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Introduction

» The principles of the statistical methodology that we
developed are quite general

» The implementation details are, however, problem-specific
» Extensions: functional output, multivariate output

» Applications: Crash and Roadload
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Bayarri et al. (2009) JASA

» The Crash computer model simulates the effect of a collision
of a vehicle against different types of barriers

» The computer model plays an important role in the design of
the vehicle, ensuring it's worth constructing and crashing a
prototype

» Main focus: velocity changes after impact at key positions on
the vehicle

Rui Paulo
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Acceleration (left) and velocity (right); frontal impact; 30 mph
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Finite element
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Difficulties
» The methodology we developed was for real-valued output;
the output here is a (smooth) function

» Hierarchical modeling: model and field at different conditions
not completely quantifiable: different impact barriers;
borrowing strength

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Inputs and data

» (x1,x2)=(impact velocity, barrier type)

» Barrier type can be straight frontal, left angle, right angle,
center pole

» Our methodology does not allow for such qualitative inputs so
we will resort to a hierarchical analysis

» If we restrict our data to left, right and frontal impact, we can
use a quantitative input such as “angle of impact”

» for the most part: x = impact velocity and we only look at
straight frontal impact

» Main output: relative velocity of the SDM situated under the
driver’'s seat: integrate acceleration and subtract impact
velocity

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Incorporating functional output

» Common approach: represent functions through basis
expansion — Roadload

» These velocity curves are quite smooth

» Sample the function at a grid of time points
DT = {tl,---atN}

» It will turn out important that field and computer model
curves are sampled at the same time points

» Input vector is now z = (x, t)

» Similar approaches: Conti and O'Hagan (2010), Rougier
(2007) and McFarkand et al. (2008)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Rui Paulo

» Field and model velocity curves are sampled at the same time

points DT

» Impact velocities for field experiments are in DF; impact

velocities for computer experiments in DV

» Hence, data are

yM =M, t): xe DM te D)
yF = (M(x,t): xe DF,te D)

> Interesting evaluation criteria: CRITV — Velocity calculated

30ms before the displacement reaches 135 mm

ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Emulation

» Gaussian process surface approximation as described in
Lecture 2

> u(x,t) = Obxt

» Separable correlation structure

» Problem: dimension of the correlation matrices is
#DM x #DT

» Key simplification:
cM(DM x DT DM x DT) = M(DM,DM) @ cT(DT,DT)
where ® stands for the Kronecker product:

A®B = [a,JB]

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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> Facts: |[A® B| = |A|"8|B|™; (A®B) l=A1g B!
» Exploited in spatiotemporal modeling and in Williams et al.
(2006) and Rougier (2007) in computer modeling

» Here we do not resort to an MLE-modular approach

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Statistical model

» Reality and bias: yR(x,t) = yM(x, t) + b(x, t)
» Field output functions:

yE O 1) = yR O 1) +ei(t)

where £;(t) are independent realizations from a GP prior with
mean zero, precision AF and correlation function
c’(t,s) = exp(—pT[t —s]°T)

» Bias: GP with a2 = 2 and mean

» Key assumption: GP correlation parameters associated with
time — o' and ﬂT — are the same for the computer model,
field error, and bias term

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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code field full
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Full Bayesian analysis

» The data isy = (y©,y") which is Gaussian with covariance
matrix X ® ¢’ (DT,DT) and mean X'0, where 8 = (uM, 1uP)

> m(f) x 1
> smoothness parameters « are independent uniform on (1,2)

» precision and range parameters: independent exponentials
centered at (a multiple) of the marginal maximum likelihood
estimates

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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SDM velocity for straight frontal; impact velocity 56.3 km/h
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Prediction of CRITV

» Simulation based inference makes it easy to predict
complicated functions of yR(x, t)

» DISP(t) = — [y yR(x,v) dv

» CRITV = yR(x, DISP~}(125) — 30)

» We can produce a pure-model prediction and a bias-corrected
prediction of CRITV

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Prediction of CRITV for impact velocity 56.3 km/h (top is pure
model; lower is bias-corrected)
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Hierarchical Modeling

» Jointly modeling the different impact barriers
» Alternative would be to use multivariate GP — more later

» Requires assumptions about how different output components
are related: y,-M and b;, i =1,...,K will be modeled using
distributions drawn from common populations

» Combine information between different models, borrow
strength, sharpen the individual analysis

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Assumptions

1. Few model data for some configurations: common correlation
parameters for the GP prior across the K configurations

Precisions AM and AF are also common
u,M are assumed to arise from a two-stage hierarchical model
b common

log(AP) ~ N(n,4q%) — q = 0.1 means that the biases are
expected to vary about 10%

o R~ e

6. correlation parameters for the bias processes are assumed to
be common

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Bias under 4 different barrier types, impact velocity 56.3 km/h
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Roadload problem

Roadload problem (Bayarri et al. 2007)

» Car is driven along a road seven times; time history of loads in
the suspension system is recorded

» Car is specified by 7 inputs, subject to manufacturing
variability

X* = Xpom + 0 yFx*t), r=1,...,7
» Computer model has 2 additional calibration inputs, u; and u
yM (%, ugi 1)

» Irregular functional output, one single uncertain controllable
vector of inputs in the field

» In addition to 7 field curves, 65 output curves (LHD)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Field output (top) and model output (bottom)
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Roadload problem

Statistical modeling

> yrF(xnom +0%; t) = yR(xnom +0%; t) + Er(t); Er(')
independent zero mean GP

> yR(x;t) = yM(x,u*; t) + b(x; t)

» unknowns are (yM, u*,8*, b, V.) where V. is the covariance
function of ¢

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Roadload problem

Wavelet Decomposition

(x,u; t) Z w;” (x, u)W;(t)
-
Using a tresholding procedure, leads to the approximations

M(x, u; t) ZW x,u)W;(t)

iel

Z (x)W;(t

iel

Rui Paulo
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Roadload problem

Wavelet reconstruction and original curve

—— orginal curve
wavelet reconstructed curve

Load

Time
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Roadload problem

Statistical model

Matching coefficients in the statistical model, we get

wl(x) = wM(x,u*) + wP(x) Viel

wi(x) = wR(x)+e;, Viel.

» c; are Gaussian with mean zero and independent across r

» we assume that they are also independent across i with
possibly different variance o2

i

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Roadload problem

Emulation

» Now the wavelet coefficients get a Gaussian process prior: for

each i € I, )
WiM(') ~ GP(ui, WC,'M(', 9))

» For each i, find the wavelet coefficients of the model data
{w;i(xx,ux)} and compute the corresponding posterior

wi(-, ) [ {wi(xk, uk)}
> #/ = 289, which leads to [2 x 9+ 2] x 289 = 5780 parameters
» Fix parameters at MLE 6; = (X,’-‘”,&;,B,)

wi(z) | wM, 6; ~ N(in(z), VM(2))

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Roadload problem

Priors

» Because only one value of Xy, is evaluated in the field, W,-b
are constant

» Each wavelet coefficient W,-b belongs to a resolution level ;.
Those are modeled as

Wib ~ N(Oa 7-_/2)

> (17 [ {07}) o< (77 + 57 /7) 7

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Roadload problem

MCMC

a(wM(8* u*),wb, 6% u*, 02, 7% | D) =

WI\/I( *) | Wb 5* u* 0'2,T2D)

7(
7r(wb|5*u o2, 7%, D)
7(6%,u*, 7% | 62, D)
(o?| D)
where
o2 2
10) o< [T s ool /(207

IG/

x/L(WF,52|5*u o?,72) d6* du* do? dr2
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Roadload problem

Modularization

> All except (6*,u*, 7% | 02, D) and 7(a? | D) are standard
form

» We ignore the integral in w(a? | D) and estimate the o using
replicate information

» bias can be replaced by larger J,-2 and this prevents this from
happening

» Modularization techniques — Liu et al. (2009)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Roadload problem

Posterior of 6* and u*
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Roadload problem

Bias-corrected prediction

Load
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Multivariate Output

Example

> yR(u) = (o (u), yg' () yM(u) = (11 (u), y2" (W)’
> Reality: solid; Model: dashed (Santner et al 2003)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

Example

» Model observed at 5 equally spaced points
> “True value”: v* = 0.2; yR(v*) = (—0.346, —0.649)
> Simulate 7 replicates of y*: yf (u*) ~ N(yR(u*), ZF) with

sF _ ( 1/400 0.5/400
~— \ 05/400 1/400

» Goal: estimate u and predict yR

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

Example

v

yM(u) = yf(u*) & u € {0.185,0.372}

yM(u) = yR(u*) & u € {0.050,0.194}

The posterior for u using data from one of the components
only is potentially bimodal

v

v

v

The two analysis are probably not compatible
Added uncertainty

>

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

Results |

Rui Paulo
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Multivariate Output

Results Il

Densiy.
[
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Multivariate Output

Results 1
If (u) 95 (u*)
Approach Mean 0.95% CI Mean 95% ClI
Separate  -0.372  (-0.621, -0.285) 0673 (-1.030, -0.417)
Combined  -0.354  (-0.401, -0.309) -0.663  (-0.736, -0.593)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

Highlights

» Single calibration strategy which results from combining all
the available information

» Common features are reinforced; others are smoothed out

» Reduced uncertainty in posterior predictions

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

Possible approaches

» Multivariate GP: cross-covariance functions are difficult to
specify

» Separability often assumed, otherwise computationally too
demanding

» Sample size issues

» Qian et al. (2008), Higdon et al. (2008), Conti and O'Hagan
(2010), Fricker et al. (2010)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

Linear models of Coregionalization

v

Gelfand et al (2004)

p-dimensional Gaussian process:

v

y"(2) = u(z) + Aw(z) + ¢

p(z) = (I, @ h(z)")n, h(z) € R®
A is p x r full column rank, r < p

v

v

v

components w;j(z) of w(z) are independent GP with mean

zero, precision AM and correlation structure cM(-,-)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

LMC emulators

» Conti and O'Hagan: ciM = ¢M which implies separability but
allows for integrating out everything except 3"

> Fricker et al: ¢ not equal: no longer separable; only mean

1
can be integrated out
» Higdon et al: High dimensional output, dimensionality
reduction since r << p; singular value decomposition of
transformed model data

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

Our proposal

» If matrix A is known, we transform model data as
w’\D/’ = A_ly’\D/’

> w’\D/’ come from independent GP, so software for univariate GP
can be used to estimate parameters

» Estimate matrix A via singular value decomposition

» With these estimates,

M(z) | yH.8" ~ N,(Am(z), AV(z) AY)

where m(z) = (m ,(z)’ ] - p),
V(z) = diag(Vi(2),i = ,p)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

“Hierarchical” Scenarios

» Qutput of model and field observations can be partitioned
into groups that, given u can be considered independent:

M M M
y ' (u) = (y1' (u),-..,y. (u))
and
F F F
Vi = (Yik(u), - yie(u))
» If it were not for the fact that each of these components share
the same u, we could perform separate analysis
» Everything naturally extends to this setting just by adding a
subscript and performing a product; L = 1 brings us back to
the original formulation

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate Output

Application

» Prototype vehicle is driven along a road that has two potholes

» There are two sensors on two different sites on the vehicle
registering the history of load — sites 1 and 2

> x = (x1,x);u=(u,w); K=7

» We are interested in the range of the load history at both sites
when the car hits the two potholes

» Two different potholes are modeled as independent but the
two sensors for the same pothole are not

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Load

Rui Paulo

Site 1, Region 1

Multivariate Output

Site 1, Region 2
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Multivariate Output

Density

Rui Paulo " ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Multivariate put

Bias-corrected prediction of ranges: separate (top) and combined

sie 1 st 1
site 2 st 2
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Calibration and Validation of Compu

a Bayesian Approa

ecture 4: Extensions



Multivariate Output

Discussion

» Separately analyzing different components of the output may
lead to conflicting calibration strategies and added uncertainty

» Methodology combines the separate analysis taking advantage
of existing software

» Computationally less demanding; potentially scales up

» Combining possibly very different marginals into joint: copulas

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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