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Bayarri et al. (2007) Technometrics: “A Framework for the
validation of computer models.”

◮ Output of computer model for input vector z is yM(z)

◮ z = (x,u) where

x are controllable inputs
u are uncertain inputs or parameters, which can
be tuning or calibration parameters

◮ Computer model aims at reproducing some real phenomenon
which we denote by yR(x)
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Validation of computer models

◮ Question of interest: Does the computer model adequately

represent reality?

◮ The answer to the question “Is the model correct?” is almost
always “No”

◮ In general, people are interested in whether the model
produces results that are accurate enough for the intended use
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Tolerance bounds

◮ We respond to that question by producing statements like

Pr{|reality − model| < τ} > γ

for some tolerance τ and probability γ

◮ Example: 5.76 ± .44 — there’s a specified chance (say 90%)
that the true underlying process at certain input value lies
within this specified range
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Tolerance bounds—Why?

◮ Accuracy of model predictions varies over the range of inputs

◮ The degree of accuracy may differ from one application of the
model to another

◮ Tolerance bounds account for model bias
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Difficulties

◮ Uncertainty in u (or x) arising from multiple sources

◮ Limited model runs

◮ Field data limited and/or noisy

◮ Model runs and field data at different x

◮ Simultaneously “tune” u and validate model, based on the
same set of field data

◮ yM highly non-linear and biased

◮ Validation as dynamic process
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Different problem?

How is this different from statistical model validation?

◮ Limited data

◮ Expense of running computer model — construction of
emulators

◮ What is to be done with a “rejected” computer model

◮ Example: y(ti) = g(ti ) + εi , εi
iid
∼ N(0, σ2)

H0 : g(t) = 5 exp(−ut)

◮ û = 0.63
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Maximum likelihood fit of H0
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Residuals and linear fit
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One might be tempted to think that the additional structure found
in the residuals is real, but

◮ If the hypothesized model is incorrect then “over-fitting” will
typically occur; u is compensating for the lack of fit

◮ The over-fitting makes it problematic to believe any structure
found in the residuals
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From a statistical perspective, one would postulate another H0,
but

◮ If g is the computer model that is not viable, unless this
analysis has suggested possible improvements, which are then
implemented

◮ Computer models have science built in and are crucially
needed for extrapolation beyond the range of the data;
statistical models are typically not as trustworthy for such an
extrapolation
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Kennedy and O’Hagan 2001; Craig et al 1996

◮ Formally introduce a bias function b(t):

y(ti) = 5 exp(−uti) + b(ti) + εi

where b(t) is an unspecified function

◮ One then attempts to jointly estimate b(·) and u — prevent
over-fitting and account for all uncertainties

◮ u and b(·) are severely confounded

◮ Bias and resulting confounding are more common in Statistics
than might be thought (Gustafson 2006, Goldstein 2010)

◮ model inadequacy: computer model is an imperfect
representation of reality (Goldstein 2010 for a recent account)
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◮ Bayesian analysis is the most straightforward way of dealing
with such confounding — prior distribution on u and b(·)
containing as much expert knowledge as possible:

◮ u may have physical meaning or at least physical limits
◮ prior on b(·) which “encourages” the function to be 0

◮ Some inferences will tend to be sensitive to prior specification,
others not so much

◮ modularization techniques to reduce confounding
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The Framework

◮ Specify model inputs and parameters with associated
uncertainties

◮ Determine evaluation criteria

◮ Data collection and design of experiments

⇒ Construct fast approximation to the computer model

⇒ Analysis of model output; comparing model output with field
data

◮ Feedback and feed-forward
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◮ Some computer models take several hours to compute yM(z)
for a single z

◮ Fast approximation to the output of the computer model (and
associated measure of uncertainty) — the emulator

◮ Other uses: uncertainty & sensitivity analysis, optimization

◮ We use it in the MCMC as a surrogate for the computer
model; we have to evaluate yM(x,uj) many times

◮ Gaussian processes as priors for unknown functions, O’Hagan
(1978); use in the context of computer models, Sacks et al.
(1989)
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Gaussian Process

The stochastic process {Y (x) : x ∈ S ⊂ IRp} is called Gaussian if,
for all finite {x1, . . . , xn} ⊂ S, the random vector

Y = (Y (x1), . . . ,Y (xn))
′

has a Multivariate Gaussian distribution.

In order to characterize a Gaussian process all one has to do is
specify the mean function and the covariance function, which is
usually done in a parametric fashion.
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Prior

◮ a priori yM(·) | θ ∼ GP(µ(·),CM (·, ·))

◮ common choice for the mean and covariance functions:

µ(z) = Ψ(z)′θL

C (z, z⋆) =
1

λM
c(z, z⋆ | θM)

=
1

λM

p∏
i=1

exp[−βM
i |zi − z⋆

i |
αM

i ]

◮ Separable power exponential correlation function

◮ Separability criticized

◮ The power exponential correlation function has several
limitations (Stein 1999)

◮ Nugget or jitter (Gramacy and Lee 2010)
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Construction of the emulator

◮ Construct a design set DM = {zi , i = 1, . . . ,m} — very
important research area

◮ Observe model runs yM = yM(DM) = {yM(xi ,ui)},

◮ A posteriori, given θ = (θL,θM), θM = (λM ,αM ,βM)

yM(·) | yM ,θ ∼ GP(µ⋆(·),C ⋆(·, ·))

where µ⋆ and C ⋆ have closed form expressions:

µ⋆(z) = Ψ′θL + r′z(Γ)−1(yM − XθL)

C ⋆(z, z⋆) =
1

λM
cM(z, z⋆) − rz(Γ)−1rz

◮ Γ = cM(DM ,DM), r′z = cM(z,DM)/λM , X is a matrix with
rows Ψ′(zi )
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◮ With θ known, this posterior predictive distribution acts as
the emulator; the point prediction is the mean, the variance
measures the uncertainty

◮ In particular, Var(yM(zi) | θ, yM) = 0—that is, the GP

approximation is an interpolator of the original function at the
observed points zi

◮ θ is typically unknown
◮ plug-in θ̂, an estimate of θ — underestimate variability
◮ integrate θ wrt its posterior in a full Bayesian analysis
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◮ If we want to obtain a prediction of yM
new

= yM(DM
new

),
DM

new
= {z⋆

j }, all we have to do is draw from

f (yM
new

| yM) =

∫
f (yM

new
| yM ,θ) π(θ | yM) dθ

where π(θ | yM) is either an actual posterior or degenerated
at θ̂

◮ For each element of a sample from π(θ | yM), θj , draw a
random vector from the corresponding Gaussian distribution
f (yM

new
| yM ,θj)

◮ numerical instabilities; nugget effect or jitter yM(·) = GP + ε
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Full Bayes or plug-in MLE?

◮ The full Bayesian approach is superior: it takes into account
uncertainty in θ when assessing accuracy

◮ We are interested not in the emulator itself but rather in
integrating it in the validation/calibration process

◮ Often, the uncertainty in the calibration parameters and in the
bias tend to overwhelm the uncertainty in θ; hence, full Bayes
or plug-in mle give essentially the same results

◮ plug-in mle allows implementation of the
validation/calibration in more complicated settings
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Full Bayes

◮ prior on θ is difficult to specify from a subjective perspective

◮ need for automatic procedure

◮ the derivation of objective priors in this setting is an
important problem

◮ Berger et al. (2001): many objective priors used in spatial
statistics produce improper posterior; unusual asymptotic
behavior of the likelihood

◮ Paulo(2005) derives objective priors (known α)

◮ in general

π(βM ,θL, λM) ∝
π(βM)

(λM)a
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◮ priors are computationally demanding

◮ as we explore the parameter space in MCMC, we get to
regions where the correlation matrix is close to singular

◮ proposal can use explicit formulae for the Fisher info

◮ active area of research (De Oliveira 07, Ren et al 2010 etc)

◮ empirical Bayes solution which works well: placing exponential
priors centered at a multiple of the marginal MLE
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Plug-in MLE

◮ Likelihood surfaces arising from GP have surprising properties
(Warnes and Ripley 1987 etc)

◮ Maximum likelihood estimators have unusual asymptotic
behavior (Ying 1993, van der Vaart 1996, Chen et al 2000)

◮ Bottom line: computing θ̂ is not trivial and requires
specialized software

◮ Alternatives: marginal MLE; posterior modes with objective
priors; penalized likelihood (Li and Sudjianto 2005)
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The Spotweld Example
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The Spotweld Example

◮ Controllable inputs are Load (L), Current (C ), Gauge (g);

◮ Tuning parameter is u. The contact resistence between the
sheets of metal and the electrode is critical to the model. Yet,
this function is not known. The modeller introduced a
parametric family of functions indexed by u.

◮ The evaluation criteria:

1. Weld diameter after eight cycles—primary use of the model;
2. Weld diameter as a function of the number of cycles—possible

aid in reducing the number of cycles;

The second had to be eliminated because the code was not
producing reliable computer runs at earlier times than eight
cycles
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Data collection

◮ Model data: computer model takes 30 minutes to run; 35
runs chosen according o Latin hypercube design

◮ Field data: 10 replicates for L ∈ {4, 5.3}, g ∈ {1, 2} and three
values for C ∈ {21, 23.5, 24, 26.5, 29}
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Emulation exercise

◮ Predict output of computer model at the values of L and g

observed in the field experiments but as a function of C

◮ Take C varying in a 20-point equally spaced grid in the
interval (20, 30)

◮ Value for the calibration parameter u? Let’s pick u = 3.0
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Details — how do we produce each of the panels?

1. Obtain θ̂ by maximum likelihood

2. Let L0 = 4, g0 = 1, u0 = 3.0 and denote by
{Cj , j = 1, . . . , 20} an equally-spaced grid in (20, 30)

3. DM
new

= {(Cj ,L0, g0, u0), j = 1, . . . , 20}; yM
new

= yM(DM
new

)

4. Draw T = 50000 random vectors from the multivariate normal

f (yM
new

| yM , θ̂)

Denote those draws by y
M(t)
new , t = 1, . . . ,T
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Details — cont.

5. The solid line is obtained as

ȳM
new

=
1

M

M∑
t=1

yM(t)
new

6. At each Cj , the upper and lower uncertainty limits (aj , bj ) are
obtained as the 5% and 95% sample quantile of

{yM(t)
new

(Cj ,L0, g0, u0), t = 1, . . . ,M}

so that we can state that

P(aj < yM(Cj ,L0, g0, u0) < bj | θ̂, yM) = 0.90
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Observations

◮ This can all be done analytically for fixed θ̂

◮ The simulation-based calculation makes it easy to predict any
function of yM(·)

◮ If we have a sample θ(t), t = 1, . . . ,T from the posterior

π(θ | yM), then y
M(t)
new should be drawn from

f (yM
new

| yM ,θ(t))

◮ If u0 was an estimate of u, then ȳM
new

would be called the
pure-model prediction of (yR(Cj ,L0, g0), j = 1, . . . , 20)
associated with u0

◮ At this point, we do not have yet the information to evaluate
the quality of that estimate as an estimate of yR
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Use of derivative information

◮ Some computer models correspond to the implementation of
systems of PDE’s

◮ Along with yM(z) the software may also provide information
about derivatives of yM(z)

◮ Typically that information is ignored, but it may utilized in the
construction of the emulator

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal

Calibration and Validation of Computer Models: a Bayesian Approach Lecture 2: Computer models; generalities and emulation



Overview Model approximation Application Extension: derivatives Conclusion

Derivatives of Gaussian Processes

◮ a priori, yM(·) ∼ GP(µ(·), 1
λM cM(·, ·))

µ(x , u) = Ψ(x)′θL

cM((x , u), (z , v)) = exp(β1|x − z |α1) exp(β2|u − v |α2)

◮ ∂yM(x , u) ≡ ∂yM

∂u
(x , u)

◮ If α2 = 2, ∂yM is still a Gaussian process and

E(∂yM(x , u)) =
∂µ

∂u
(x , u)

Cov(∂yM(x , u), yM(z , v)) =
1

λM

∂cM

∂u
((x , u), (z , v))

Cov(∂yM(x , u), ∂yM (z , v)) =
1

λM

∂2cM

∂u∂v
((x , u), (z , v))
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◮ Which in the case at hand turn out to be

E(∂yM(x , u)) = 0

Cov(∂yM(x , u), yM (z , v)) = −
2

λM
β2(u − v)cM((x , u), (z , v))

Cov(∂yM(x , u), ∂yM (z , v)) =
2

λM
β2[1 − 2β2|u − v |2]cM((x , u), (z , u
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Covariance functions
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Example

◮ Math model:
dy(t)

dt
= −uy(t)

with y(0) = y0

◮ Solution
yM(t, u) = y0 exp(−ut)

is treated as a slow computer model

◮ Model and its derivatives with y0 ≡ 5 are exercised at a
15-point Latin hypercube design in [0.5, 2] × [0.1, 3.0] in the
(u, t) space.

◮ The plots that follow have been produced by computing
estimates of the parameters of the model using code data only
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Prediction using model data only
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Prediction using model and derivative data
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Prediction of derivatives
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Incorporating derivative information

◮ O’Hagan (1992), Morris et al. (1993)

◮ Increase in sample size; numerical instabilitites

◮ Inference depends on finner properties of the GP prior

◮ May be a problem-specific decision
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Summary

◮ Overview of the framework for the validation of computer
models

◮ Emulators: Gaussian process priors; inference and predicition

◮ The Spotweld example

◮ Incorporating derivative information
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