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Introduction Crash Roadload problem Multivariate Output

◮ The principles of the statistical methodology that we
developed are quite general

◮ The implementation details are, however, problem-specific

◮ Extensions: functional output, multivariate output

◮ Applications: Crash and Roadload
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Calibration and Validation of Computer Models: a Bayesian Approach Lecture 4: Extensions



Introduction Crash Roadload problem Multivariate Output

Bayarri et al. (2009) JASA

◮ The Crash computer model simulates the effect of a collision
of a vehicle against different types of barriers

◮ The computer model plays an important role in the design of
the vehicle, ensuring it’s worth constructing and crashing a
prototype

◮ Main focus: velocity changes after impact at key positions on
the vehicle
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Acceleration (left) and velocity (right); frontal impact; 30 mph
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Finite element
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Difficulties

◮ The methodology we developed was for real-valued output;
the output here is a (smooth) function

◮ Hierarchical modeling: model and field at different conditions
not completely quantifiable: different impact barriers;
borrowing strength
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Inputs and data

◮ (x1, x2)=(impact velocity, barrier type)

◮ Barrier type can be straight frontal, left angle, right angle,
center pole

◮ Our methodology does not allow for such qualitative inputs so
we will resort to a hierarchical analysis

◮ If we restrict our data to left, right and frontal impact, we can
use a quantitative input such as “angle of impact”

◮ for the most part: x = impact velocity and we only look at
straight frontal impact

◮ Main output: relative velocity of the SDM situated under the
driver’s seat: integrate acceleration and subtract impact
velocity

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Incorporating functional output

◮ Common approach: represent functions through basis
expansion — Roadload

◮ These velocity curves are quite smooth

◮ Sample the function at a grid of time points
DT = {t1, . . . , tN}

◮ It will turn out important that field and computer model
curves are sampled at the same time points

◮ Input vector is now z = (x , t)

◮ Similar approaches: Conti and O’Hagan (2010), Rougier
(2007) and McFarkand et al. (2008)
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◮ Field and model velocity curves are sampled at the same time
points DT

◮ Impact velocities for field experiments are in DF ; impact
velocities for computer experiments in DM

◮ Hence, data are

yM = (yM(x , t) : x ∈ DM , t ∈ DT )

yF = (yM(x , t) : x ∈ DF , t ∈ DT )

◮ Interesting evaluation criteria: CRITV — Velocity calculated
30ms before the displacement reaches 135 mm

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Emulation

◮ Gaussian process surface approximation as described in
Lecture 2

◮ µ(x , t) = θLxt

◮ Separable correlation structure

◮ Problem: dimension of the correlation matrices is
#DM × #DT

◮ Key simplification:
cM(DM × DT ,DM × DT ) = cM

x (DM ,DM) ⊗ cT (DT ,DT )
where ⊗ stands for the Kronecker product:

A ⊗ B = [aijB ]

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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◮ Facts: |A ⊗ B | = |A|nB |B |nA ; (A ⊗ B)−1 = A−1 ⊗ B−1

◮ Exploited in spatiotemporal modeling and in Williams et al.
(2006) and Rougier (2007) in computer modeling

◮ Here we do not resort to an MLE-modular approach
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Statistical model

◮ Reality and bias: yR(x , t) = yM(x , t) + b(x , t)

◮ Field output functions:

yF (x⋆i , t) = yR(x⋆i , t) + εi (t)

where εi (t) are independent realizations from a GP prior with
mean zero, precision λF and correlation function
cT (t, s) = exp(−βT |t − s|αT )

◮ Bias: GP with αb
x = 2 and mean µb

◮ Key assumption: GP correlation parameters associated with

time — αT and βT — are the same for the computer model,
field error, and bias term
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Full Bayesian analysis

◮ The data is y = (yF , yM) which is Gaussian with covariance
matrix Σ ⊗ cT (DT ,DT ) and mean X′θ, where θ = (µM , µb)

◮ π(θ) ∝ 1

◮ smoothness parameters α are independent uniform on (1, 2)

◮ precision and range parameters: independent exponentials
centered at (a multiple) of the marginal maximum likelihood
estimates
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SDM velocity for straight frontal; impact velocity 56.3 km/h
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Prediction of CRITV

◮ Simulation based inference makes it easy to predict
complicated functions of yR(x , t)

◮ DISP(t) = −
∫ t

0 yR(x , ν) dν

◮ CRITV = yR(x ,DISP−1(125) − 30)

◮ We can produce a pure-model prediction and a bias-corrected
prediction of CRITV
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Prediction of CRITV for impact velocity 56.3 km/h (top is pure
model; lower is bias-corrected)
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Hierarchical Modeling

◮ Jointly modeling the different impact barriers

◮ Alternative would be to use multivariate GP — more later

◮ Requires assumptions about how different output components
are related: yM

i and bi , i = 1, . . . ,K will be modeled using
distributions drawn from common populations

◮ Combine information between different models, borrow
strength, sharpen the individual analysis
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Assumptions

1. Few model data for some configurations: common correlation
parameters for the GP prior across the K configurations

2. Precisions λM and λF are also common

3. µM
i are assumed to arise from a two-stage hierarchical model

4. µb common

5. log(λb
i ) ∼ N(η, 4q2) — q = 0.1 means that the biases are

expected to vary about 10%

6. correlation parameters for the bias processes are assumed to
be common

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Bias under 4 different barrier types, impact velocity 56.3 km/h
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Roadload problem (Bayarri et al. 2007)

◮ Car is driven along a road seven times; time history of loads in
the suspension system is recorded

◮ Car is specified by 7 inputs, subject to manufacturing
variability

x∗ = xnom + δ∗ yF
r (x∗; t), r = 1, . . . , 7

◮ Computer model has 2 additional calibration inputs, u1 and u2

yM(xk ,uk ; t)

◮ Irregular functional output, one single uncertain controllable
vector of inputs in the field

◮ In addition to 7 field curves, 65 output curves (LHD)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Field output (top) and model output (bottom)
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Statistical modeling

◮ yF
r (xnom + δ⋆; t) = yR(xnom + δ⋆; t) + εr (t); εr (·)

independent zero mean GP

◮ yR(x; t) = yM(x,u⋆; t) + b(x; t)

◮ unknowns are (yM ,u⋆, δ⋆, b,Vε) where Vε is the covariance
function of ε

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Wavelet Decomposition

yM(x,u; t) =
∑

i

wM
i (x,u)Ψi (t)

yF
r (x; t) =

∑

i

wF
ir (x)Ψi (t)

Using a tresholding procedure, leads to the approximations

yM(x,u; t) =
∑

i∈I

wM
i (x,u)Ψi (t)

yF
r (x; t) =

∑

i∈I

wF
ir (x)Ψi (t)
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Wavelet reconstruction and original curve
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Statistical model

Matching coefficients in the statistical model, we get

wR
i (x) = wM

i (x,u∗) + wb
i (x) ∀i ∈ I

wF
ir (x) = wR

i (x) + εir ∀i ∈ I .

◮ εir are Gaussian with mean zero and independent across r

◮ we assume that they are also independent across i with
possibly different variance σ2

i

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Emulation

◮ Now the wavelet coefficients get a Gaussian process prior: for
each i ∈ I ,

wM
i (·) ∼ GP(µi ,

1

λM
i

cM
i (·, ·))

◮ For each i , find the wavelet coefficients of the model data
{wi (xk ,uk)} and compute the corresponding posterior
wi (·, ·) | {wi (xk ,uk)}

◮ #I = 289, which leads to [2× 9 + 2]× 289 = 5780 parameters

◮ Fix parameters at MLE θ̂i = (λ̂M
i , α̂i , β̂i)

wi(z) | w
M
i , θ̂i ∼ N(m̂i (z), V̂

M
i (z))

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal

Calibration and Validation of Computer Models: a Bayesian Approach Lecture 4: Extensions



Introduction Crash Roadload problem Multivariate Output

Priors

◮ Because only one value of xnom is evaluated in the field, wb
i

are constant

◮ Each wavelet coefficient wb
i belongs to a resolution level j .

Those are modeled as

wb
i ∼ N(0, τ2

j )

◮ π(τ2
j | {σ2

i }) ∝ (τ2
j + σ̄2

j /7)
−1
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MCMC

π(wM(δ⋆,u⋆),wb, δ⋆,u⋆,σ2, τ 2 | D) =

π(wM(δ⋆,u⋆) | wb, δ⋆,u⋆,σ2, τ 2D)

π(wb | δ⋆,u⋆,σ2, τ 2,D)

π(δ⋆,u⋆, τ 2 | σ2,D)

π(σ2 | D)

where

π(σ2 | D) ∝
∏

i∈I

1

(σ2
i )

3
exp[−s2

i /(2σ2
i )]

×

∫
L(w̄F , s2 | δ⋆,u⋆,σ2, τ 2) dδ⋆ du⋆ dσ2 dτ 2

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Modularization

◮ All except π(δ⋆,u⋆, τ 2 | σ2,D) and π(σ2 | D) are standard
form

◮ We ignore the integral in π(σ2 | D) and estimate the σ2
i using

replicate information

◮ bias can be replaced by larger σ2
i and this prevents this from

happening

◮ Modularization techniques — Liu et al. (2009)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Posterior of δ⋆ and u⋆
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Bias-corrected prediction
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Example

◮ yR(u) = (yR
1 (u), yR

2 (u))′; yM(u) = (yM
1 (u), yM

2 (u))′

◮ Reality: solid; Model: dashed (Santner et al 2003)
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Example

◮ Model observed at 5 equally spaced points

◮ “True value”: u⋆ = 0.2; yR(u⋆) = (−0.346,−0.649)

◮ Simulate 7 replicates of yF : yF
k (u⋆) ∼ N(yR(u⋆),ΣF ) with

ΣF =

(
1/400 0.5/400

0.5/400 1/400

)
.

◮ Goal: estimate u and predict yR

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Example

◮ yM
1 (u) = yR

1 (u⋆) ⇔ u ∈ {0.185, 0.372}

◮ yM
2 (u) = yR

2 (u⋆) ⇔ u ∈ {0.050, 0.194}

◮ The posterior for u using data from one of the components
only is potentially bimodal

◮ The two analysis are probably not compatible

◮ Added uncertainty

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Results I
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Results II
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Results III

ŷR
1 (u⋆) ŷR

2 (u⋆)
Approach Mean 0.95% CI Mean 95% CI
Separate -0.372 (-0.621, -0.285) -0.673 (-1.030, -0.417)
Combined -0.354 (-0.401, -0.309) -0.663 (-0.736, -0.593)
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Highlights

◮ Single calibration strategy which results from combining all
the available information

◮ Common features are reinforced; others are smoothed out

◮ Reduced uncertainty in posterior predictions

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Possible approaches

◮ Multivariate GP: cross-covariance functions are difficult to
specify

◮ Separability often assumed, otherwise computationally too
demanding

◮ Sample size issues

◮ Qian et al. (2008), Higdon et al. (2008), Conti and O’Hagan
(2010), Fricker et al. (2010)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Linear models of Coregionalization

◮ Gelfand et al (2004)

◮ p-dimensional Gaussian process:

yM(z) = µ(z) + Aw(z) + ε

◮ µ(z) =
(
Ip ⊗ h(z)t

)
η, h(z) ∈ R

s

◮ A is p × r full column rank, r ≤ p

◮ components wi (z) of w(z) are independent GP with mean
zero, precision λM

i and correlation structure cM
i (·, ·)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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LMC emulators

◮ Conti and O’Hagan: cM
i ≡ cM which implies separability but

allows for integrating out everything except βM

◮ Fricker et al: cM
i not equal: no longer separable; only mean

can be integrated out

◮ Higdon et al: High dimensional output, dimensionality
reduction since r << p; singular value decomposition of
transformed model data

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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Our proposal

◮ If matrix A is known, we transform model data as
wM

D = A−1yM
D

◮ wM
D come from independent GP, so software for univariate GP

can be used to estimate parameters

◮ Estimate matrix A via singular value decomposition

◮ With these estimates,

yM(z) | yM
D , θ̂

M
∼ Np(Am̂(z),A V̂(z)At)

where m̂(z) = (m̂i (z)
′, i = 1, . . . , p)′,

V̂(z) = diag(V̂i(z), i = 1, . . . , p)

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal
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“Hierarchical” Scenarios

◮ Output of model and field observations can be partitioned
into groups that, given u can be considered independent:

yM(u) = (yM
1 (u), . . . , yM

L (u))′

and
yF
k = (yF

1k(u), . . . , yF
Lk(u))′

◮ If it were not for the fact that each of these components share
the same u, we could perform separate analysis

◮ Everything naturally extends to this setting just by adding a
subscript and performing a product; L = 1 brings us back to
the original formulation

Rui Paulo ISEG/CEMAPRE Technical University of Lisboa, Portugal

Calibration and Validation of Computer Models: a Bayesian Approach Lecture 4: Extensions



Introduction Crash Roadload problem Multivariate Output

Application

◮ Prototype vehicle is driven along a road that has two potholes

◮ There are two sensors on two different sites on the vehicle
registering the history of load — sites 1 and 2

◮ x = (x1, x2)
′; u = (u1, u2)

′; K = 7

◮ We are interested in the range of the load history at both sites
when the car hits the two potholes

◮ Two different potholes are modeled as independent but the
two sensors for the same pothole are not
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Bias-corrected prediction of ranges: separate (top) and combined
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Discussion

◮ Separately analyzing different components of the output may
lead to conflicting calibration strategies and added uncertainty

◮ Methodology combines the separate analysis taking advantage
of existing software

◮ Computationally less demanding; potentially scales up

◮ Combining possibly very different marginals into joint: copulas
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