Spatial blind source separation

François Bachoc

Institut de Mathématiques de Toulouse Université Paul Sabatier

Joint work with Marc Genton (KAUST, Saudi Arabia), Klaus Nordhausen (Jyväskylä, Finland), Anne Ruiz-Gazen (Toulouse, France) and Joni Virta (Turku, Finland)

> MASCOT NUM 2021 meeting April 2021

1 The spatial blind source separation problem

- 2 A solution by co-diagonalization of two local covariance matrices
- 3 An improved solution by approximate diagonalization of several local covariance matrices
- 4 Asymptotic results
- 5 Numerical results

Mixing of independent sources

Consider *p* unobserved independent stationary random fields

$$Z_1 : \mathbb{R}^d \to \mathbb{R}$$

$$Z_p : \mathbb{R}^d \to \mathbb{R}$$

called the sources.

Assume that we observe the mixed random fields

•
$$X_1 : \mathbb{R}^d \to \mathbb{R}$$

• \vdots
• $X_p : \mathbb{R}^d \to \mathbb{R}$
with

$$\begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix} = \Omega \begin{pmatrix} Z_1 \\ \vdots \\ Z_p \end{pmatrix}$$

where Ω is the $p \times p$ unknown mixing matrix.

Illustration (d=1)

Unobserved source fields Z_1, Z_2 .

Observed mixed fields X_1, X_2 .

Here

$$\Omega = egin{pmatrix} 1 & 0.3 \ 1 & -0.4 \end{pmatrix}.$$

Application examples

- Sound signal registered at p sensors → we want to recover p speakers (d = 1, signal processing).
- p pollutant concentrations measured over a region \rightarrow we want to recover p main independent sources of pollution (d = 2, spatial statistics).
- Determining main drivers for time series (d = 1, finance).
- Recovering neuron sources in EEGs (d = 1, neurosciences).

A reference:

Comin, P. & Jutten, C., Handbook of Blind Source Separation: Independent component analysis and applications, *Academic press*, 2010.

Objective

- \implies Knowing the unmixing matrix Ω^{-1} would be useful.
 - Recovery of the independent sources with

$$\begin{pmatrix} Z_1 \\ \vdots \\ Z_p \end{pmatrix} = \Omega^{-1} \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix}$$

- Interpretation of the independent sources by subject experts.
- Modeling the distribution of (X₁,..., X_p) (complex) ⇒ modeling independently the distributions of Z₁,..., Z_p (simpler).
- Predicting $X_1, ..., X_p$ by multivariate Kriging (cost $O(p^3n^3)$) \implies predicting independently $Z_1, ..., Z_p$ by univariate Kriging (cost $O(pn^3)$) (Muehlmann, Nordhausen, Yi, 2020).
- \implies We want to estimate Ω^{-1} .

Identifiability aspects

In

$$\begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix} = \Omega \begin{pmatrix} Z_1 \\ \vdots \\ Z_p \end{pmatrix},$$

the observed X_1, \ldots, X_p are unchanged if

- column *i* of Ω multiplied by $\lambda > 0$,
- Z_i multiplied by $1/\lambda$.

 \implies We assume that

$$\operatorname{Var}(Z_1(s)) = 1, \dots, \operatorname{Var}(Z_p(s)) = 1$$

for $s \in \mathbb{R}^d$.

Still now

• Z_i can not be distinguished from $-Z_i$,

• the order of Z_1, \ldots, Z_p can not be estimated.

 \implies We want to estimate Z_1, \ldots, Z_p up to signs and order of the components.

 \implies We want to estimate Ω^{-1} up to signs and order of the rows.

7 / 27

The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Observations and local covariance matrices

Observations: We observe X_1, \ldots, X_p at the observation points

$$s_1,\ldots,s_n\in\mathbb{R}^d.$$

Our observations are thus

- $X_1(s_1), ..., X_1(s_n)$
- $X_p(s_1),\ldots,X_p(s_n).$
- Local covariance matrices:
 - let $f : \mathbb{R}^d \to \mathbb{R}$ be a kernel,

let

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix},$$

let

$$\widehat{M}(f) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} f(s_i - s_j) X(s_i) X(s_j)^{\top}$$

 $(p \times p)$ (assume X_1, \ldots, X_p centered for simplicity).

Different types of kernels

• Let
$$f_0(s) = 1\{s = 0\}$$
.
 \implies We have

$$\widehat{M}(f_0) = \frac{1}{n} \sum_{i=1}^n X(s_i) X(s_i)^{\top}$$

(empirical covariance matrix).

Ball kernel:

 $f(s) = 1\{||s|| \le h\}.$

Ring kernel:

 $f(s) = 1\{h_1 \le ||s|| \le h_2\}.$

Gaussian kernel:

$$f(s) = e^{-||s||^2/h^2}.$$

Co-diagonalization

Unmixing matrix estimator

Estimator $\widehat{\Gamma}(f)$ by co-diagonalization of $\widehat{M}(f_0)$ and $\widehat{M}(f)$:

```
\widehat{\Gamma}(f)\widehat{M}(f_0)\widehat{\Gamma}(f)^{\top} = I_p
```

and

$$\widehat{\Gamma}(f)\widehat{M}(f)\widehat{\Gamma}(f)^{\top} = \widehat{\Lambda}(f),$$

where $\widehat{\Lambda}(f)$ is a diagonal matrix.

- $\widehat{\Gamma}(f)$ estimates Ω^{-1} .
- Similar method exists for independent observations and time series (d = 1) (see e.g. Belouchrani et al, 1997).
- Method suggested in the spatial setting $(d \ge 2)$ in Nordhausen et al (2015).

 $+ \hat{\Gamma}(f)$ can be computed explicitly by diagonalization of

 $\widehat{M}(f_0)^{-1/2}\widehat{M}(f)\widehat{M}(f_0)^{-1/2}$

 $(p \times p)$.

- + No need to model the random fields X_1, \ldots, X_p (the estimator is semi-parametric).
 - The estimation quality strongly depends on the choice of *f*.

1 The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Approximate diagonalization

Consider k kernels
$$f_1, \ldots, f_k : \mathbb{R}^d \to \mathbb{R}$$
.

Unmixing matrix estimator

Estimator $\widehat{\Gamma}(f_1, \ldots, f_k) = \widehat{\Gamma}$ satisfies

$$\widehat{\Gamma} \in \operatorname*{argmax}_{\substack{\Gamma:\\ \Gamma \widehat{\mathcal{M}}(f_0)\Gamma^\top = I_p}} \quad \sum_{l=1}^k \sum_{j=1}^p \left[\left(\Gamma \widehat{\mathcal{M}}(f_l)\Gamma^\top \right)_{j,j} \right]^2.$$
(1)

- $\widehat{\Gamma}(f)$ estimates Ω^{-1} .
- Intuition: Same principle as before but we want all the matrices

$$\widehat{\Gamma}\widehat{M}(f_0)\widehat{\Gamma}^{\top},\widehat{\Gamma}\widehat{M}(f_1)\widehat{\Gamma}^{\top},\ldots,\widehat{\Gamma}\widehat{M}(f_k)\widehat{\Gamma}^{\top}$$

to be approximately diagonal.

- Similar method exists for independent observations and time series (d = 1) (see e.g. Belouchrani et al., 1997).
- Here we extend to the spatial setting.

- No explicit solution of the optimization problem.
- The cost function has complexity $O(kp^3)$.
- Efficient algorithms exist, e.g. Given's rotations (Clarkson, 1988).
- + We have more flexibility to choose f_1, \ldots, f_k for a better estimation.
 - Typically, a mix of different types of kernels is recommended.

1 The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Asymptotic framework

• We let $n \to \infty$ and p be fixed.

Increasing-domain asymptotics: Infinite sequence $(s_i)_{i \in \mathbb{N}}$ of observation locations covering an infinite domain.

⇒ Asymptotic weak dependence between observations.

Gaussianity: We assume that Z_1, \ldots, Z_p are Gaussian random fields.

• Technical conditions on the covariance functions of Z_1, \ldots, Z_p .

- Consider kernels f₁,..., f_k satisfying some technical conditions (allows balls, rings and Gaussian).
- Let d_w be a distance between probability distributions such that

$$\mathcal{L}_n \xrightarrow[n \to \infty]{d} \mathcal{L}_\infty \iff d_w(\mathcal{L}_n, \mathcal{L}_\infty) \xrightarrow[n \to \infty]{d} 0$$

(Dudley, 2002).

Let vect(A) be the column vector obtained by row vectorization of a matrix A.

Central limit theorem

We show: Theorem

• Let $(\hat{\Gamma}_n)$ be any sequence of matrices that approximately diagonalizes

$$\widehat{M}(f_0), \widehat{M}(f_1), \ldots, \widehat{M}(f_k).$$

• Then there exists a sequence $(\check{\Gamma}_n)$ such that for all $n \in \mathbb{N}$

 $\check{\Gamma}_n=\hat{\Gamma}_n$

up to order of the rows and multiplication of the rows by $\pm 1.$

• Furthermore, let \mathcal{L}_n be the distribution of

$$\sqrt{n} \operatorname{vect} \left(\check{\Gamma}_n - \Omega^{-1}\right).$$

Then we have

$$d_w \Big(\mathcal{L}_n, \mathcal{N} \left[0, V_n(f_1, \ldots, f_k) \right] \Big) \xrightarrow[n \to \infty]{} 0.$$

• The sequence of matrices $V_n(f_1, \ldots, f_k)$ is bounded. See paper.

1 The spatial blind source separation problem

2 A solution by co-diagonalization of two local covariance matrices

3 An improved solution by approximate diagonalization of several local covariance matrices

4 Asymptotic results

5 Numerical results

Results on simulated data

■ y-axis: mean error criterion.

 \implies As *n* increases, asymptotic and empirical error criteria get closer. \implies Ring is better than ball. Using both is robust.

Results on simulated data

Empirical (black) and asymptotic (red) distributions of error criterion.

Results on simulated data

• x-axis: Ball (B), ring (R), Gaussian (G) and joint kernels.

■ y-axis: mean error criterion.

→ Using combinations of kernels is robust.

Real data example

- **•** n = 594 samples of terrestrial moss in Finland, Norway, Russia.
- p = 31 concentrations of chemical elements.
- (Nordhausen et al, 2015).

Real data example

- **Left**, gold standard: 2 most important estimated sources in Z by
 - co-diagonalization of $\widehat{M}(f_0)$ and $\widehat{M}(f_1)$,
 - f_1 is the ball kernel with radius 50 km,
 - chosen carefully by hand with a subject expert.
- **Middle:** f_0 and f_1 ; ball kernel with radius 100 km.
- **Right:** f_0 and f_1 , f_2 , f_3 ; ring kernels with varying radii.

Conclusion

- Unmixing the random fields for easier modeling, easier prediction, interpretation.
- Algorithms are semi-parametric and scale well with dataset size.
- Approximate joint diagonalization with multiple kernels is more robust.
- We have extended procedures and asymptotic results from time series to random fields.
- **Follow-up work:** Dimension reduction (Muehlmann, Bachoc, Nordhausen, Yi, 2020).
- Open questions: Fixed-domain asymptotics? Data driven selection of kernels?

The paper:

Bachoc, F., Genton, M. G., Nordhausen, K., Ruiz-Gazen, A. & Virta, J., Spatial blind source separation, *Biometrika*, 107(3), 627-646, 2020.

Thank you for your attention!

Bibliography

Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F. & Moulines, E., A blind source separation technique using second-order statistics, *IEEE Transactions on Signal Processing*, 45, 434-444, 1997.

Clarkson, D. B., Algorithm AS 211: The F-G Diagonalization Algorithm, *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 37, 147-151, 1988.

- Dudley, D. B., Real Analysis and Probability, *Cambridge University Press.*, 2002.
- Muehlmann, C., Nordhausen, K. & Yi, M. On cokriging, neural networks, and spatial blind source separation for multivariate spatial prediction, *IEEE Geoscience and Remote Sensing Letters*, 1-5, 2020.

Muehlmann, C., Bachoc, F., Nordhausen, K. & Yi, M. Test of the latent dimension of a spatial blind source separation model, *arXiv: 2011. 01711*, 2020.

Nordhausen, K., Oja, H., Filzmoser, P. & Reimann, C., Blind source separation for spatially correlated compositional data, *Mathematical Geosciences*, 47, 753-770, 2015.