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Université Paul Sabatier

Joint work with Marc Genton (KAUST, Saudi Arabia), Klaus
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Mixing of independent sources

Consider p unobserved independent stationary random fields

Z1 : R
d → R

...

Zp : Rd → R

called the sources.

Assume that we observe the mixed random fields

X1 : R
d → R

...

Xp : Rd → R

with 

X1

...
Xp


 = Ω



Z1

...
Zp




where Ω is the p × p unknown mixing matrix.
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Illustration (d=1)
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Unobserved source fields Z1,Z2. Observed mixed fields X1,X2.

Here

Ω =

(
1 0.3
1 −0.4

)
.
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Application examples

Sound signal registered at p sensors −→ we want to recover p
speakers (d = 1, signal processing).

p pollutant concentrations measured over a region −→ we want to
recover p main independent sources of pollution (d = 2, spatial
statistics).

Determining main drivers for time series (d = 1, finance).

Recovering neuron sources in EEGs (d = 1, neurosciences).

A reference:

Comin, P. & Jutten, C., Handbook of Blind Source Separation:
Independent component analysis and applications, Academic press,
2010.
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Objective

=⇒ Knowing the unmixing matrix Ω−1 would be useful.

Recovery of the independent sources with



Z1

...
Zp


 = Ω−1



X1

...
Xp


 .

Interpretation of the independent sources by subject experts.

Modeling the distribution of (X1, . . . ,Xp) (complex) =⇒ modeling
independently the distributions of Z1, . . . ,Zp (simpler).

Predicting X1, . . . ,Xp by multivariate Kriging (cost O(p3n3)) =⇒
predicting independently Z1, . . . ,Zp by univariate Kriging (cost
O(pn3)) (Muehlmann, Nordhausen, Yi, 2020).

=⇒ We want to estimate Ω−1.
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Identifiability aspects

In 

X1

...
Xp


 = Ω



Z1

...
Zp


 ,

the observed X1, . . . ,Xp are unchanged if

column i of Ω multiplied by λ > 0,
Zi multiplied by 1/λ.

=⇒ We assume that

Var(Z1(s)) = 1, . . . ,Var(Zp(s)) = 1

for s ∈ R
d .

Still now

Zi can not be distinguished from −Zi ,
the order of Z1, . . . ,Zp can not be estimated.

=⇒ We want to estimate Z1, . . . ,Zp up to signs and order of the
components.

=⇒ We want to estimate Ω−1 up to signs and order of the rows.
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Observations and local covariance matrices

Observations: We observe X1, . . . ,Xp at the observation points

s1, . . . , sn ∈ R
d
.

Our observations are thus
• X1(s1), . . . ,X1(sn)

•

...
• Xp(s1), . . . ,Xp(sn).

Local covariance matrices:

• let f : Rd
→ R be a kernel ,

• let

X =





X1

...
Xp



 ,

• let

M̂(f ) =
1

n

n∑

i=1

n∑

j=1

f (si − sj)X (si )X (sj)
⊤

(p × p)
(assume X1, . . . ,Xp centered for simplicity).
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Different types of kernels

Let f0(s) = 1{s = 0}.
=⇒ We have

M̂(f0) =
1

n

n∑

i=1

X (si )X (si )
⊤

(empirical covariance
matrix).

Ball kernel:

f (s) = 1{||s|| ≤ h}.

Ring kernel:

f (s) = 1{h1 ≤ ||s|| ≤ h2}.

Gaussian kernel:

f (s) = e−||s||2/h2
.
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Co-diagonalization

Unmixing matrix estimator

Estimator Γ̂(f ) by co-diagonalization of M̂(f0) and M̂(f ):

Γ̂(f )M̂(f0)Γ̂(f )
⊤ = Ip

and
Γ̂(f )M̂(f )Γ̂(f )⊤ = Λ̂(f ),

where Λ̂(f ) is a diagonal matrix.

Γ̂(f ) estimates Ω−1.

Intuition: Can show that Γ̂(f ) = Ω−1 would make the above
matrices diagonal in expectation.

Similar method exists for independent observations and time series
(d = 1) (see e.g. Belouchrani et al, 1997).

Method suggested in the spatial setting (d ≥ 2) in Nordhausen et al
(2015).
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Co-diagonalization: pros and cons

+ Γ̂(f ) can be computed explicitly by diagonalization of

M̂(f0)
−1/2M̂(f )M̂(f0)

−1/2

(p × p).

+ No need to model the random fields X1, . . . ,Xp (the estimator is
semi-parametric).

- The estimation quality strongly depends on the choice of f .
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Approximate diagonalization

Consider k kernels f1, . . . , fk : Rd → R.

Unmixing matrix estimator

Estimator Γ̂(f1, . . . , fk) = Γ̂ satisfies

Γ̂ ∈ argmax
Γ:

ΓM̂(f0)Γ
⊤=Ip

k∑

l=1

p∑

j=1

[(
ΓM̂(fl)Γ

⊤
)
j,j

]2
. (1)

Γ̂(f ) estimates Ω−1.

Intuition: Same principle as before but we want all the matrices

Γ̂M̂(f0)Γ̂
⊤
, Γ̂M̂(f1)Γ̂

⊤
, . . . , Γ̂M̂(fk)Γ̂

⊤

to be approximately diagonal.

Similar method exists for independent observations and time series
(d = 1) (see e.g. Belouchrani et al., 1997).

Here we extend to the spatial setting.
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Approximate diagonalization: comments

- No explicit solution of the optimization problem.

The cost function has complexity O(kp3).

Efficient algorithms exist, e.g. Given’s rotations (Clarkson, 1988).

+ We have more flexibility to choose f1, . . . , fk for a better estimation.

Typically, a mix of different types of kernels is recommended.
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Asymptotic framework

We let n → ∞ and p be fixed.

Increasing-domain asymptotics: Infinite sequence (si )i∈N of observation
locations covering an infinite domain.

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

=⇒ Asymptotic weak dependence between observations.

Gaussianity: We assume that Z1, . . . ,Zp are Gaussian random fields.

Technical conditions on the covariance functions of Z1, . . . ,Zp.
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Some notation

Consider kernels f1, . . . , fk satisfying some technical conditions
(allows balls, rings and Gaussian).

Let dw be a distance between probability distributions such that

Ln
d−→

n→∞
L∞ ⇐⇒ dw (Ln,L∞) −→

n→∞
0

(Dudley, 2002).

Let vect(A) be the column vector obtained by row vectorization of a
matrix A.
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Central limit theorem

We show: Theorem

Let (Γ̂n) be any sequence of matrices that approximately diagonalizes

M̂(f0), M̂(f1), . . . , M̂(fk).

Then there exists a sequence (Γ̌n) such that for all n ∈ N

Γ̌n = Γ̂n

up to order of the rows and multiplication of the rows by ±1.

Furthermore, let Ln be the distribution of

√
n vect

(
Γ̌n − Ω−1

)
.

Then we have

dw

(
Ln,N [0,Vn(f1, . . . , fk)]

)
−→
n→∞

0.

The sequence of matrices Vn(f1, . . . , fk) is bounded. See paper.
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Results on simulated data

y -axis: mean error criterion.
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=⇒ As n increases, asymptotic and empirical error criteria get closer.

=⇒ Ring is better than ball. Using both is robust.
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Results on simulated data

Empirical (black) and asymptotic (red) distributions of error
criterion.
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Results on simulated data

x-axis: Ball (B), ring (R), Gaussian (G) and joint kernels.

y -axis: mean error criterion.
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Real data example

n = 594 samples of terrestrial moss in Finland, Norway, Russia.

p = 31 concentrations of chemical elements.

(Nordhausen et al, 2015).
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Real data example

Left, gold standard: 2 most important estimated sources in Z by
co-diagonalization of M̂(f0) and M̂(f1),
f1 is the ball kernel with radius 50km,
chosen carefully by hand with a subject expert.

Middle: f0 and f1; ball kernel with radius 100km.

Right: f0 and f1, f2, f3; ring kernels with varying radii.
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> −1.99 − −0.62
   −3.55 − −1.99
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Conclusion

Unmixing the random fields for easier modeling, easier prediction,
interpretation.

Algorithms are semi-parametric and scale well with dataset size.

Approximate joint diagonalization with multiple kernels is more
robust.

We have extended procedures and asymptotic results from time
series to random fields.

Follow-up work: Dimension reduction (Muehlmann, Bachoc,
Nordhausen, Yi, 2020).

Open questions: Fixed-domain asymptotics? Data driven selection
of kernels?

The paper:

Bachoc, F., Genton, M. G., Nordhausen, K., Ruiz-Gazen, A. & Virta,
J., Spatial blind source separation, Biometrika, 107(3), 627-646,
2020.

Thank you for your attention!
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