
Cross-validation based adaptive
sampling for Gaussian process models

Peter Challenor, Hossein Mohammadi

University of Exeter, UK

Mascot-Num

28 April 2021



Outline 2

Introduction

Gaussian process emulators

Proposed adaptive sampling algorithm

Numerical experiments



Outline 3

Introduction

Gaussian process emulators

Proposed adaptive sampling algorithm

Numerical experiments



Decision making with models/simulators 4

◮ Let f(x) represent the output of a complex computer
model (or simulator).

◮ We want to use this model to make some real world
decision.

◮ For that we need to produce calibrated predictions with
the uncertainties quantified.

◮ One step on the way to such simulator predictions is build
a fast surrogate simulator with known uncertainty.

◮ We refer to this as an emulator.



Problem Statement 5

We wish to approximate f which is

◮ Black-box (analytically unknown)

◮ Computationally expensive → a parsimonious model run
strategy is required

x ∈ D ⊆ R
d

Input
Computer model

f(x) ∈ R

Output



Surrogate modelling 6

One possible way around this problem is to use surrogate
models, e.g. Gaussian process (GP) emulators.

◮ Surrogate models provide a “fast” approximation of the
true model

◮ They are buildt using a limited number of simulation runs



Experimental design 7

◮ Simulator runs are expensive

◮ The location of samples has a significant effect on the
accuracy of a surrogate model

◮ We want the ‘best’ emulator for the minimum number of
runs

◮ The design of computer experiments (DoE) has become an
integral part of the analysis of computer experiments

◮ Samples can be chosen at once (one-shot) or sequentially
(adaptive)



One-shot sampling 8

◮ Full factorial

◮ Latin hypercube sampling (LHS)

◮ Minimax and maximin-distance

◮ Low discrepancy sequences

◮ . . .



One-shot sampling 8

◮ Full factorial

◮ Latin hypercube sampling (LHS)

◮ Minimax and maximin-distance

◮ Low discrepancy sequences

◮ . . .

Drawback: may result in under/oversampling and wasting
computational resources �



Adaptive sampling algorithm 9

1. Fit a surrogate model to an initial DoE

2. While stopping criterion not met:

(a) Find a new point using an “appropriate” criterion

(b) Run the simulator at that point

(c) Add the new point to the DoE

(d) Update the surrogate model using the new point



Sequential Design 10

◮ An obvious sequential design is to add new design points
where the uncertainty of our current emulator is a
maximum.

◮ Or to minimise the integrated uncertainty

◮ Tends to add points at the boundaries

◮ Poor at space filling



The Perfect Sequential Design 11

◮ Start with a ‘small’ space filling design

◮ Will not put points on the boundaries (fill space)

◮ Will reduce the integrated uncertainty (or other metric)
rapidly

◮ Can be used in a ‘batch symmetric’ way





Outline 13

Introduction

Gaussian process emulators

Proposed adaptive sampling algorithm

Numerical experiments



Gaussian processes 14

A GP is denoted by Z0(x) and is fully determined by its mean
(m0) and covariance function/kernel (k0).

◮ m0(x) = E [Z0(x)]

◮ k0(x, x′) = Cov (Z0(x), Z0(x′))

Note: The mean function is assumed (wlog) to be a constant:
m0(x) = µ.



GP prediction 15

The GP prediction is obtained by conditioning it on the
observations: Zn(x) = Z0(x) | yn where

◮ Xn = (x1, . . . , xn)⊤ → n locations in the input space

◮ yn = (f(x1), . . . , f(xn))⊤ → corresponding outputs

◮ A = {Xn, yn} → training set (our initial experimental
design)



GP predictive mean & variance 16

The predictive (conditional) mean and variance are:

◮ mn(x) = E [Zn(x)] = µ + k(x)⊤K−1(yn − µ1)

◮ s2
n(x) = Var (Zn(x)) = k0(x, x) − k(x)⊤K−1k(x)

where

◮ k(x) = (k0(x, x1), . . . , k0(x, xn))⊤

◮ K → covariance matrix; Kij = k0(xi, xj) for 1 ≤ i, j ≤ n

◮ 1 → vector of ones



Outline 17

Introduction

Gaussian process emulators

Proposed adaptive sampling algorithm

Numerical experiments







Expected squared LOO error 20

The expected squared LOO (ES-LOO) error at xi is defined as1

EL(xi) =
E

[

(Zn,−i(xi) − f(xi))
2
]

√

Var
(

(Zn,−i(xi) − f(xi))
2
)

.

◮ Zn,−i(xi) ∼ N
(

mn,−i(xi), s2
n,−i(xi)

)

◮ E

[

(Zn,−i(xi) − f(xi))
2
]

= s2
n,−i(xi) + (mn,−i(xi) − f(xi))

2

◮ Var
(

(Zn,−i(xi) − f(xi))
2
)

=

2s4
n,−i(xi) + 4s2

n,−i(xi) (mn,−i(xi) − f(xi))
2

1[Mohammadi et al. (2021)]



ES-LOO error (out-of-sample) 21

◮ Next sample → where ES-LOO error is maximum

◮ ES-LOO errors → only defined at design points �



We extend the ES-LOO error to be a function defined over the
whole domain, EL(x), x ∈ D, that we have observed at the
design points, and we model this function with a GP. The
interpretation of EL(x) is the value of the ES-LOO error we
think we would see if (x, f(x)) were part of our data set.



Where to sample next? 23

◮ Ze
n(x) → GP model to predict EL(x), x ∈ D

◮ {Xn, ye
n} → data set to train Ze

n(x) where

ye
n = (EL(x1), . . . , EL(xn))

⊤

◮ To find max (EL(x)) → trade-off between exploration and
exploitation is required

◮ Expected improvement (EI) → can be used to achieve the
exploration/exploitation trade-off

◮ Next sample → xn+1 = argmax
x∈D

EI(x)



Expected improvement 24

EI(x) =

{

(me
n(x) − max(ye

n)) Φ(u) + se
n(x)φ(u) if se

n(x) > 0

0 if se
n(x) = 0

◮ u =
me

n
(x)−max(y

e

n
)

se

n
(x)

◮ me
n(x) and se

n(x) → predictive mean and variance of Ze
n(x)

◮ φ(·) and Φ(·) → PDF and CDF of the standard normal
distribution





Pseudo expected improvement (PEI) 26

To avoid clustering, we use pseudo expected improvement (PEI):

xn+1 = argmax
x∈D

PEI(x).

PEI is obtained by multiplying EI by a repulsion function (RF)
defined as:

RF (x; Xn) =
n

∏

i=1

[1 − Corr (Ze
n(x), Ze

n(xi))] ,

which is a measure of the (canonical) distance between x and
the data points Xn.





Pseudo points 28

Often, in adaptive sampling strategies many points lie along the
boundaries of the input space. This problem can be alleviated
in our approach by introducing “pseudo points” at appropriate
locations on the boundaries.
Pseudo points, denoted by Xp, are used to update the repulsion
function, i.e. RF (x; Xn ∪ Xp), but the true function is not
evaluated there.





Batch sampling 30

◮ A set of inputs {xn+1, . . . , xn+q} is evaluated at each
iteration

◮ Can save the user time when parallel computing is available

◮ Our approach can be easily extended to a batch mode
thanks to the repulsion function

◮ Only the repulsion function is updated, see next slides









Outline 34

Introduction

Gaussian process emulators

Proposed adaptive sampling algorithm

Numerical experiments



We compare our proposed approach with:

◮ Maximum mean squared error (MSE)

◮ Expected improvement for global fit (EIGF) [Lam (2008)]

◮ Mutual information for computer experiments (MICE)
[Beck and Guillas (2016)]

◮ LHS design





Problem setting 37

◮ Six test functions: f1, . . . , f6

◮ Problem dimension: d = 2, 3, 5, 6, 7

◮ Total budget: 30 × d

◮ Size of initial DoE: 3 × d (using LHS)

◮ Assessment tool: root mean squared error (RMSE)

◮ Test points: 3000 (space-filling) points









Conclusions 41

◮ Sequential design can offer a number of improvements over
one shot designs

◮ We are proposing a new method based on leave one out
and pseudo-expected improvement

◮ Our method is consistently among the best in comparisons.

Thank you for your attention!



References 42

Beck, J. and Guillas, S. (2016). Sequential design with mutual
information for computer experiments (MICE): Emulation of
a tsunami model. SIAM/ASA Journal on Uncertainty
Quantification, 4(1):739–766.

Lam, C. Q. (2008). Sequential adaptive designs in computer
experiments for response surface model fit. PhD thesis,
Columbus, OH, USA. AAI3321369.

Mohammadi, H., Challenor, P., Williamson, D., and
Goodfellow, M. (2021). Cross-validation based adaptive
sampling for Gaussian process models.


	Introduction
	Gaussian process emulators
	Proposed adaptive sampling algorithm
	Numerical experiments
	References

