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BO Optimization Problems: Common Features

• Very expensive evaluations.

• The objective is a black-box.

• The evaluation can be noisy.
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Bayesian optimization methods can be used to solve these
problems!
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Bayesian Optimization in Practice

objective
1 Get initial sample.

2 Fit a model to the data:

p(y |x,Dn) .

3 Select data collection strategy:

α(x) = Ep(y |x,Dn)[U(y |x,Dn)] .

4 Optimize acquisition function α(x).

5 Collect data and update model.

6 Repeat!

The model guides the search
focusing on the most-promising

regions of the input space!
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Bayesian Optimization vs. Uniform Exploration
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Several Objectives and Constraints

Optimal design of hardware accelerator for neural network predictions.

Goals:

• Minimize prediction error.

• Minimize prediction time.

Constrained to:

• Chip area below a value.

• Power consumption below a level.
a

1 Prediction
   speed

22Prediction 
error

Energy 
consumption Chip area

Challenges:

• Complicated constraints.

• Conflictive objectives.
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Constrained Multi-Objective Optimization
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Constrained Multi-Objective Optimization
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Information-based Approach

The Pareto set X ⋆ in the feasible space is a random variable!

Information is measured by the entropy of p(X ⋆|DN).
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Predictive Entropy Search (PES)

We swap y and X ⋆ to obtain a reformulation of the acquisition function.

(Minka, 2001)
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Conditional Predictive Distribution I

The predictions must be compatible with X ⋆!

p(y|D, x,X ⋆) =

∫
p(y|f)︸ ︷︷ ︸
Noise

p(f|D, x,X ⋆)︸ ︷︷ ︸
Noiseless pred. dist.

df

Noiseless conditional predictive distribution:

p(f|D, x,X ⋆) ∝
∫

p(f|x,F)︸ ︷︷ ︸
Black-box values at x

× p(F|D)︸ ︷︷ ︸
Post. dist.

× p(X ⋆|F)︸ ︷︷ ︸
Guarantees X ⋆ optimal.

dF

where F informally representes all potential black-box functions.

• Unconditional posterior.

• Takes value 1 if X ⋆ is optimal given F and zero otherwise.
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Conditional Predictive Distribution II

The factor that guarantees optimality is:

p(X ⋆|F) =
∏

x⋆∈X ⋆

( [∏C
c=1Θ(consc(x⋆))

] [∏
x′∈X Ω(x′, x⋆)

] )

• Takes value 0 if x⋆ is infeasible and zero othersie!

• Takes value 0 if x⋆ is dominated by feasible x′ and zero otherwise.

The factors are all step functions! The set X is approximated
using the evaluations!
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Expectation Propagation

Approximates p(z) ∝ f0(z)
∏N

j=1 fj(z) with q(z) ∝ f0(z)
∏N

j=1 f̃j(z)

The f̃j are tuned by minimizing the KL-divergence

KL[p̂j ||q] for j = 1, . . . ,N , where
p̂j(z) ∝ fj(z)

∏
i ̸=j f̃i (z)

q(z) ∝ f̃j(z)
∏

i ̸=j f̃i (z)
.

The latent variables z are in our case the objectives and the
constraints values at each x⋆ and each x′!
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Example of PESMOC’s acquisition
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Parallel Bayesian Optimization

Traditional Bayesian optimization is sequential!

Computing clusters let us do many things at once!

Parallel experiments should be highly informative but different!
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Parallel Predictive Entropy Search

Choose a set of Q points X = {xq}Qq=1 to minimize the entropy of X ⋆.

(Minka, 2001)
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Parallel Predictive Entropy Search

Consdierations:

• The cost is linear in the number of objectives K and constraints C .

• The cost is cubic in the batch size due to the determinants.

• It easily allows for batch decoupled evaluations.

• Optimizing the acquisition requires gradient computations.

Automatic gradient computation by keeping fixed the approximate
factors and using automatic differentiation tools (Autograd)!
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Comparison of Exact and Approximate Acquisition

1 dimensional problem, Batch size = 2:
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Exact acquisition function

The acquisition is symmetric and the approximation is large where
the exact acquisition is large, as expected!
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Related Methods

• Parallel Sequential: Transforms any sequential BO method into a
batch method.

• Repeats the optimization of the acquisition B times.

• Models are updated. Pending points assigned the predictive mean.

Expected to be very expensive for large batch sizes B!

• Expected Hyper-volume Improvement Strategies:

• Two versions: qEHVI (noiseless evals.) and qNEHVI (niosy evals.).

• Constraints incorporated by multiplying by the feasibility prob.

• Expectations approximated by Monte Carlo.

MC approximation is zero after a few evaluations and they have
high cost w.r.t. B (even exponential)!
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Synthetic Experimnets

PPESMOC performs better than or similar to the other strategies!
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Time to Choose the next Batch

Table 1
Mean of the time in seconds to choose the next batch of points by PPESMOC and the parallel sequential approaches. For = 50, underlined
results are significantly different with respect to PPESMOC results according to the Wilcoxon test at = 0 05.
Method = 4 = 8 = 10 = 20 = 50

PPESMOC 696.0±26.9 912.74±26.3 957.3±25.7 1045.7±30.53 1269.35 26.62
PS_PESMOC 191.5±7.0 347.2±6.0 405.49±5.8 801.05±27.8 1957.72 34.1
PS_BMOO 379.4±13.1 551.1±21.7 593.86±18.0 897.4±29.6 1870.42 42.77
qEHVI 65.2±1.8 417.9±21.9 1174.9±54.3
qNEHVI 89.5±2.3 401.4±23.9 1169.4±56.1

PPESMOC scales significantly better w.r.t. the batch size B for
large values of B!
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Benchmark Experimnets

PPESMOC performs better or similar to the other strategies!
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Optimal Ensemble of Decision Trees

• Dataset: German Credit

• Number of instances: 1000

• Number of features: 20

• Ensemble Parameters:

• Ensemble size, random chosen attributes considered at each split,
minimum number of samples required to split a node, sub-sampling
probability, fraction of labels changed.

• Objectives: Ensemble size in log-number of nodes and prediction
error (10-fold-cv).

• Constraints: time for predictions sped-up at least 25% when using a
dynamic pruning technique.
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Optimal Ensemble on the German Dataset

Table 2
Average hyper-volume in the task of finding an optimal ensemble of trees. Underlined results are significantly different with respect to PPESMOC
results according to the Wilcoxon test at = 0 05.
# Eval. PPESMOC PS_PESMOC PS_BMOO P_RANDOM qNEHVI qEHVI
100 0.325 ± 0.007 0.327 ± 0.007 0.295 ± 0.014 0.298 ± 0.009 0.299 ± 0.011 0.294 ± 0.013
200 0.334 ± 0.005 0.335 ± 0.006 0.313 ± 0.010 0.310 ± 0.007 0.3154 ± 0.008 0.309 ± 0.010

PPESMOC performs better than or similar to the other strategies!
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Optimal Neural Network

• Dataset: MNIST

• Number of instances: 60,000

• Number of features: 28x28=784

• Ensemble Parameters:

• Hidden layers, neurons per layer, learning rate, dropout rate, ℓ1
penalty, ℓ2 penalty, memory partition, loop unrolling.

• Objectives: network error and prediction time (validation set).

• Constraints: chip area below threshold.
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Optimal Neural Network

Table 3
Avg. hyper-volume of each method in the neural network experiment. Underlined results are significantly different with respect to PPESMOC
results according to the Wilcoxon test at = 0 05.
# Eval. PPESMOC PS_PESMOC PS_BMOO P_RANDOM qNEHVI qEHVI
60 1.020 ± 0.014 1.014 ± 0.029 0.982 ± 0.095 0.993 ± 0.035 0.999 ± 0.050 0.996 ± 0.041

PPESMOC performs slithgly better than the other strategies!
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Potential Extensions / Improvements

• Incorporate information about the Pareto front Y⋆ (JES):

• Conditioning to Y⋆, which can be done simply by updating each GP.

• Measuring I ({X ⋆,Y⋆};Y) is expected to improve results!

• Use decoupled information for evaluation:

• Easily identifies on which black-box to evaluate each batch.

• Requires optimizing one acquisition per black-box.

• Expected to give better results if more informative black-boxes.
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Conclusions

• PPESMOC is the first entropy-based BO method for several
objectives and constraints and parallel black-box evaluations.

• PPESMOC performs similar or better than other methods from the
literature having a smaller computational cost w.r.t. the batch size.

• If the batch size B is small, Parallel Sequential methods based on
PESMOC may be the better approach.
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