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◮ Output of computer model for input vector z is yM(z)

◮ z = (x,u) where

x are controllable inputs
u are uncertain inputs or parameters, which can
be tuning or calibration parameters

◮ Computer model aims at reproducing some real phenomenon
which we denote by yR(x)
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Validation of computer models

◮ Question of interest: Does the computer model adequately

represent reality?

◮ The answer to the question “Is the model correct?” is almost
always “No”

◮ In general, people are interested in whether the model
produces results that are accurate enough for the intended use
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Tolerance bounds

◮ We respond to that question by producing statements like

P{|reality − model| < τ} > γ

for some tolerance τ and probability γ

◮ Example: 5.76 ± .44 — there’s a specified chance (say 90%)
that the true underlying process at certain input value lies
within this specified range
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Difficulties

◮ Uncertainty in u (or x) arising from multiple sources

◮ Limited model runs

◮ Field data limited and/or noisy

◮ Model runs and field data at different x

◮ Simultaneously “tune” u and validate model, based on the
same set of field data

◮ yM highly non-linear and biased

◮ Validation as dynamic process
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The Framework

◮ Specify model inputs and parameters with associated
uncertainties

◮ Determine evaluation criteria

◮ Data collection and design of experiments

⇒ Construct fast approximation to the computer model

⇒ Analysis of model output; comparing model output with field
data

◮ Feedback and feed-forward
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◮ A computer model is a computer implementation of a
scientific model which purports to represent a real physical
system

◮ A statistical analysis of this problem should take into account
the potential mismatch between the real physical system and
the computer model

◮ Goldstein (2010) labels this additional source of uncertainty
external uncertainty

◮ Scientific model:
(x,u) 7→ yM(x,u)
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Reasons for the potential mismatch:

◮ (x,u) describe the process we are observing only
approximately

◮ Given (x,u), the mathematical formulae involved in yM(x,u)
are an approximate description of the rules that lead to the
properties of the real process

◮ formulae need to be tractable
◮ scientific knowledge is limited

These simplifications do not invalidate the use of the model, on
the contrary! We just need to acknowledge this fact and account
for the additional uncertainty.
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The Statistical Model

◮ Reality and computer model: u⋆ true value of u, (Kennedy
and O’Hagan 2001)

yR(x) = yM(x,u⋆) + b(x)

b(x) is the so-called bias function

◮ Field measurements:

yF
j (xi) = yR(xi ) + εij

εij
iid
∼ N(0, 1/λF )
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Separating all sources of uncertainty in practice is a very
challenging task due to potential confounding

yF
j (xi ) = yM(xi ,u⋆) + b(xi ) + εij

◮ u in the model may not even represent the physical quantity
for which we have scientific knowledge

◮ b is non-observable and large variance for ε can replace
external uncertainty; replicates are not always easy to come by

◮ the function yM(·) is very complex; model uncertainty can
replace b
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Prior on b

◮ The bias function is modeled a priori as a GP independent of
yM(·) and ε

◮ A priori , with θb = (µb,βb, λb),

b(·) | θb ∼ GP(µb, cb(·, ·)/λb )

cb(x, x⋆) =
∏p−p⋆

j=1 exp[−βb
j (xj − x⋆

j )2] .

◮ Note that αj = 2 meaning that we expect b(·) to be smooth

◮ Typically we set µb = 0

◮ Missing: priors on θb, λF and u.
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Sufficient statistics

◮ The field design set is DF = {xi , i = 1, . . . , ℓ}; the number of
replicates observed at xi is ni

◮ yF
k (xi) | b(xi ), y

M(xi ,u⋆), λ
F ∼ N(yM(xi ,u⋆) + b(xi ), 1/λ

F )
independent

The sufficient statistics are then

ȳF = (ȳF (xi ), i = 1, . . . , ℓ)

s2
F =

ℓ∑
i=1

ni∑
k=1

(yF
k (xi ) − ȳF (xi ))

2
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Notation

◮ yM is the model data, i.e., computer model evaluated at DM

◮ u⋆ “true” value of the calibration parameter

◮ yM
⋆ is model evaluated at (xi ,u⋆), that is, at the field design

set augmented with u⋆, DF
⋆

◮ b = (b(xi ), i = 1, . . . , ℓ)

So, with ΣF = diag n−1/λF

ȳF | yM
⋆ ,b, λF ∼ N(yM

⋆ + b,ΣF )

s2
F | λF ∼ 1

λF χ2(
ℓ∑

i=1

(ni − 1)) .
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Also, it is clear that

b | θb, µb ∼ N(1µb, cb(DF ,DF )/λb) ≡ N(µb,Σb)

yM | θL,θM ∼ N(XθL, cM(DM ,DM)/λM) ≡ N(µM ,ΣM)

yM
⋆ | θL,θM ,u⋆ ∼ N(X⋆θ

L, cM(DF
⋆ ,DF

⋆ )/λM) ≡ N(µM
⋆ ,ΣM

⋆ )

yM
⋆ | yM ,θL,θM ,u⋆ ∼ N(µ⋆|•,Σ⋆|•) .

Above,

µ⋆|• = µM
⋆ + Σ⋆• [ΣM ]−1 (yM − µM)

Σ⋆|• = ΣM
⋆ − Σ⋆• [ΣM ]−1 Σ•⋆

where

Σ⋆• = cM(DF
⋆ ,DM)/λM

Σ•⋆ = [Σ⋆•]
′ .
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(Augmented) Likelihood

f (ȳF , s2
F ,b, yM

⋆ , yM | θL,θM , µb,θb, λF ,u⋆) =

= f (s2
F | λF ) ×

f (ȳF | b, yM
⋆ , λF ) ×

f (b | θb, µb) ×

f (yM
⋆ | yM ,θL,θM ,u⋆) ×

f (yM | θL,θM)

We know all these densities, and all except the first are Gaussian.
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Observations

◮ Strictly speaking, the estimation of the parameters governing
the GP prior of yM should not be done by considering
f (yM | θL,θM) only

◮ if we try to estimate (θL,θM) jointly with u⋆ what may
happen is that model uncertainty and calibration parameter
uncertainty can get confounded

◮ We call (θL,θM) the stage I parameters, and these are
estimated in the first stage of the analysis

◮ Practical reasons

◮ First instance of modularization

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal

Calibration and Validation of Computer Models: a Bayesian Approach Lecture 3: Computer models: calibration and validation



Introduction Model inadequacy The Statistical Model Likelihood Priors MCMC Validation Summary

Observations

◮ The structure of the likelihood makes it possible to integrate
out yM

⋆ , or b or both

◮ This presents us with various MCMC possibilities

◮ Note that the priors on the so-called stage II parameters
µb,θb, λF ,u⋆ are still unspecified
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Stage II parameters priors

◮ The prior on u has to be specified using expert knowledge

◮ The process b(·) is not observable, hence we have little
information in the likelihood regarding µb and θb

◮ our choice of priors aims at producing a statistical estimation
method that is stable; it’s a mix of Bayesian and
likelihood-based inference

◮ µb is fixed at zero

◮ βb is fixed at an estimate

◮ λF and λb get exponential priors centered at (multiples of)
estimates
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Details

◮ Select a reasonable guess for u, ũ

◮ Using the emulator, predict (yM(xi , ũ), i = 1, . . . , ℓ) ≡ ỹM

◮ Treat the vector yF − ỹM as a realization from a multivariate
normal with mean µb = 0 and covariance cb(DF )/λb + I/λF

◮ Use specific software to compute estimates of βb, λb and λF
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◮ The only full conditional which is not standard form is that of
u — Metroplis-Hastings step which we run for M steps

◮ u is likely to be correlated with λb, so it’s a sensible idea to
sample them as a block

◮ proposal: q(λ,u | λ0,u0) = q(λ | λ0) q(u | u0) where

q(λ | λ0) = f (λ | −)

q(u | u0) = P π(u) + (1 − P) U(u | u0 − δ,u0 − δ)

where P ∈ (0, 1) must be specified

◮ calibration parameters are notoriously difficult to estimate
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Method 1

Direct Metropolis-Hastings within Gibbs:

◮ [yM
⋆ ,b | λb, λF ,u⋆,D] ∼ Kalman filter

◮ [λF | λb,u⋆, y
M
⋆ ,b,D] = Γ(λF | aF

1 , aF
2 )

◮ [λb,u⋆ | λF , yM
⋆ ,b,D] ∝ π(λb) f (b | θb) f (yM

⋆ | yM ,u⋆)

The full conditional is [λb | λF ,u⋆, y
M
⋆ ,b,D] = Γ(λb | ab

1 , ab
2)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal

Calibration and Validation of Computer Models: a Bayesian Approach Lecture 3: Computer models: calibration and validation



Introduction Model inadequacy The Statistical Model Likelihood Priors MCMC Validation Summary

Method 2

Gibbs for π(yM
⋆ , λb,u⋆, λ

F ,b | D) can sample between

π(yM
⋆ , λb,u⋆ | λF ,b,D)

π(λF ,b | yM
⋆ , λb,u⋆,D)

and

π(yM
⋆ , λb,u⋆ | λF ,b,D) = π(yM

⋆ | λb,u⋆, λ
F ,b,D) π(λb,u⋆ | λF ,b,D)

This justifies a Gibbs sampler as before but with full conditional of
λb,u⋆ obtained by integrating out yM

⋆ from the augmented
likelihood.
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Spotweld results
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Spotweld results
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Predict Reality

◮ Given a design set DF
new

= {xj}, let DM
u,new

= {(xj ,u)}

◮ let yM
u,new

= yM(DM
u,new

), bnew = b(DF
new

)

◮ Draw samples from

π(yM
new

,bnew | yF , yM) =

=

∫
f (yM

u,new
,bnew | yF , yM ,u, λF , λb) ×

× π(u, λF , λb | yF , yM) du dλF dλb

◮ Denote them by (y
M(t)
new ,b

(t)
new), t = 1, . . . ,T
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Bias-corrected prediction of reality

◮ Then,
yM(t)
new

+ b(t)
new

, t = 1, . . . ,T

is a sample from the posterior predictive distribution of yR

evaluated at DF
new

◮ and

ŷR
new

=
1

T

T∑
t=1

[yM(t)
new

+ b(t)
new

]

is a simulation-based estimate of the bias-corrected prediction

of reality
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Pure-model prediction of Reality

◮ If there are no calibration parameters, the pure-model
prediction of yR(x), x ∈ DF

new
is simply yM(x), computed by

actually running the computer model or using the emulator

◮ If there are calibration parameters, we then need an estimate
of u, e.g. the posterior mean or mode

◮ In that case, the pure-model prediction of yR(x), x ∈ DF
new

is
yM(x, û) ≡ yM

new
(û)

◮ Samples form the posterior predictive distribution of the bias
of this predictor are

b
(t)
û

= yM(t)
new

+ b(t)
new

− yM
new

(û), t = 1, . . . ,T
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Tolerance Bounds

Predictive accuracy assessement: with probability γ, the prediction
is within τ of the true yR(x)

◮ Pure-model prediction: determine τ such that γ × 100%
satisfy (component-wise statement)

|yM
new

(û) − (yM(t)
new

+ b(t)
new

)| < τ

◮ Bias-corrected prediction: determine τ such that γ × 100%
satisfy (component-wise statement)

|yR
new

− (yM(t)
new

+ b(t)
new

)| < τ
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◮ Combining model and field data to simultaneously calibrate
and validate a computer model

◮ Model inadequacy as a key concept

◮ Mix of Bayesian and likelihood techniques to produce
methodology that can be used by non-experts

◮ Bias-corrected and pure-model predictions of reality

◮ Tolerance bounds
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