 50 batches of size 4.

Wetnods
— PPESMOC
~ PS_PESMOC
~ PS_BMOO
— RANDOM

= gEHVI
GNEHVI

0.23 0.24 0.25 0.26 0.27
Prediction Error

Average hyper-volume in the task of finding an optimal ensemble of trees. Underlined results are significantly different with respect to PPESMOC

results according to the Wilcoxon test at a = 0.05.

# Eval. PPESMOC PS_PESMOC PS_BMOO P_RANDOM gNEHVI qEHVI
100 0.325 + 0.007 0.327 + 0.007 0.295 + 0.014 0.298 + 0.009 0.299 + 0.011 0.294 + 0.013
200 0.334 + 0.005 0.335 + 0.006 0.313 + 0.010 0.310 + 0.007 0.3154 + 0.008 0.309 + 0.010
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Optimal Ensemble on the German Dataset

Avg. Pareto Front. 100 i 25 of size 4. Avg. Pareto Front. 200 i 50 batches of size 4.
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Table 2
Average hyper-volume in the task of finding an optimal ensemble of trees. Underlined results are significantly different with respect to PPESMOC
results according to the Wilcoxon test at a = 0.05.

# Eval. PPESMOC PS_PESMOC PS_BMOO P_RANDOM gNEHVI qEHVI
100 0.325 + 0.007 0.327 + 0.007 0.295 + 0.014 0.298 + 0.009 0.299 + 0.011 0.294 + 0.013
200 0.334 + 0.005 0.335 + 0.006 0.313 + 0.010 0.310 + 0.007 0.3154 + 0.008 0.309 + 0.010

PPESMOC performs better than or similar to the other strategies!
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Optimal Neural Network

Dataset: MNIST

® Number of instances: 60,000

® Number of features: 28x28=784

Ensemble Parameters:

® Hidden layers, neurons per layer, learning rate, dropout rate, /1
penalty, ¢» penalty, memory partition, loop unrolling.

Objectives: network error and prediction time (validation set).

Constraints: chip area below threshold.
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Optimal Neural Network

Avg. Pareto Front After 60 Evaluations. 15 Batches of size 4.

7A
SA Methods
= PPESMOC

° ~ PS_PESMOC
2 — PS_BMOO
] = RANDOM
o = qEHVI
g QNEHVI
=2

0.03 0.20

0.05 0.1
Prediction Error

Table 3
Avg. hyper-volume of each method in the neural network experiment. Underlined results are significantly different with respect to PPESMOC

results according to the Wilcoxon test at « = 0.05.
# Eval. PPESMOC PS_PESMOC PS_BMOO P_RANDOM qNEHVI qEHVI
60 1.020 + 0.014 1.014 + 0.029 0.982 + 0.095 0.993 + 0.035 0.999 + 0.050 0.996 + 0.041
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Table 3
Avg. hyper-volume of each method in the neural network experiment. Underlined results are significantly different with respect to PPESMOC

results according to the Wilcoxon test at « = 0.05.
# Eval. PPESMOC PS_PESMOC PS_BMOO P_RANDOM qNEHVI qEHVI
60 1.020 + 0.014 1.014 + 0.029 0.982 + 0.095 0.993 + 0.035 0.999 + 0.050 0.996 + 0.041

PPESMOC performs slithgly better than the other strategies!
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® Incorporate information about the Pareto front Y* (JES):
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Potential Extensions / Improvements

® Incorporate information about the Pareto front Y* (JES):

® Conditioning to Y*, which can be done simply by updating each GP.

® Measuring /({X*,V*};Y) is expected to improve results!

® Use decoupled information for evaluation:

® Easily identifies on which black-box to evaluate each batch.
® Requires optimizing one acquisition per black-box.

® Expected to give better results if more informative black-boxes.
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Conclusions

® PPESMOC is the first entropy-based BO method for several
objectives and constraints and parallel black-box evaluations.

e PPESMOC performs similar or better than other methods from the
literature having a smaller computational cost w.r.t. the batch size.

® |f the batch size B is small, Parallel Sequential methods based on
PESMOC may be the better approach.

Thank you for your attention!
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