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Context

■ Reliable simulations are needed in the context of nuclear engineering.
■ The numerical code can be computationally expensive
■ Multiple sources of uncertainty in numerical simulations: parameter uncertainty, model

discrepancy, experimental uncertainty, code uncertainty.
■ Need to account for these different sources of uncertainty in the calibration to improve the

predictions

Goal: Performing robust calibration of model parameters considering
model error for computationally expensive numerical codes
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Bayesian calibration with model discrepancy

■ Calibration consists on inferring the best values of the parameters to fit the observed data.

Statistical Assumptions

yobs(x) = f (x , θ) + δ(x) + ε

■ Model error is modeled as a Gaussian process δ(x)|GP(µ(.), kψ(., .)), the covariance function
depends on some hyperparameters ψ

■ Measurement error is distributed as N (0, σ2
ε)

■ Prior distributions of the parameters and the hyperparameters
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Bayesian calibration with model discrepancy

■ Full Maximum a Posteriori (FMP) : Model discrepancy depends on model parameters [6].
■ The hyperparameters ϕ = (ψ, σε) are estimated by solving the following optimisation problem

ϕ̂FMP = argmax(p(ϕ|y , θ)) = argmaxϕ(x)(p(y |ϕ, θ)

■ The posterior density of the parameters is estimated by

p(θ, ϕ|yobs) ∝ p(θ)p(yobs|θ, ϕ = ϕ̂FMP)

■ We use Metropolis Hastings algorithm to sample from the posterior distribution.
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Adaptive Surrogate Modeling: Gaussian Process Meta-Model
■ A surrogate model is a statistical representation of the numerical code.
■ It is cheaper to evaluate.

A priori
fcode ∼ GP(m(.),K (., .))

■ m(.) is the mean function
■ k(., .) is the covariance function
■ We consider a set of training inputs X = (x1, x2, .., xn) with their corresponding code outputs

Y = (y1 = fcode(x1), fcode(x2), .., fcode(xn))

■ Let X∗ = (x∗,1, x∗,2, .., x∗,n) be the test set where we want to make the predictions and Y∗ their
corresponding outputs.

■ We can predict Y∗ by

Y∗|Y ,X∗,X ∼ N (µ∗ − K∗K−1(Y − µ(X )),K∗∗ − K T
∗ K−1K∗)
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Adaptive Surrogate Modeling
■ The idea is to minimize the Kullback-Leibler divergence from pFMP to p̂FMP

■ Place training points where posterior probability is high
■ Reduce the number of observations used to build the surrogate.

Two approaches for selecting the new training points:
■ Random samples from the MCMC chain
■ Weighted sampling
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Adaptive Surrogate Modeling

Algorithm 1 Adaptive construction of a surrogate model

1: Create an initial DoE of size ns
2: Construct a surrogate model f̂ for the numerical code
3: Perform FMP calibration to find a posterior distribution p(θ)
4: while n < nmax do
5: Select new design points from the posterior distribution
6: Evaluate the model at the new set of points
7: Update the surrogate f̂
8: Perform FMP calibration with the updated surrogate
9: end while

11



Adaptive Surrogate Modeling
Toy example 1 We consider the following function:

f (x , θ) = xsin(2θx) + (x + 0.15)(1 − θ)

with the true process modeled as y(x) = x

The left figure is the functions f with the training points, and the right figure is a
comparison between the posterior distribution of the parameter θ with the true model and

with the sequence of surrogates
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Adaptive Surrogate Modeling
Toy example 2

G(x , θ) =
n∏

i=1

|4xi − 2|+ θi

1 + θi

We use 20 observations for the calibration from the true process with
θtrue = (0.55,0.8,0.3,0.04,0.6,0.9) and noise σ2 = 0,05
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Application to the TRITON model

■ Sun experiment : Development of gaz-liquid
bubbly flow for a vertical square duct. [12]

■ The case of jl = 0, 5m/s, jg = 0.09m/s and
αgaz = 0.139
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Application to the TRITON model

■ Sun experiment : Development of gaz-liquid
bubbly flow for a vertical square duct. [12]

■ The case of jl = 0, 5m/s, jg = 0.09m/s and
αgaz = 0.139

■ Simulation with Neptune CFD using the
TRITON (Two-phase RegIme TransitiON)
model [2].
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Application to the TRITON model

■ The TRITON model considers 3 fields: a continuous liquid field, a dispersed gaz field (group 1)
and a continuous gaz field (group 2)

■ Continuity and moment equations are solved for each field.
■ The change in bubble diameters is described by the two-group interfacial area transport

equations

∂ai1
∂t +∇.(ai1vi1) =

2
3

ai1
αg1

[
∂αg1
∂t +∇.(αg1vg1)

]
− χ

(
Dsc
Dsm

)2 ai1
αg1

[
∂αg1
∂t +∇.(αg1vg1)

]
+

∑
j ϕj,1

∂ai2
∂t +∇.(ai2vi2) =

2
3

ai2
αg2

[
∂αg2
∂t +∇.(αg2vg2)

]
+ χ

(
Dsc
Dsm

)2 ai1
αg1

[
∂αg1
∂t +∇.(αg1vg1)

]
+

∑
j ϕj,2

■ For Bubbly flow, ∑
j

ϕj = ϕ1
RC + ϕ1

WE + ϕ1
TI
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Application to the TRITON model

Random Collision: C(1)
RC , CRC1 Wake Entrainement : C(1)

WE Turbulent Impact: C(1)
TI , Wecr1

Based on One at A Time
analysis, parameter
ranges and priors are
defined:

Parameter Actual value Prior Range

C(1)
RC 0.005 Log-Uniform [10−5,10−1]

CRC1 3.0 Uniform [1,4]
C(1)

WE 0.002 Log-Uniform [10−4,10−2]

Wecr1 6.5 Uniform [4.,7.]

C1
TI 0.1 Uniform [0.05,0.15]
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Application to the TRITON model
Surrogate of Neptune CFD

■ DoE of 50 training points generated using
QMC Method and a test set of 10 points with
LHS sampling.

■ Gaussian Processes with mean 0 and
seperated RBF kernel are used.

■ Validation of the surrogate by calculating the
normalized quadratic error for the validation
set.
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Application to the TRITON model
Adaptive Surrogate of Neptune CFD

■ The adaptive approach is applied to the surrogate of the numerical code.
■ Convergence of the approach:
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Application to the TRITON model

The Posterior density of the parameters
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Application to the TRITON model
Predictions of the void fraction (Top row) and the liquid velocity (bottom row)
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Conclusion

■ An adaptive approach for surrogate construction of the numerical code.
■ Application of the strategy to calibrate a complex two-phase flow model.
■ Characterisation of model error and experimental uncertainty.

Perspectives
■ Application to more complex cases
■ Considering new forms of model error
■ Design of physical experiments
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Thank you for your attention!
Any questions?

Contact information: sanae.janati-idrissi@polytechnique.edu
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