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Bayarri et al. (2007) Technometrics: “A Framework for the
validation of computer models.”
» Output of computer model for input vector z is yM(z)
> z = (x,u) where
x are controllable inputs

u are uncertain inputs or parameters, which can
be tuning or calibration parameters

» Computer model aims at reproducing some real phenomenon
which we denote by y®(x)
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Validation of computer models

» Question of interest: Does the computer model adequately
represent reality?

» The answer to the question “Is the model correct?” is almost
always “No”

» In general, people are interested in whether the model
produces results that are accurate enough for the intended use
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Tolerance bounds

» We respond to that question by producing statements like
Pr{|reality — model| < 7} >~

for some tolerance 7 and probability

» Example: 5.76 & .44 — there's a specified chance (say 90%)
that the true underlying process at certain input value lies
within this specified range
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Tolerance bounds—Why?

» Accuracy of model predictions varies over the range of inputs

» The degree of accuracy may differ from one application of the
model to another

» Tolerance bounds account for model bias
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Difficulties

Uncertainty in u (or x) arising from multiple sources
Limited model runs

Field data limited and/or noisy

Model runs and field data at different x

vV v v v Y

Simultaneously “tune” u and validate model, based on the
same set of field data

» yM highly non-linear and biased

» Validation as dynamic process

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Different problem?

How is this different from statistical model validation?
» Limited data

» Expense of running computer model — construction of
emulators

» What is to be done with a “rejected” computer model
» Example: y(t;) = g(ti) +¢€i, & i N(0, 0?)

Ho : g(t) =5 exp(—ut)
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Maximum likelihood fit of HO
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Residuals and linear fit

Residuals
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One might be tempted to think that the additional structure found
in the residuals is real, but
» If the hypothesized model is incorrect then “over-fitting” will
typically occur; u is compensating for the lack of fit
» The over-fitting makes it problematic to believe any structure
found in the residuals

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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From a statistical perspective, one would postulate another Hp,
but
» If g is the computer model that is not viable, unless this
analysis has suggested possible improvements, which are then
implemented
» Computer models have science built in and are crucially
needed for extrapolation beyond the range of the data;
statistical models are typically not as trustworthy for such an
extrapolation
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Kennedy and O'Hagan 2001; Craig et al 1996

» Formally introduce a bias function b(t):
y(ti) = bexp(—ut;) + b(t;) + €

where b(t) is an unspecified function

» One then attempts to jointly estimate b(-) and u — prevent
over-fitting and account for all uncertainties

» u and b(-) are severely confounded

» Bias and resulting confounding are more common in Statistics
than might be thought (Gustafson 2006, Goldstein 2010)

» model inadequacy: computer model is an imperfect
representation of reality (Goldstein 2010 for a recent account)
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» Bayesian analysis is the most straightforward way of dealing
with such confounding — prior distribution on u and b(-)
containing as much expert knowledge as possible:

» u may have physical meaning or at least physical limits
» prior on b(-) which “encourages” the function to be 0

» Some inferences will tend to be sensitive to prior specification,
others not so much

» modularization techniques to reduce confounding
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The Framework

» Specify model inputs and parameters with associated
uncertainties

Determine evaluation criteria
Data collection and design of experiments

Construct fast approximation to the computer model

b 4 v v

Analysis of model output; comparing model output with field
data

» Feedback and feed-forward

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Model approximation

» Some computer models take several hours to compute y"(z)
for a single z

» Fast approximation to the output of the computer model (and
associated measure of uncertainty) — the emulator

» Other uses: uncertainty & sensitivity analysis, optimization

» We use it in the MCMC as a surrogate for the computer
model; we have to evaluate y™(x,u;) many times

» Gaussian processes as priors for unknown functions, O'Hagan
(1978); use in the context of computer models, Sacks et al.
(1989)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal

Calibration and Validation of Computer Models: a Bayesian Approach Lecture 2: Computer models; generalities and emulation



Model approximation

Gaussian Process

The stochastic process {Y(x) : x € S C IRP} is called Gaussian if,
for all finite {x1,...,x,} C S, the random vector

Y =(Y(x1),..., Y(x,,))’
has a Multivariate Gaussian distribution.

In order to characterize a Gaussian process all one has to do is
specify the mean function and the covariance function, which is
usually done in a parametric fashion.
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Model approximation

Prior

> a priori yM(-) | 8 ~ GP(u(-), CM(,-))
» common choice for the mean and covariance functions:

u(z) = W(z)0"

C(z,z") = W c(z,z* | OM)

1 £ M
= st L[ e8]z — 217
i=1

» Separable power exponential correlation function

» Separability criticized

» The power exponential correlation function has several
limitations (Stein 1999)

» Nugget or jitter (Gramacy and Lee 2010)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal

Calibration and Validation of Computer Models: a Bayesian Approach Lecture 2: Computer models; generalities and emulation



Model approximation

Construction of the emulator

» Construct a design set DM = {z;, i=1,...,m} — very
important research area
» Observe model runs yM = yM(DM) = {yM(x;, )},
> A posteriori, given 8 = (8-,0"), 8M = (\M oM, gM)
yMC) 1y, 0 ~ GP(*(), C*(-,-))
where p* and C* have closed form expressions:
i (2) = WOt + 1, (1) (yM — X6b)
1 _
C*(z,z%) = )\—MCM(Z,Z*) — (N7,

» I =cM(DM, D), v, = cM(z, DM)/AM, X is a matrix with
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Model approximation

» With @ known, this posterior predictive distribution acts as
the emulator; the point prediction is the mean, the variance
measures the uncertainty

> In particular, Var(y™(z;) | 6,yM) = 0—that is, the GP
approximation is an interpolator of the original function at the
observed points z;

» 6 is typically unknown

» plug-in 0, an estimate of & — underestimate variability
> integrate @ wrt its posterior in a full Bayesian analysis
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Model approximation
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Model approximation

> If we want to obtain a prediction of yM = yM(DM ),

new
DM — {z;}, all we have to do is draw from

FyM, | yM) = / FyM, |y™.0) 7(8 | yM) d6

where 7(6 | yM) is either an actual posterior or degenerated
at 0

» For each element of a sample from 7 (8 | yM), 6;, draw a
random vector from the corresponding Gaussian distribution

F(Yew | ¥V,05)
» numerical instabilities; nugget effect or jitter yM(:) = GP + ¢
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Model approximation

Full Bayes or plug-in MLE?

» The full Bayesian approach is superior: it takes into account
uncertainty in 8 when assessing accuracy

» We are interested not in the emulator itself but rather in
integrating it in the validation/calibration process
» Often, the uncertainty in the calibration parameters and in the

bias tend to overwhelm the uncertainty in 8; hence, full Bayes
or plug-in mle give essentially the same results

» plug-in mle allows implementation of the
validation/calibration in more complicated settings

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Model approximation

Full Bayes

» prior on @ is difficult to specify from a subjective perspective

» need for automatic procedure

» the derivation of objective priors in this setting is an
important problem

» Berger et al. (2001): many objective priors used in spatial
statistics produce improper posterior; unusual asymptotic
behavior of the likelihood

» Paulo(2005) derives objective priors (known a)

» in general

(M)

m(BM, 05, \M) o Oy
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Model approximation

priors are computationally demanding

> as we explore the parameter space in MCMC, we get to
regions where the correlation matrix is close to singular

proposal can use explicit formulae for the Fisher info
» active area of research (De Oliveira 07, Ren et al 2010 etc)

» empirical Bayes solution which works well: placing exponential
priors centered at a multiple of the marginal MLE

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Model approximation

Plug-in MLE

» Likelihood surfaces arising from GP have surprising properties
(Warnes and Ripley 1987 etc)

» Maximum likelihood estimators have unusual asymptotic
behavior (Ying 1993, van der Vaart 1996, Chen et al 2000)

» Bottom line: computing 0 is not trivial and requires
specialized software

» Alternatives: marginal MLE; posterior modes with objective
priors; penalized likelihood (Li and Sudjianto 2005)
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Application

The Spotweld Example
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Application

The Spotweld Example

» Controllable inputs are Load (L), Current (C), Gauge (g);

» Tuning parameter is u. The contact resistence between the
sheets of metal and the electrode is critical to the model. Yet,
this function is not known. The modeller introduced a
parametric family of functions indexed by u.

» The evaluation criteria:

1. Weld diameter after eight cycles—primary use of the model;
2. Weld diameter as a function of the number of cycles—possible
aid in reducing the number of cycles;
The second had to be eliminated because the code was not
producing reliable computer runs at earlier times than eight
cycles

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Application

Data collection

» Model data: computer model takes 30 minutes to run; 35
runs chosen according o Latin hypercube design

» Field data: 10 replicates for L € {4,5.3}, g € {1,2} and three
values for C € {21,23.5,24,26.5,29}

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Application

Emulation exercise

» Predict output of computer model at the values of L and g
observed in the field experiments but as a function of C

» Take C varying in a 20-point equally spaced grid in the
interval (20, 30)

» Value for the calibration parameter u? Let's pick u = 3.0

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Pure-model predictions — Spotweld Data
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Application

Details — how do we produce each of the panels?

1. Obtain 6 by maximum likelihood
2. Let Lo =4, go =1, up = 3.0 and denote by
{G;, j=1,...,20} an equally-spaced grid in (20, 30)
3. DM, ={(G, Lo, g, w0), j=1,...,20}; yp, = yM(DM,)

4. Draw T = 50000 random vectors from the multivariate normal

fiyM., [ yM.0)

Denote those draws by yﬁ&&), t=1,...,T

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Application

Details — cont.

5. The solid line is obtained as

ynew - Z ynew

6. At each Cj, the upper and lower uncertainty limits (aj, b;) are
obtained as the 5% and 95% sample quantile of

{yrll\gxgvt)(c:iv Lo,go, UO), t = ]., cey M}
so that we can state that

P(a; < y™(C;, Lo, go, uo) < bj | 8,yM) = 0.90

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Application

Observations

» This can all be done analytically for fixed 0

» The simulation-based calculation makes it easy to predict any
function of yM(.)

» If we have a sample o) t = 1,..., T from the posterior
7(0 | yM), then yM) should be drawn from

fiyM, | yM,00)

> If uy was an estimate of u, then yM  would be called the
pure-model prediction of (y?(C;, L0, g0), j =1,...,20)
associated with ug

» At this point, we do not have yet the information to evaluate
the quality of that estimate as an estimate of y*

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Extension: derivatives

Use of derivative information

» Some computer models correspond to the implementation of
systems of PDE's

» Along with yM(z) the software may also provide information
about derivatives of yM(z)

» Typically that information is ignored, but it may utilized in the
construction of the emulator

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Extension: derivatives

Derivatives of Gaussian Processes
> a priori, yM(-) ~ GP(u(-), smcM(:,-))

plx; u) = W(x)0"
M((x, u), (2,v)) = exp(Bu|x — 2|**) exp(2]u — v|*?)

M

> OyM(x,u) = %’u (x,u)
> If ap =2, dyM is still a Gaussian process and

8u(

E(0yM(x,u) = 55

X, u)

M
COV(@yM(X, u),yM(Z, v)) = )\_MW((X’ u),(z,v))

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Extension: derivatives

» Which in the case at hand turn out to be
E(9yM(x,u)) =0
2
Cov(ayM(x, u),yM(z, v)) = —)\—Mﬂz(u — v)cM((X, u),(z,v))

Cov(@yM(x, u), OyM(z, v)) = )\iM/@[l — 2B |u — v|2]cM((x, u),(z,

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Extension: derivatives

Covariance functions

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Extension: derivatives

Example
» Math model: dy (1)
y(t
A S t
i uy(t)
with y(0) = yo
» Solution

M
y"(t, u) = yoexp(—ut)
is treated as a slow computer model

» Model and its derivatives with yp = 5 are exercised at a
15-point Latin hypercube design in [0.5,2] x [0.1,3.0] in the
(u, t) space.

» The plots that follow have been produced by computing
estimates of the parameters of the model using code data only

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Extension: derivatives

Prediction using model data only

Prediction Code Output, no deriv info, u=1.5

—— Posterior Predictive Mean
—— True Value

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Extension: derivatives

Prediction using model and derivative data

Prediction Code Output, u=1.5

—— Posterior Predictive Mean
— True Value

of Lisboa, Portugal
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Extension: derivatives

Prediction of derivatives

Prediction Derivative of Code, u=1.5

-0.4 -02
I I

-0.6
I

d y"Midu

Posterior Predictive Mean
True Value
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Extension: derivatives

Incorporating derivative information

» O’Hagan (1992), Morris et al. (1993)
» Increase in sample size; numerical instabilitites
» Inference depends on finner properties of the GP prior

» May be a problem-specific decision

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Conclusion

Summary

» Overview of the framework for the validation of computer
models

» Emulators: Gaussian process priors; inference and predicition
» The Spotweld example

» Incorporating derivative information

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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