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Prediction uncertainty for complex model is a big issue

Ex: IJNMF (2013)
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Prediction uncertainty for complex model is a big issue

Ex: Modelling of in-flight icing —-EU-MSCA TRACES (2022-2026)

Objective: Assessment of performance in icing conditions, virtual certification

Need for reducing uncertainty through calibration when possible




Long-term objective:

Develop a calibration framework with consideration of model error,
appropriate for costly, strongly non-linear solvers

- Mostly in situation with few experimental data;

- Model predictions used usually for design (Extrapolation)
- Different levels of resolution in the models (discretization, fidelity)



Model predictions after calibration

Case #1: some parameter values fit
the data well.
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Model predictions after calibration

Case #1: some parameter values fit Case #2: best values are not
the data well. consistent with the observations. X
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» Need to acknowledge model error in the calibration process.

— Statistical correction on the model output (KOH2001).

— Nature of model discrepancy and its treatment in the calibration process
(BOH2014).

— Representation of the model error (Arhonditsis 2008)

— Potential use of the model during extrapolation (Bayarri2007)

— Impact of priors (BOH2014)



Full Bayesian calibration

observations computer model m i CY measurement error
— — ~ =N
Yoos(X) = f(x,0) + + e(x)

(1)

Some statistical assumptions:

>

>

Measurement error and model discrepancy usually supposed
independent: z(x;) L e(x;).

Model discrepancy taken as a GP: z|v, ~ GP(u(-), c(-,-)), where . and
c are the prior mean and covariance of the process. Cov of z depends
on hyperparameters ,.

1) vector of hyperparameters of the entire error model, then
¥ = (1,,0.), where o is the mean-squared measurement error.

6 and 1) considered as joint unknows.
Choice of prior distributions for model parameters and hyperparameters.



Full Bayesian calibration

» Rigorous derivation, flexible framework.

» Calibration can not be solved precisely in most applications. Posterior
density might exhibit substantial variations and many local maxima in the
joint space.

» For calibrations with multiple quantities and experimental configurations,
number of HP might become significant, making estimation in high
dimensions very complex.

» Some advanced sampling techniques (Robert2010) employed to
generate samples from high dimensional posterior distributions and
approximate the required integrals.

= Modular approaches (Liu2009) alternatives to full Bayesian calibration.
They reduce dimensionality of the sample space by estimating point values
for some hyperparameters.
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Modular Approaches

Modular approaches: separate into groups (modules) the treatment of
parameters and HP during the calibration and obtain a problem of sequential
estimations.

Advantages: breaking high-dimensional calibration problem into smaller
ones; more accessible to sample; improvement of the identifiability of the HP
belonging to different modules.

Last module estimates p(0|Yops, ¥ = {b) where the estimator Z,Ab of ¢» have
been estimated in previous modules such that p(6|Yoos, ¥ = 1) = Pgayes(0)-

In Kennedy and O’Hagan (KOH), Maximum A Posteriori (MAP) estimate:

":BKOH = arg max P(v|Yobs) = arg max p(?)) P(0)P(Yobs |0, 1)) dO, (9)
Ppev PYev ©

and the following estimation for the parameters posterior distribution:

Pron(8) o< P(8)P(Yobs|O, ’@KOH)- (6)
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Kennedy and O’'Hagan Calibration

KOH calibration equation:
observations computer model model discrepancy measurement error
—N— —~— ~ = ~ N
Yoos(X) = f(x,07) +  z(x) +  e(x) (7)
with 8* the "best-fitting” 8, representing the data faithfully according to the
error structure specified for the residuals.

» Pointwise estimation of z, supposed independent of 8: identifiability
issue (Liu2009, Arendt2012).

» A single distribution is used for z, inappropriate as different model
parameters values could correspond to different shapes of z.
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Bayesian framework for Calibration
with model error

. _ Modular
T Bayesian approaches
Higdon et al SIAM JSC

2004 Liu et al, -Bayesian
Analysis 2009

Need for a modular technique that approximates the fully
Bayesian Calibration while retaining the advantage of
reduced sample space

Full Maximum A Posteriori Method
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Our proposal: Full Maximum a Posteriori calibration

We relax the assumption of independence between z and 6.

Yobs(X) = f(x, 0) + Zo(x) + €(x), (8)
with Full Maximum a Posteriori hyperparameters estimated as a function of
0.

Yemp(0) = arg$ax P(%|Yobs, 6)- (9)

» Answer to the Identifiability issue: no more "best value” of parameters.
» Parametric estimation of model error: more flexibility.

» Eq. (8) first proposed by (plumlee2017), who used an external definition
of @* as the best fit value.
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Full Maximum a Posteriori (FMP) calibration

Posterior predictive density: predictions of the true quantity y at a
non-observed point x*. It reads:

P(Y(X™)|Yobs) ~~ /@ P(8|Yobs)P(Y(X*)|0, % = Pryp(8), Yobs) A0 (12)
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Full Maximum a Posteriori (FMP) calibration

Posterior predictive density: predictions of the true quantity y at a
non-observed point x*. It reads:

P(Y(X™)|Yobs) ~~ /@ P(8|Yobs)P(Y(X*)|0, % = Pryp(0), Yobs) A0 (12)

with mean:

Ey(X) Yol = Eolf(x.,0)]  +EalkI(Z+ %)~ (Yoos — fo)],

"

averaged model prediction at x ., averaged model discrepancy at X,

(13)
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Full Maximum a Posteriori (FMP) calibration

Posterior predictive density: predictions of the true quantity y at a
non-observed point x*. It reads:

P(Y(X™)|Yobs) ~~ /@ P(8|Yobs)P(Y(X*)|0, % = Pryp(8), Yobs) A0 (12)

with mean:

E [y(X™)|Yobs] = P} o [f(Xx, 9)1 +:E 9[k1(z +021n) ™" (Yobs — fe)l,

TV
averaged model prediction at x, averaged model discrepancy at X

(13)
and variance :

Var [y(X.)|Yobs] = Var o[f(X.,0) + K (Zy_ )+ 02ln) " (Yoos — fo)]  (14)

YFMP

-~

uncertainty in the corrected model

T \E O[C"APFMP(G)(X*’ X.) = kI(Z"I’FMP(e) T agln)_1k*l (15

-~

residual uncertainty

Equations used to make predictions with the model after calibration.
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Comparison between FMP and KOH

When the posterior distribution p(@, ¥ |yobs) is a mixture of Gaussians with
well-separated modes, FMP calibration outperforms KOH calibration :

» KOH calibration underestimates posterior variance of @ (false certainty
effect),

» FMP can account for multiple parameter values that correspond to
different shapes of model error.

Let us illustrate multimodality on a simple numerical example.
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lllustrative Example

"Truth” y, Computer model f, (x,6) € [0,1] x [-0.5,1.5].

>

>

y(x) = x,

f(x,0) = (x+0.15)(1—06) +

Interpretation #1

1.5

1.0 e observations =
0.5 o
L ] L ]
®

0.07 »

— f{x, 0)

00 02 04 06 08 1.0

X

Interpretation #2

15

1.0

0.5
L]
0.0

— fix, 1)
* observations

(16)
x sin(26x) (17)
affine term, null when 6 = 1 oscillating termj:\ull when 6 =0
P(6]yobs) /\/\
\\
Y
> -
6 P(¥]Yobs)

0.0

02 04 06 08 1.0
X
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lllustrative Example

Interpretation #1

1.5
fix, 0)
1.0 * observations .
> Pxon(€]Yobs)
0.5
1
0.0 o : :
.
0.0 0.2 0.4 0.6 0.8 1.0 : :
X ] I
i I
i I
. i I
15 Interpretation #2 1} , ! !
fix, 1) : :
10/ * observations . : :
| |
> ™
0.5 _—— hmea
. I--.-3IF(OH
L ]
0.0
6 P(@|Yobs)

00 02 04 06 08 10
X

» KOH calibration misses half of the probability mass, and underestimates
variance (false certainty).



lllustrative Example

Interpretation #1

fix, 0)
1.0 e observations

1.5

>

0.5

0.01{ o

00 02 04 06 08 1.0
X

15 Interpretation #2

fix, 1)

1.0 e observations

> 0.5

0.0

00 02 04 06 08 1.0
X

Pemp(6]Yobs)

—— P61, Yobs)

» KOH calibration misses half of the probability mass, and underestimates

variance (false certainty).



lllustrative Example

Interpretation #1

fix, 0)
1.0 * observations

1.5

™05

0.01 »

00 02 04 06 08 1.0
X

Interpretation #2

fix, 1)

1.0 e observations

1.5

> 0.5

0.0

00 02 04 06 08 1.0
X

pFMP(OIYObs)

g P(Wigl. yobs)

-—— -

S ——

Wemp(61)

score of 6,

» KOH calibration misses half of the probability mass, and underestimates

variance (false certainty).



lllustrative Example

Interpretation #1

fix,0)
1.0 e observations

15

S Pemp(€]Yobs) = p(y|61. yobs)
- — P16, yobs)
I |
T T T T | I
0.0 0.2 0.4 0.6 0.8 1.0 | :
X |
A 1
Wemp(61) 1
Interpretation #2 I
1.5 P y score of 61:
fix, 1) [
. I |
* observations
1.0 ¢ : :
| I
. I
L J
. el: 2
1 |
0.0
V)
00 02 04 06 08 1.0
X

» KOH calibration misses half of the probability mass, and underestimates
variance (false certainty).
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lllustrative Example

Interpretation #1

1.5
fix, 0)
1.0 e observations y
> 05
0.0 o
00 02 04 06 08 1.0
X
Interpretation #2
15 P
fix, 1)
10 e observations :
L ]
> 0.5
£l
0.0
00 02 04 06 08 1.0

» KOH calibration misses half of the probability mass, and underestimates
variance (false certainty).

» FMP calibration accounts for both interpretations, but might misestimate
their relative importance — proposal of additional resampling step.

X

pFMP(el)’obs)

—— p(y161, Yobs)
— p(y162. yobs)

I
score of 64
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lllustrative Example

Setup: squared exponential kernel for zg, uniform priors, o = 0.1 learnt.

5 Posterior distribution of 6 i Bayes posterior predictions
J N Prior samples of f
— KOH 1.01 observations
— FMP '
=3
& —— Bayes R
‘6_ 2 1 0.5 1
1 prsa g lannnnn s P rrssnnnnnnnn o J T NQessnsnnnn O.o /
-0.5 0.0 0.5 1.0 1.5 00 02 04 06 08 10
6 X
15 FMP posterior predictions 15 KOH posterior predictions

samples of f samples of f

1.0 observations 1.0 ? observations
> 05 NG5
0.0 0.0
00 02 04 06 08 10 00 02 04 06 08 10
X X

» Accounting for all explanations of the data allows for more conservativity
on the parameter and model predictions.



Surrogate-based speedup of
FMP calibration

Take uniform priors for simplicity, note Iy, = Cy, + oZl,.
L(8,%) = —log det(I'y) — (Yobs — fo) " (T) ™" (Yobs — To)- (16)

For each MCMC step

Optimisation Substitution
Find: ¥pye(8) = arg max,, L(,9) —— Calculate: L(8, %ryp(8))
(multiple evaluations of L) (single evaluation of L)
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Surrogate-based speedup of
FMP calibration

Take uniform priors for simplicity, note Iy, = Cy, + oZl,.

L(,v) = —log det(Ty) — (Yobs — Fo)  (Tp) ™" (Yobs — o) (16)

For each MCMC step

Optimisation Substitution
Find: 1pyp(0) = arg max,, L(6,1) —— Calculate: L(0, Peup(0))
(multiple evaluations of L) (single evaluation of L)

3 sources of numerical cost:
» fo is an evaluation of the computer model.
> Inversion of 'y, increases with the number of observations: O(n®).
» Multiple evaluations for optimisation (problem-dependent).
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Surrogate-based speedup of
FMP calibration

Take uniform priors for simplicity, note 'y, = Cy, + oZl,,.

L(6,%) = — log det(T'y) — (Yobs — o) (M) ™" (Yobs — fo). (16)

For each MCMC step

Optimisation Substitution
Find: pyp(8) = argmax,, L(0,49) —— Calculate: L(6, Pyp(60))
(multiple evaluations of L) (single evaluation of L)

Two strategies + Algorithm for Adaptive Sampling:

> (LL) Build a surrogate L(6) of the function L(1gyp(8), 8) (Optimization
becomes unnecessary. Need to evaluate once L(80)).

» (HP) Build surrogates of {bFMP, noted 4 (Evaluating {5(9) once,

L(6, J(G)) must be computed, requiring to invert once covariance matrix
of observations).
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Algorithm for adaptive sampling

1: Initialisation: Build initial surrogates on a space-filling design.
2: while budget not exceeded do

3: Draw the candidate set ©¢ from p(Fi,zAP with MCMC.
4: Compute a weight for each point of ©¢

. Var [L()(6)] for LL-AS,
w(6) = ~ (i)
Var [L(zp ' (6),0)] for HP-AS.

5: Resample from ©¢, with weights w, to obtain the selected set Og.
6: Compute the training data on ©g, add the data to the training set, and update the

(17)

surrogates.
7: end while
INITIALISATION ITERATIVE SAMPLING
initial set (1) pt) didate set ©
o Build first | Prbee 3) e —
approximation Draw a sample

= - —

selected set 6;
(6) R T gm(&

Run optimisations and ; R L Compute weights
update surrogates i P and resample
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Algorithm for adaptive sampling
G-function: 6D input x € [0, 1]° and 6D parameter 0 < [0, 1]°

025 - 070 - O

0.60 -

0.20
0.50
0.15

T 0.40
0.10 - T 0.30 7 e) T
020 - T
0.05
J_ 0.10 H
—— —— 004 ———%———Q————'—b ———————
0.00 H 0.00
T T T T ' T T T T
HP-AS LL-AS HP-LHS LL-LHS HP-AS LL-AS HP-LHS LL-LHS
(a) Error on MAP value (b) Relative error on covariance matrix

Figure: 30 repetitions of each strategy at nmax = 800. Orange lines represent the median error, red dashed line is the level of uncertainty
on the covariance due to MCMC sampling.

» AS strategies outperform LHS, strategies based on HP surrogates also
outperform those based on log-LL surrogates.

» Relative error: ||Cpost — Cpost,FMP||F/| |Cpost,FMP||F, with Cpost,FMP matrix
obtained from FMP calibration, and || - || Frobenius norm.

» Maximum precision level attainable for the given length of MCMC
reached for both AS strategies.



Algorithm for adaptive sampling
G-function: 6D input x € [0, 1]° and 6D parameter 0 < [0, 1]°

1 A

-

- (=Y
107 4 I

eLL

v S iy
T _
AT
1 TAATTT-
,‘ g
. ~ L T WAy
- N
S i
LL-AS, ns =30 G _
HP-AS, ns =10 E

~E- LL-LHS §ET | LT,
-3 - HP-LHS
1073 o G-
3 —Q' HP-AS, ns =30 X Q.F"- .
HP-AS, ns = 50 €8
T — T T — T
20 50 100 200 400 800

# of training points

( L ” 2
o co, (L(O)—L(Prup(0),6)) _ _
62 = | _ Toco, Lrur(0).0)7 for LL-AS and LL-LHS,

v 18)
Zeee,(L(¢(9),0)—L(¢FMP(9),9))2 ] - (
\ >oco, (L(Wrup(6),0))? for HP-AS and HP-LHS.

» AS strategies outperform LHS strategies, and HP strategies outperform
LL strategies in terms of precision.

» With low number of training points, adding fewer points to training set is
more precise. As surrogates become more accurate, precision is mainly
driven by total number of training points.
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Calibration of a Boiling model

MIT Boiling model (kommajosyula2020): Prediction of heat flux from solid

wall to liquid in various boiling regimes.
Inputs: pressure, velocity, temperatures, geometry, and wall superheat A Tgyp.

Kennel experiments (kennel1949): Boiling of liquids in a thin glass tube
with a central heating element in the shape of a cylinder.

(a) Kennel experiments, in three boiling
regimes. Source: kennel1949.

Total: 13 experiments with various pressures, flow rates, input temperatures
and heater sizes. Measurements of wall temperature are obtained, as a

function of the heating power.
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Calibration of a Boiling model

Calibration parameters:
» The static contact angle between the liquid and the wall 6..

» An empirical model for the bubble departure diameter Dy:

. 0.27
Dy = 18.9x 107% x (u) x (Jasup)?:"° x (14 Jagup) %3 x v=0-26. (19)
P9

with Jasup the Jakob number, v the liquid velocity.
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Calibration of a Boiling model

Calibration parameters:
» The static contact angle between the liquid and the wall 6+.

» An empirical model for the bubble departure diameter Dy:

o — pa\ 02
Dy =02 x (2P0 ) T x (Jasp) s x (1-+ dag) 0 x vOR. (10)
Pg

with Jasyp the Jakob number, v the liquid velocity.
Prior distributions of parameters are derived from their initial values:

01 0 03
Prior Ni(40,(12)%)  N(18.9 x 1075,(5.7 x 107)2)  A}(.75, (.225)?)
Support [0, 90] 10, o] [0, o]
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Calibration of a Boiling model

KOH predictions

FMP predictions Bayes predictions
mean
41! 20 credible interval -
[
i ko4 observations HAH T
; | 3
e
| - —
0 - ; ' 0 , ' - 0 , : ,
0 10 20 30 0 10 20 30 0 10 20 30
AY‘\!KP AT\H;. AT‘\\lp
100% Repartition of predictive variance 100% / Repartition of predictive variance 100% Repartition of predictive variance
0 10 20 30 0 10 20 30 0 10 20 30
Al AV B AT,

up

» KOH: zero model error o, all the discrepancies to measurement
uncertainty. Unsatisfactory, especially at low values of A Tgyp.

» Credible intervals of corrected prediction in FMP and Bayes larger than
for KOH, especially at low values of A Ts,, (Where no obs available).

» Predictive variance split into the model and residual contributions.

» All approaches agree on the dominance of the model predictions
variance for the high range of A Tg,, values.
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Calibration of a Boiling model

Posterior samples in omes o7 @and / plane: Bayes samples cover full support of the prior; FMP

samples fall primarily in two distinct interpretations of observations): high measurement error with
zero model error or a combination of both. KOH estimator falls into the former.

FMP model predictions corresponding to two regions:

» With measurement error only, plausible model predictions pass through all observations, tight

dispersions.

» With non-zero model error, some model predictions come close to most observations, but
others are further away, following observations’ trend.

FMP and Bayes methods achieve the goal of considering alternative interpretations of the
observations.

Posterior distribution

Plausible model predictions with g,,.c a7 = 0.5 Plausible model predictions with oy, a7 = 0.2
Bayes
o]
—l 1 A —1 1 d
— = o
X X
S 89 B
04 : : - 0 ' : —
1.00 0 10 20 30 0 10 20 30
O-lll('.\'.AT A71“[’ AfZ:up
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Conclusions and perspectives

» New estimator of model error, Full Maximum a Posteriori (FMP), within
calibration.

» Surrogate-based strategies to accelerate FMP estimation.

» In the MITB model, FMP provides results similar to Full Bayes
calibration, with cost divided by 20.

» Application of the proposed methodology to problems featuring the use
of complex CFD (Neptune-CFD)



Conclusions and perspectives

Perspectives:

>

>

Include numerical error and/or surrogate error of the computer code in
the calibration framework.

Leverage the estimated model error to characterize the predictive
capability of models.

Enrich Bayesian Model Selection / Bayesian Model Averaging
procedures with the inferred model error.

Relax the hypothesis of independence between model discrepancy HP
and model parameters.
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