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➢ Context

➢The number of electric and hybrid vehicles (EV, HEV) is
growing.

➢Electric motor manufacturing requirements :
➢Minimizing cost

➢Maximizing efficiency

➢ Ensure performances and specifications.

CONSTRAINED MULTI-OBJECTIVE optimization  

 

Context and Problematic: Electric vehicles in the news

https://www.virta.global/fr/marche-francais-vehicules-electriques-statistiques-predictions
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➢Electrical machine optimization : 

➢Non-linear, generic model -> Finite element
simulations (Time consuming).

➢Complex multi-physical system: electromagnetic,
mechanical, thermal.

BLACK-BOX constrained multi-objective 
optimization 

Context and Problematic: optimizing electrical machines
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Uncertainties:

Context and Problematic: Uncertainties in an electrical machine and their
impact on optimal values

• Magnetic properties of materials [1].

• Manufacturing tolerances on certain geometric parameters [2].

• Assembly tolerances on certain geometric parameters [3].

Worst case

Best case

Expectation

𝒒𝟕𝟓

𝒒𝟓𝟎

𝒒𝟐𝟓

Black-box constrained multi-objective optimization UNDER UNCERTAINTY 
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Context and Problematic: Problem characteristics

➢Complex problem: Black-box, multiple objectives, constraints, input uncertainties

➢Parallel computing facilities: several machines can be simulated at once

➢ Several uncertainties 𝑈 can be defined as dispersion around controllable variables 𝑥.
➢For example, we might optimize permanent magnet dimensions, but there exists uncertainties

around its desired dimensions.

➢Limited budget of simulations.

➢Bayesian Optimization has been successfully employed in a previous study of electrical machine
optimization without input uncertainties [4].
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Problem Definition :

Assumption: objective functions 𝑓 and 𝑔 as realizations of Gaussian processes :

For the objective, the expectation of a Gaussian process (conditioned at any time t) is still a 
Gaussian process :

For constraints, the probability of a Gaussian process is not a Gaussian process, but we can always define the 
following process whose realizations can be simulated :

Bayesian optimization under uncertainty: EFISUR algorithm (Expected 
Feasible Improvement with Stepwise Uncertainty Reduction sampling)
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As in every Bayesian Optimization Algorithm, an infill criterion is needed. In the case of EFISUR, this criterion is 
divided in two, one to obtain 𝑥𝑡+1, and other one to obtain 𝑢𝑡+1 [5]. 

To obtain 𝑢𝑡+1, a criterion based on Stepwise Uncertainty Reduction (SUR) is proposed and has the 
following expression:

Variance of future 
improvement

Variance of the variable quantifying 
constraints satisfaction

Bayesian optimization under uncertainty: EFISUR algorithm

The first one is the Expected Feasible Improvement (EFI):
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𝑚𝑖𝑛
𝒙∈𝐷𝑥

 𝔼𝑼 𝑓 𝒙, 𝑼

𝑠. 𝑡. ℙ𝑼 𝑔𝑖 𝒙, 𝑼 ≤ 0, 𝑖 = 1, … , 𝑙 ≥ 1 − 𝛼

𝑚𝑖𝑛
𝒙∈𝐷𝑥

 𝔼𝑼 𝑓 𝒙 + 𝑼

𝑠. 𝑡. ℙ𝑼 𝑔𝑖 𝒙 + 𝑼 ≤ 0 ≥ 1 − 𝛼𝑖

𝑖 = 1, … , 𝑙

𝑚𝑖𝑛
𝐱∈𝐷𝑥

𝔼𝐔 ෍

𝑗=1

𝑘

𝑤𝑗𝑓𝑗(𝐱 + 𝐔)  

𝑠. 𝑡. ℙ𝑼 𝑔𝑖 𝒙 + 𝑼 ≤ 0 ≥ 1 − 𝛼𝑖 , 𝑖 = 1, … , 𝑙
Thanks to the weighted sum 
approach, we can solve several 
problems (each one with a different 
vector of weights) in parallel -> q-
batch algorithm

- Each of the new q points enriches all 
the GPs.    

Our modified EFISUR algorithm

Transition to the (x+U) formulation
and individual probability constraints :

Switching to a multi-objective formulation: Switching to a q-batch
algorithm :

- Many controllable variables in an 
electrical machine also carry 
uncertainties -> Reduction of input 
dimension

- By doing this the insides of the 
EFISUR algorithm rest unchanged
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DOE and 
initial GP 
models

Parallel computation

EFISUR 𝜔1

𝑥𝑛𝑒𝑤
1

𝑥𝑏𝑒𝑠𝑡
1

𝐸𝐹𝐼(𝑥𝑏𝑒𝑠𝑡
1 )

𝑥𝑛𝑒𝑤
1

𝑥𝑛𝑒𝑤
2

⋮

𝑥𝑛𝑒𝑤
𝑞

𝑢𝑛𝑒𝑤
1

𝑢𝑛𝑒𝑤
2

⋮

𝑢𝑛𝑒𝑤
𝑞

New 
points

𝑢𝑛𝑒𝑤
1

𝑥𝑛𝑒𝑤
1

𝑆𝑈𝑅(𝑥𝑛𝑒𝑤
1 )

EFISUR 𝜔𝑞

𝑥𝑛𝑒𝑤
𝑞

𝑥𝑏𝑒𝑠𝑡
𝑞

𝐸𝐹𝐼(𝑥𝑏𝑒𝑠𝑡
𝑞

)

𝑢𝑛𝑒𝑤
𝑞

𝑥𝑛𝑒𝑤
𝑞

𝑆𝑈𝑅(𝑥𝑛𝑒𝑤
𝑞

)

⋮
Update GP 

models
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• Number of controllable variables 𝒙 : 11
• Number of uncertain variables 𝑈 : 7

• 5 (dispersions for 5 𝑥, called 𝑈𝑔)  → 𝑥 + 𝑈𝑔,

• 2 magnetic properties of materials → 𝑈𝑚

Electrical Machine Optimization : Problem definition

Objective function
𝔼𝑈 𝑓1(𝑥 + 𝑈)

Maximize the mean torque
expectation

Objective function
𝔼𝑈 𝑓2(𝑥 + 𝑈)

Minimize the torque ripple
expectation

Constraint  

ℙ𝑈 𝑓1 𝑥 + 𝑈 ≥ 420 ≥ 1 − 𝛼

𝛼 ∈ {0.01,0.03,0.05,0.07,0.10}

Achieve a mean torque
superior to 420 N.m with a

probability greater or equal to
{99%,97%,95%,93%,90%}

Initial DOE size 140 points LHS maximin

Number of iterations and 
points added per iteration

19 iterations and 5 points
per iteration: A total 95 points
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- The same behavior was observed for the 
other probability thresholds

- None of the points in the initial design of 
experiments satisfies the constraint of having 
a mean torque of at least 420 N.m with a 
probability of at least 95%. 

Electrical Machines Optimization : Results

- On the other hand, the modified EFISUR 
algorithm proposes several feasible promising 
points. 

- This figure shows the expectations 
(predicted by GPs) of all the simulated points 
through algorithm iterations 

Unfeasible points

Feasible points

Results (𝛼 = 0.05)
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Input Slot_angle Beta_L1P1 Beta_L1P2 Beta_L2P1 Beta_L2P2 Beta_L3P1 Beta_L3P2 Bridge_L1 Bridge_L2 Bridge_L3 Bridge_Tang

Machine A 2,47° 27,03° 38,65° 31,04° 47,04° 36,99° 59.7° 2,6 mm 1,18 mm 0,5 mm 0,6 mm

Machine B 2,47° 27,03° 38° 31,16° 47,07° 33,7° 63° 2,6 mm 0,9 mm 0,5 mm 0,4 mm

- This figure shows Pareto fronts for different 
probability thresholds

- Higher probability levels (e.g. 99%) results in 
a shorter Pareto front. This is somehow 
expected, higher the probability of passing 420 
N.m, higher the expectation value.

- Machines A and B were selected for further 
analysis (see Table below for their designs).

Electrical Machines Optimization : Results
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Prediction errors (Mean Torque GPs):
- Number of 𝑈 (at 𝑥 fixed 𝑥𝐴

∗, 𝑥𝐵
∗ ) points: 200

- RMSE machine A :  1.9 N.m
- RMSE machine B :   1.24 N.m

- Good መ𝑓 accuracy around (𝑥𝐴
∗, 𝑥𝐵

∗ ) 

(𝑈𝑔)

(𝑈𝑔)

(𝑈𝑚)

(𝑈𝑚)

Results verification

Machine A (𝑈𝑔, 𝑈𝑚) Machine B (𝑈𝑔, 𝑈𝑚) Machine A Machine B

Electrical Machines Optimization : verification by simulations

- Finite element simulations were 
performed to build the boxplots of two 
machines (green). These boxplots were 
compared with the values predicted by 
the metamodels (blue).

- As we can see, the mean torque 
values are more sensitive to materials’ 
properties (𝑈𝑚).
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Start

DOE and its 

responses

GPs

Criterion 

maximization

𝑥𝑛𝑒𝑤
1

Simulator call

𝑌𝑛𝑒𝑤
1

Stop
Budget 

reached?
Yes

No

Conclusions and Perspectives (1)

𝑚𝑖𝑛
𝒙∈𝐷𝑥

 𝔼𝑼 𝑓 𝒙, 𝑼

𝑠. 𝑡. ℙ𝑼 𝑔𝑖 𝒙, 𝑼 ≤ 0, 𝑖 = 1, … , 𝑙 ≥ 1 − 𝛼

𝑚𝑖𝑛
𝐱∈𝐷𝑥

𝔼𝐔 ෍

𝑗=1

𝑘

𝑤𝑗𝑓𝑗(𝐱 + 𝐔)  

𝑠. 𝑡. ℙ𝑼 𝑔𝑖 𝒙 + 𝑼 ≤ 0 ≥ 1 − 𝛼𝑖 , 𝑖 = 1, … , 𝑙

Start

DOE and its 

responses

GPs

Criteria 

maximization

𝑥𝑛𝑒𝑤
1 , … , 𝑥𝑛𝑒𝑤

𝑞

Simulator calls

𝑌𝑛𝑒𝑤
1 , … , 𝑌𝑛𝑒𝑤

𝑞

Stop
Budget 

reached?
Yes

No
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EFISUR Modified EFISUR
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Conclusions and Perspectives (2)

➢ The modified EFISUR algorithm has successfully solved a constrained multi-
objective electrical machine optimization problem taking into account uncertainties 

➢ After validating this algorithm on a simplified application, ongoing work on a more
realistic problem with all the constraints related to electrical vehicle applications:
➢2 objectives : efficiency and permanent magnets overall weight expectations

➢7 probability constraints (mean torque, power, torque ripple,…. )

➢Future work on Multifidelity Optimization since several simulators (with different accuracy)
are available
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